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Abstract. The dynamical behavior of a bouncing ball with a sinusoidally vibrating table is revisited in this paper. 
Based on the equation of motion of the ball, the mapping for period-1 motion is constructed and thereby allowing 
the stability and bifurcation conditions to be determined. Comparison with Holmes's solution [1] shows that our 
range of stable motion is wider, and through numerical simulations, our stability result is observed to be more 
accurate. The Poincar6 mapping sections of the unstable period- 1 motion indicate the existence of identical Smale 
horseshoe structures and fractals. For a better understanding of the stable and chaotic motions, plots of the physical 
motion of the bouncing ball superimposed on the vibration of the table are presented. 
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Introduction 

Holmes [1] can be credited as the first person to systematically study the nonlinear dynamics 
of a ball bouncing vertically on a sinusoidally vibrating table. The ball was considered small 
compared to the massive table and thus, the motion of the table was not affected by the repeated 
impacts of the ball. He also assumed that the distance traveled by the free-falling ball between 
impacts is large compared to the overall displacement of the table and proceeded to give an 
approximate equation for the time interval between impacts. On the basis of this model, he 
arrived at a simple difference equation which he used to demonstrate the various periodic 
and non-periodic motions and other chaotic phenomena. In our opinion this simplified model 
based on a discrete mapping approach is unnecessary and in some respect, inadequate. We 
will present a model that is based on the equation of motion of the ball. 

Impact motion exists in a wide spectrum of engineering applications, ranging from moored 
ships undergoing repeated contacts with fenders to moving parts in machinery and fluid 
induced vibration in tubes. An engineer is not only concerned with the wear and fatigue 
generated by the impacting system, but also the undesirable noise level that accompanies 
such motion. A simple model of this discontinual system is to employ a single degree-of- 
freedom impact oscillator. This deceptively simple model can exhibit an amazingly rich 
variety of nonlinear behaviors [1-7]. Wood and Byrne [3] presented an interesting analysis 
of a randomly repeated impacting process and hinted that such random non-periodic motion 
apparently exist even when the system is forced by sinusoidal excitations. This motivated 
Holmes [1] to launch an investigation into the problem. Everson [4] investigated the chaotic 
response of a bouncing ball using a model similar to Holmes's. Other studies related to the 
dynamics of a bouncing ball are the motion of impact dampers [8-15]. 

In this paper, the dynamics of a bouncing ball impacting on a harmonically excited massive 
table is revisited. Unlike Holmes [ 1 ], our model is based on the differential equation of motion 
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Fig. 1. Mechanical model of the bouncing ball with a vibrating table. 

of the ball and from this, an appropriate mapping (or switch plane) is constructed. Also, we did 
not have to assume that the distance traversed by the free-falling ball is large compared to the 
motion of the table and this enables us to model large amplitude excitations. Accordingly, our 
computed time interval between impacts is exact, whereas it was approximate in Holmes. The 
stability and bifurcation conditions of the system are derived and presented here. To verify 
the results, numerical simulations are carried out. The focus of this paper is only on period-1 
motion, with the more general period-n motion report currently under preparation [16]. 

Equation of Motion, Discontinual Subsets and Poincar6 Mapping 

Figure 1 depicts the mechanical model of a bouncing ball m moving freely in the vertical 
direction with a vibrating table of mass M. It is assumed that the table is massive compared 
to the ball and therefore, the motion of the table is not affected by the repeated impacts of the 
bouncing ball, i.e. m << M. As in the work of Holmes [1], the external excitation, namely, 
the motion of the table, is taken to be that of the simple harmonic motion. That is, 

E = A sin(wt + ~), (1) 

where A, w and ~ are the forcing amplitude, the forcing frequency and the initial phase 
angle. 

Denoting the absolute and relative (to the table) displacements of the ball by x, y respec- 
tively, and if (') represents time derivatives, we have 

x = y + E ( t , A )  

:~ = 1) +/~(t ,  A) 

5~ = ~) + ~}(t, A). (2) 

Substituting Equation (1) into Equation (2) and considering gravity but neglecting friction, 
yields the equation of motion in the relative coordinate system: 

ij = A w  2 sin(wt + ~) - g, (3) 
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where g is the gravity acceleration. Integrating Equation (3) and invoking initial conditions 
(Y0, Y0), the velocity and displacement of the ball are 

3 = - A w  cos(wt + ~) - gt + [30 + gto + Aw cos(wto + p)] (4) 

i 
y = -As in(wt  + ~) - -~ gt 2 + [~)o + gto + Awcos(wto + ~)](t - to) 

1 + yo. (5) + A sin(wt0 + ~) + 

For a system with discontinuities such as the impact problem here, all results concerning the 
existence, stability and bifurcation of periodic solutions of a nonlinear system are, with some 
modifications, directly applicable (Reithmeier [7]). The discontinuities caused by the impacts 
between the ball and the table imply that the state-space of the bouncing ball can be divided 
into many continuous subsets Xi. For the subset between the ith and (i + 1)th impacts, the 
values of the ith impact just after the impact can be chosen as initial conditions for Xi. This 
subset can be determined from Equations (4)-(5) as 

3 

y =  

-Awcos (wt  + ~) - gt + [{1+ + gti + Awcos(wti + ~)] 

1 
- A  sin(oJt + ~) - ~ gt 2 + [~i + + gti + Awcos(wti + qo)](t - ti) 

1 gt~ + y+ + A sin(wti + ~) + 

(6) 

(7) 

in which t E [ti, ti+l], y~ : y+(ti) and 3 + = ~l+(ti). Note that the superscript " + "  denotes 
immediately after an impact and likewise, the superscript " - "  will be reserved for immediately 
before an impact. The boundary of Xi, OXi constitutes the switch plane of codimension 1 
and to study the impact process, we would be interested to obtain the discontinual subset 
OXi+l immediately prior to the (i + 1)th impact. Therefore, taking values of state variables 
at t = ti+l in Equation (7) we have: 

1 2 
Y~+I - Y+ = - A  sin(•ti+l + ~) - ~ gti+ 1 + [~I+ + gti + A~cos(~ti + ~)](ti+1 - ti) 

1 gt~. (8) + A sin(wti + ~) + 

Neglecting the duration of the impact and considering only the simplest impact law, namely, 
modeling via a constant coefficient of restitution e _< 1, the impact process can be described 
by 

y~- = y + = 0  (9) 

3 + = -eYi-. (10) 

An impact is deemed to occur when Equation (9) is satisfied and the resulting loss of energy 
is captured by Equation (10). Substituting Equations (9) and (10) into Equations (6) and (8), 
and replacing y~-, 3~- by yi, 3i respectively, to simplify notation usage, we get 

Yi+l = - A w  COS(0J~i+ 1 -~- qp) - -  gti+l + [-e3i + gti + Aw cos(wti + qo)] (11) 
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Fig. 2. Mapping diagram for period-1 motion. 
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Fig. 3. A qualitative sketch of the period-1 physical motion in the relative reference flame. 

1 2 Ao2 c o s ( ~ i  ~)] (~i+1 /~i) 0 = -Asin(~t i+l  + ~) - ~ gti+ 1 + [-e~li +gt i  + + - 

1 g t ~ .  (12) + A sin(wti + ~) + 

For an impact problem, the discontinual boundary (or switch plane) is the Poincar6 mapping 
section E which therefore, can be defined by 

N 
= U (13) 

i=O 

where 

~i = { (ti,~li) yi = O, ti mod 2-~ } . (14) 

When the absolute reference frame is considered, the Poincar6 mapping section is defined 
by 

E i ( a ) = ( ( t i ' 2 i )  y i = 0 ' t i m ° d 2 7 r }  w (15) 

Note that all quantities measured in the absolute reference frame carry the subscript "a" as 
shown in Equation (15). The Poincar6 mapping P can now be defined as 

P :  Ei ---, E~+I. (16) 

Period-1 Motion 

In this paper, we considered only the period-1 motion. For this case, the mapping diagram and 
the physical motion are sketched respectively in Figures 2 and 3. For any x = (~i, ~]i) tp E E 
we have Px = x, and this leads to the following two equations: 

2nTr 
ti+l = ti + - ti + nT, n = 1 , 2 , 3 , . . .  (17) 
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Yi+l = Yi, (18) 

where the superscript tp implies transpose (of a matrix) and T is the period of the excitation. 
Substituting Equations (17) and (18) into Equations (11) and (12) and simplifying yields 

Yi - g 2nTr (19) 
l + e  co 

ACO2 cos(coti + ~) = nTr ~ . (20) 
g 

Equations (19) and (20) represent the initial impact conditions for period-1 motion to occur 
in the repeated impacts of a ball with a massive vibrating table. These are just the necessary 
conditions and in a later section, we will provide the sufficient conditions as well. Noting that 
I cos(coti + ~)1 < 1 in Equation (20) the following more general conditions can be derived: 

7r 7r (21) 217r - -~ <_ wti + ~ <_ 21~ + -~ 

1 - e  
 22, 

g 

where l is a positive integer. Note that the impact conditions (ti, ~li) derived here actually 
represent the fixed points of the discrete mapping, from which the stability of the motion can 
be ascertained. This is outlined in the next section. 

Stability and Bifurcation Conditions 

The stability and bifurcation conditions for the period-1 motion are obtained by studying the 
characteristics of the fixed points of the linearized discrete mapping of Equations (11) and 
(12): 

t i+l = D P .  ti = [ O P ( t i + l ,  ~]i+1) ti = Otl O~)i ti 

Ot~ 09i 
, (2:3)  

where D P  is the Jacobian matrix and its elements, Oti+l/Oti ,  Oti+l/O{li, O{li+l/Oti ,  
O~li+l/O{li, are defined by Equations (A2)-(A5) in the Appendix. Evaluating D P  at the 
fixed points (ti, ~)i) by substituting Equations (19) and (20) into Equations (A2)-(A5), we 
get 

Oti+l _ 1 1 + e Aco2 sin(coti + ~) (24) 
Oti g 

Oti+l e(1 + e) 

Oy i  g 
(25) 

Oyi+l 
Oti 

1 + e [Aw2sin(wt  i + p)]2 + (1 + e)Aw2sin(coti + ~) 
g 

(26) 

0~1i+1 _ e 2 _ Aw2 sin(wti + ~) e(1 + e) (27) 
O$i g 
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Fig. 4. Qualitative analysis of stability and bifurcation for period-1 motion. 

The trace and determinant of  the Jacobian D P  of the mapping are 

T r ( D P )  = 1 + e 2 (1 + e) 2 Aw 2 sin(wti + 79) 
g 

(28) 

D e t ( D P )  = e 2. (29) 

The eigenvalues A1, A2 can be computed from 

T r ( D P )  4- v / T r ( D P )  2 - 4 D e t ( D P )  
)~1,2 • 2 (30) 

Stability conditions can be stated as follows: if I~l I, 1~2[ < 1, then we have a sink (stable 
node or focus); if IAll < 1 < 1 21, then we have a saddle; and if IA1 I, 1 21 > 1, then we have 
a source. Since A1 • A2 = D e t ( D P )  = e 2, only sinks and saddles are found for e < 1. For the 
specific situation of  e = 1, centers and saddles are obtained. If  IAj I = 1 for both eigenvalues, 
then the norm is preserved in the directions associated with these eigenvalues. Using the 
stability conditions of  the discrete mapping, the stability and bifurcation for period-1 motion 
can be qualitatively determined as shown in Figure 4. A summary is given as follows. 
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Fig. 5. Quantitative analysis of stability and bifurcation for period-1 motion. 

(a) From Figure 4(a), for sin(aJti + ~) > 0 (or 2/7r < wti + ~ < 2/7r + 7r/2), the parameter 
range of the stable motion of the bounding ball is 

Aw 2 
B,~I < - -  < B,~4 (31) 

9 

in which the constants B,~I , . . . ,  Bn4 in Figure 4 are defined as 

1 - e  
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1 - e  1 - e  2 
B~2 1 T e (33) 

) 2 
Bn3= 1 +  \ l + e  (34) 

I 4(1 +e2) (n~(1--e)) 2 
B n 4 =  -(-1TE---~ + \ 1 + e  (3s) 

REMARKS. 
Stable motion: 

(i) For/3nl < Aw2/9 < B~2, the eigenvalues of D P  are real and for the range 0 < /~1,2 < 1 
the fixed point of the mapping is a stable node (+). 

(ii) For B~2 < Aa~2/9 < Bn3, the eigenvalues of D P  are complex conjugate in the range 
[A1,2[ < 1. The real part Re(A1,2) changes from positive to negative, and therefore the 
fixed point of the mapping is a stable focus. 

(iii) For B,~3 < AaJ2/9 <_ Bn4, eigenvalues of D P  are real and for -1  < A1,2 < 0, the fixed 
point of the mapping is a stable node (-) .  

Comparison with Holmes's result [ 1 ]: 
Holmes [1] presented the following result for the stable motion of the bouncing ball 

Aw 2 
Br~ < - -  < Bn3. (36) 

9 

Comparing our result in Equation (31) with Holmes's expression in Equation (36), it is clear 
that the upper limit of the stability condition is different except at e = 1. The upper limit of 
Holmes's result in Equation (36) is just the extreme point of the stable focus ( - )  as depicted in 
Figure 4. On the other hand, the upper limit of our result Equation (31) goes a little further, to 
the point Bn4 which corresponds to the period-doubling bifurcation condition. We will show 
through numerical experimentation, that our result is more accurate. 

Unstable motion: 
The parameter range for the unstable motion of the bouncing ball is given by 

Aaj 2 
- -  > B n 4 .  (37) 

9 

For this situation, the eigenvalues A1,2 < 0 are such that ,~1 < --1 < /~2, and, therefore, all 
saddles of the period-1 motion are of the second kind. 

(b) From Figure 4(b), for sin(~ti + ~) < 0 (or 2/7r + 37r/2 < a;ti + 7: < 2(l + 1)Tr), stable 
motion cannot exists and thus, we have only the unstable motion which is governed by 

Aw 2 
- -  > B n l .  (38) 

g 

This unstable motion is different from the unstable motion in Type (a) and this is evident from 
its eigenvalues ,'~1,2 > 0 which are such that -~1 < 1 < A2. That is, for this situation, the fixed 
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Fig. 6. Variation of the initial impact phase angle with the excitation amplitude. 

points of period-1 motion are saddles of the first kind. 

(c) The bifurcation conditions for period-1 motion of the bouncing ball are: 
(i) Aa;2/g = B~I we have the saddle-node bifurcation, and 

(ii) Aa;2/g = Bn4 we have the period doubling bifurcation. 
These stability and bifurcation conditions are summarized qualitatively in Figure 4. How- 

ever, it would be much more informative to sketch them quantitatively. We can for example, 
get a feel for the relative sizes of the stable and unstable regions. The quantitative plots are 
presented in Figure 5. To generate the plots, the following values are used: g ---- 9.8, e = 0.5, 
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Fig. 7. The three types of stable period-1 motion. 

n = 1 and ti = 2hr/a; + 2 mod 27r/a;. As shown, the dash-line denotes saddle of the first 
kind; the darkened solid-line, stable node point; the dotted-line, stable focus point; and the 
dash-dotted-line, saddle of the second kind. To clearly indicate the start/end of the stable 
regions, Bnl, . . . ,  Bn4 are also marked on these graphs. As in Figure 4, Bnl in these graphs 
corresponds to the saddle-node bifurcation (SNB) and likewise, Bn4 to the period doubling 
bifurcation (PDB). Note that the unmarked gaps between two saddles (including the saddles 
themselves) represent the period doubling route to chaos, intermittency, etc. We are currently 
pursuing research to quantitatively chart these gaps. 

To provide a comparison with Figure 1 of Holmes [1], Figure 6 is plotted using g = 9.8, 
e = 0.5 and w = 7r. It should be emphasized that the comparison here is qualitative rather than 
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Table 1. Computed input data for n = 1 period-1 motion (g = 9.8, e = 0.5, 
w = 7r, ti = 0.0). 

Figure No. A ~)~ ~ Types of Stability 

Stable Motion 
Figure 9(a) 1.0400639 -13.0666666 0.0219918 Stablenode (+)  

Figure 9(b) 1.2518871 -13.0666666 0.5966194 Stable focus 
Figure 9(c) 1.5039512 -113.066666 0.8073893 Stablenode ( - )  

Chaotic Motion 

Figure 9(d) 2.0003417 -13.0666666 1.0241592 2nd saddle 
Figure 9(e) 2.0003417 -13.0666666 5.2590265 1st saddle 

Table 2. Computed input data for n = 2 period-1 motion (g = 9.8, e = 0.5, 
w = ~r, ti = 0.0). 

Figure No. A 9i ~Pi Types of Stability 

Stable Motion 

Figure 10(a) 2.0802021 -26.1333332 0.0235619 Stable node (+)  
Figure 10(b) 2.1428242 -26.1333332 0.2437340 Stable focus 

Figure 10(c) 2.3434676 -26.1333332 0.4790926 Stable node ( - )  
Chaotic Motion 

Figure 10(d) 5.0535889 -26.1333332 1.1466812 2nd saddle 

Figure 10(e) 5.0535936 -26.1333332 5.1365037 1st saddle 

quantitative as it is difficult to obtain the exact values of the parameters used in generating 
Holmes's solution. For our figures, it is more appropriate to plot them without shifting the 
graphs by -t-Tr as done by Holmes. Qualitatively, our result compares well with Holmes in 
the sense that both of them are very similar. However, there is one notable difference. While 
the start points of the stable regions are the same, the end points are not: Holmes's stable 
region ends at Bn3 whereas ours ends at B,~4. Also, note that our curves contain additional 
information pertaining to the nature of the stability which is absent in Holmes's plot. 

Numerical Simulations 

As a verification of the stability and bifurcation conditions for period-1 motion, numerical 
simulations are performed. To guarantee stable motion, parametric values are chosen such that 
they lie within the theoretically determined stable range, and similarly, to simulate unstable 
motion, parametric values within the theoretically obtained unstable range are used. These 
computed input parameters for numerical simulations of n = 1, period-1 motion are tabulated 
in Table 1 and, of n = 2, period-1 motion in Table 2. For stable motion, we have plotted 
time-displacement and phase-plane curves based on the equations of motion described by 
Equations (6)-(7) and (9)-(10) and for unstable motion, we presented Poincar6 mapping 
sections generated via Equations (6)-(7), (9)-(10) and (14)-(15). 
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Fig. 8. Chaos in the unstable period-1 motion. 

Figure 7 depicts the steady period-1 motion of the bouncing ball, in the form of time- 
displacement and phase-plane curves, corresponding to the three kinds of stability conditions: 
(a) stable node (+), (b) stable focus and (c) stable node ( - ) .  Observe that these three phase- 
plane curves change their shapes in accordance to the three types of stability, and approach a 
"D"-shaped curve in (c). 

Figure 8 shows the Poincar6 mapping sections for the two saddles associated with the 
period-1 unstable motion. We have plotted the saddle of the second kind (sin(wti + ~s) > 0) 
Figure 8(a) and saddle of the first kind (sin(wti + qo) < 0) in Figure 8(b). The graphs on the 
left pertain to the relative frame of reference, and on right, to the absolute frame of reference. 
The latter is provided to enable comparisons with physical experiments to be made should 
these be available. In plotting the two unstable motions, we varied only their phase angles. 
Observe that when the phase angles are shifted exactly by 2~, we still end up with completely 
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identical Poincar6 mapping sections. What this implies is that the two saddles have identical 
Smale horseshoe structure. Furthermore, a careful scrutiny of Figure 8 reveals that there exists 
self-similarity, indicating the presence of  fractals. Thus, a chaotic attractor is clearly evident 
in the plot for the parameters chosen. 

It would be very interesting to view the physical motion of  the bouncing ball. This illustrated 
in Figure 9 and 10, superimposed together with the physical motion of  the vibrating table 
for up to t = 50 s. Both stable and unstable motion are drawn. Since Holmes's model is 
based on a discrete mapping, he can only furnish a qualitative sketch and only for the stable 
motion. In contrast, based on our differential equation model, we can produce a quantitative 
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description of  the physical motion of  the bouncing ball, for stable and as well  as unstable 
motion. Note that for both Figures 9 and 10, the fol lowing graphs are plotted: (a) stable node 
(+) ,  (b) stable focus, (c) stable node ( - ) ,  (d) saddle of  the second kind and (e) saddle of  
the first kind. Motions (a)-(c)  are stable whereas (d)-(e)  are chaotic. In Figure 9, the n = 1 
motion is generated and in Figure 10, the n = 2 motion is produced. 

In addition to the analytical checks presented in the previous section, we can also demon- 
strate physically that the motion in Figures 9 and 10(d)-(e)  are indeed chaotic, by simulating 
the physical motion over a prolonged period of  time and checking if they would repeat them- 
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200 

selves. The results are shown in Figures 11 and 12 where the unstable motion is re-plotted 
for up to t = 200 s. Observe that the motions do not repeat themselves for this duration of 
time. 

Conclusions 

The dynamics of a bouncing ball with a sinusoidally vibrating table is revisited in this work. 
Based on the equation of motion, the mapping for period-1 motion of the ball is constructed. 
The stability and bifurcation conditions for this motion are derived and compared with those 
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of Holmes [1]. For period-1 motion, three kinds of stable motion exist: stable node (+),  
stable focus and stable node ( - ) ,  and for the unstable motion, we have two types: saddle 
of the first kind and saddle of the second kind. It is found that Holmes's range of stable 
motion is narrower than ours, and through numerical simulations, our result is shown to be 
more accurate. Also, from the Poincar6 mapping sections of the unstable motion, the two 
saddles have identical Smale horseshoe structures and possess the self-similarity character. 
Thus, the unstable motion is indeed chaotic. Plots of  the physical motion of  the bouncing 
ball superimposed on the vibration of the table are also given. The result is consistent with 
the nature of the motion. For stable physical motion, it is periodic and for unstable physical 
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motion (i.e. chaotic motion), it does not repeat itself even when simulated for an extended 
period of time. 
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Appendix: Stability and Bifurcation 

The Jacobian of mapping P at the ith impact of the bouncing ball, D P  is defined as 

[ OP(ti+l,flt+l) )] 
D P  = L J 

( Oti~-1 Oti+l ) 
Oti 09~ 

= OylzT1 OYi+l 
Oti 

, (A1) 

where 

cgti+l 1 
Oti ?)i+1 

- -  { -@i  + [Aw 2 sin(wti+l + ~) - g](ti+l - ti)} (A2) 

Oti+l e 
(t/+l - ti) (A3) 

. Oti+l 
0~)/+1 _ [Acj 2 sin(ti+l + ~) - 9] ~// lace 2 sin(ti + ~) - 9] (A4) 

Oti 

Oti+ 1 
0{/i+1 _ [A~2 sin(~ti+l + (p) - g] O~li - -  - e .  ( A S )  

For any period-k motion of the bouncing ball, we have xi+k = P(k)xi, where p(k) = 
P o P o . . .  o P.  Its Jacob/an at the fixed point is 

D P  (k) = D P * . . . *  D P  

= .  ,-o~-~ L,oo~-~-I,~ [ O ~ ~ ) [  ""  k 0"~/,~/) J (ei+k]=((2,~/~)+t~] (A6) 
\fti+k/ \ ~)i / 

from which the trace Tr(DP(k)) and determinant De t (DP (k)) of Equation (A6) can be easily 
evaluated. The eigenvalues can be computed from 

Tr(DP(k)) 4- CTr(DP(k))2 - 4Det(DP(k)) 
A1,2 = 2 (A7) 

The condition for period doubling bifurcation of the period-k motion of the ball is 

T r (DP (k)) + De t (DP (k)) + 1 = 0 (A8) 
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and l ikewise ,  the condi t ion  for  saddle  node  b i furca t ion  o f  the pe r iod -k  m o t i o n  o f  the bal l  is 

T r ( D P  (k)) = 1 + D e t ( D P ( k ) ) .  (A9) 
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