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Definitions, factorization theorem and 1st bounds

Polytope P = {z | Ajx < by,..., Apx < by} = conv{vy, ..., v}

e Extension complexity of P:  xc(P) = min. size of an EF of P
e Slack matrix S € R"™ of P: Sj; :=b; — Ajv;
@ Rank-r nonnegative factorization of S:

S=TU where TeRTandU e R"

@ Nonnegative rank of S:
rky(S) := min{r | 3 rank-r nneg. factorization of S}

e Factorization theorem [Yannakakis'91]: xc(P) = rk(S5)

e Communication complexity:  logrk(S) = min complexity
of a protocol computing S in expectation +O(1)

@ Rectangle covering bound:  rky(S) > rc(S)
@ xc(d-cube) = 2d, xc(regular n-gon) = ©(logn), ...
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Generic n-gons

Theorem (F, RothvoB & Tiwary'12)
If P is a generic n-gon, then xc(P) > +/2n

-
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Every symmetric EF of the traveling salesman polytope
TSP(n) := TSP(K,) has super-polynomial size. This also applies
to the perfect matching polytope of K.

Theorem (Kaibel, Pashkovich & Theis'10)

Some polytopes have no poly-size symmetric EF but poly-size
non-symmetric EFs

Theorem (RothvoB’11)

There are 0/1-polytopes P in R? such that every EF has size
9(1/2—0(1))d



History

Yannakakis's problem

From Yannakakis'l1, repeating a problem in Yannakakis'91:

| believe in fact that it should be possible to prove that there is no
polynomial-size formulation for the TSP polytope or any other NP-
hard problem, although of course showing this remains a challenging
task.



History

Yannakakis's problem

From Yannakakis'l1, repeating a problem in Yannakakis'91:

| believe in fact that it should be possible to prove that there is no
polynomial-size formulation for the TSP polytope or any other NP-
hard problem, although of course showing this remains a challenging

task.

F, Massar, Pokutta, Tiwary & de Wolf'12 solve this problem

and prove:

Theorem (FMPTW'12)
e xc(TSP(n)) = 20(n'/?)



History

Yannakakis's problem

From Yannakakis'l1, repeating a problem in Yannakakis'91:

| believe in fact that it should be possible to prove that there is no
polynomial-size formulation for the TSP polytope or any other NP-
hard problem, although of course showing this remains a challenging

task.

F, Massar, Pokutta, Tiwary & de Wolf'12 solve this problem
and prove:
Theorem (FMPTW'12)
e xc(TSP(n)) = 20(n'/?)
fr
o xc(CUT(n)) = 2%



History

Yannakakis's problem

From Yannakakis'l1, repeating a problem in Yannakakis'91:

| believe in fact that it should be possible to prove that there is no
polynomial-size formulation for the TSP polytope or any other NP-
hard problem, although of course showing this remains a challenging

task.

F, Massar, Pokutta, Tiwary & de Wolf'12 solve this problem

and prove:

Theorem (FMPTW'12)
o xc(TSP(n)) = 22"/
T
o xc(CUT(n)) = 2%
4
° 3 (Gy) s.t. xc(STAB(G,,)) = 290%"?)
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Let M = M (n) be the 2" x 2™ matrix with
My, = (1 — aTb)?

for a,b € {0,1}"

e M has rank ©(n?)
@ M not a slack matrix, but embeds in a slack matrix

e suppmat(M) appears in de Wolf'03 for separating classical
vs. quantum nondeterministic complexity
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For b € {0,1}™
1 —(2diag(a) — aaT,bbT) = 1 — 2(diag(a),bbT) + (aaT,bdbT)
1 — 2(diag(a), diag(b)) + {(aaT, bbT)
1—2aTb+ (aTh)?
(1 —aTb)?
= My

COR(n) := conv{bb™ € R™™ | b€ {0,1}"}  correlation polytope

Lemma (Key lemma)

For every a € {0,1}", the inequality

(%) (2 diag(a) —aa™,z) <1

is valid for COR(n). The slack of vertex bbT w.r.t. (x) is M.
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Consider complete linear description for COR(n) starting with
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bb"

(2diag(a) — aa®, x) <1 D




xc(COR(n))

boT

L]

— M




xc(COR(n)) =

rk4(5)

boT

L]

=M




boT

(2diag(a) — aa”, x) <1 D
M

xc(COR(n)) = rk.(S)
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boT

(2diag(a) — aa”, x) <1 D

xc(COR(n)) = rky(S)
rk4. (M)
rc(M)
= 2% (de Wolf'03, building on Razborov’'92)
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Cut polytope. |xc(CUT(n)) = xc(COR(n — 1)) = 2%

Lemma (monotonicity)
e (@ is an extension of P = xc(Q) > xc(P)
X

>
e P contains F as a face = xc(P) > xc(F)
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STAB(Hy) has a face F' = F(k) that is an extension of COR(k).

xc(STAB(Hy)) xc(F(k))
xc(COR(k))

9Q(k)

VoWV



Stable set polytope. V k 3 Hj with O(k?) vertices s.t.
STAB(Hy) has a face F' = F(k) that is an extension of COR(k).

— V n 3 n-vertex G, s.t. | xc(STAB(G,,)) = 20(n!/?)
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\ / w»
@ “V k 3 Hj, with O(k?) ver-
/ tices s.t. TSP(Hy) is an

2 extension of COR(k).

Theorem (FMPTW'12)
xc(TSP(n)) = 22'/%)
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Extension /extended formulation of a pair

o P C @Q C R? with P polytope, @ polyhedron
o L C IR® polytope

Definition (extension/EF of a pair)
L is an extension of (P, Q) if 3 linear m with P C 7(L) C Q

7

4

Definition (extension complexity of a pair)
xc(P, Q) = min{#facets(L) | L is an extension of (P, Q))}



Slack matrix of a pair

Let V = {v1,...,v,} CR?st. P=conv(V) 1 P o

Let AcR**4 becRFst. Q= {rcR?| Az < b} ° °®

Definition (slack matrix)

Slack matrix S = SP@ € R¥*¢ of (P, Q) (w.rt. Az < band V):

Si};’Q =0b; — Ai’l)j




Remark. Every nneg matrix is the slack matrix of some pair!
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Theorem (Factorization theorem for pairs)
For every slack matrix STQ of (P,Q):  xc(P,Q) = rky (STQ)
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Definition (linear encoding)

A linear encoding of a comb. opt. problem is a pair (£, O) where
e £ C{0,1}* feasible solutions
o O C R* admissible objective functions

An instance is a pair (d,w) where d > 1 and w € O NRY

Given (d,w), find x € £LN{0,1}¢ such that wTx is max/min



Linear encodings of combinatorial optimization problem

Definition (linear encoding)

A linear encoding of a comb. opt. problem is a pair (£, O) where
e £ C{0,1}* feasible solutions
o O C R* admissible objective functions

An instance is a pair (d,w) where d > 1 and w € O NRY

Given (d,w), find x € £LN{0,1}¢ such that wTx is max/min
“Faithfulness” condition:
instances of the problem — instances of the linear encoding

“Constraints do not depend on instance, only on d.’
“Instances are encoded in the objective function.’

S
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For a maximization problem

Linear encoding (£, Q) ~~ pair of nested polyhedra P C Q:
o P:=conv({z € {0,1}¢ |z € L})
0 Q:={rcR?|VwecONRY: wix < max{wTy |y € P}}

Definition (p-approximate extended formulation, p > 1)
Ex+ Fy =g,y > 0is a p-approximate EF w.r.t. (£,0) if
Q Vw € RY:
max{wTz | Ex + Fy =g, y > 0} > max{wTz | x € P}
Q@ Yw e ONR™:
max{wTz | Ex + Fy =g, y > 0} < pmax{wTz | x € P}

Geometrically: P C{z|Jy:Ex+Fy=g, y=>0} C pQ



Sizes of approximate extended formulations

e L ~» P =conv(V)
0 0O~ Q={rcR?| Az < b}

Observation:
O Q= {z € R | Az < pb}
Q S;;,pQ = pb; — Aﬂ)j = S{;’Q + (p — 1)bi

Corollary

Minimum size of a p-approximate EF = rk, (ST?)



Polyhedral inapproximability of CLIQUE
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Polyhedral inapproximability of CLIQUE

Theorem
W.r.t. natural (faithful) linear encoding, CLIQUE has
@ a (trivial) poly-size n-approximate EF
e no 2°0"*)_size n'/2~<_approximate EF, for all € € (0,1/2)

NEWS: Braverman and Moitra improved n!/27¢ to n'~¢ (tight)

The encoding:

o d=n?

o z € {0,1}™*" is feasible if x;; = b;jb; for b € {0,1}"
e w € R™" is admissible if

o w;; €{0,1} for all ¢

o w;; = wj; € {—1,0} forall 4,
o G graph with V(G) C [n] — w% := I(G) — A(G)



Theorem (nonnegative rank of shifted UDISJ)
Let M be any 2™ x 2™ matrix such that
o Myp=1+(p—1)ifland =0
@ My =0+ (p—1)ifland| =1
Then
Q rky (M) =29 if p is a fixed constant
Q rkp(M)= 22n' ) if p = O(nP) for some constant 3 < 1/2

Remark: This is the Unique DISJointness (partial) matrix when
p=1



The corruption bound in general

Consider any matrix S € ]Rlixe
Assume that weights ;1 € R¥*¢ (—'s allowed) satisfy:
(1, X) < || X||loo VX € R that is rank-1

Then if S = 3°7_| X; where X; € R¥* are rank-1:
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The corruption bound in general

Consider any matrix S € ]Rlixe
Assume that weights ;1 € R¥*¢ (—'s allowed) satisfy:
(1, X) < || X||loo VX € R that is rank-1

Then if S = 3°7_| X; where X; € R¥* are rank-1:
i=1

= > (X

i=1

N
i
=
R

N
ki
5
3




Core tool: Razborov's corruption lemma

Let 1 <4< (n+1)/4
Distribution £ on pairs (a,b) € 2[" x 2[" with |a| = |b] = ¢:
@ on A:={(a,b) | |lanb| =0}:

% x uniform
@ on B:={(a,b) | [anb| =1}: 3 x uniform
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Core tool: Razborov's corruption lemma

Let 1 <4< (n+1)/4
Distribution £ on pairs (a,b) € 2[" x 2[" with |a| = |b] = ¢:
@ on A:={(a,b) | |lanb| =0}:

% x uniform
@ on B:={(a,b) | [anb| =1}: 3 x uniform

Random variable: X (a,b) := f(a)g(b) with f,g>0

Lemma (Razborov's corruption lemma, improved)

Then for every 0 < e < 1:

62 .
21w +0008 ) (1 — YE[X |A]—E[X | B]) < || X]l.,
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The threefold way

The following are equivalent [Yannakakis'88/91, FFGT'11]:

Q A linear system Ex + Fy =g, y > 0 with y € R" s.t.
P={rcR|IyeR :Ex+Fy=g, y>0}

b

@ A rank-r nonnegative factorization S = TU of slack matrix .S

; II
—>

© A logr-complexity randomized protocol computing S in
expectation
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The threefold way (revisited)

The following are equivalent [FMPTW'12; Gouveia, Parillo &
Thomas'11]:

O A semidefinite EF Ex + Fy = g, y = 0 with y € R"™*"
L

@ A rank-r PSD factorization S;; = (T, U7) of slack matrix S

wO

\

><7

© A logr-complexity quantum one-way protocol computing S in
expectation



@ Conclusion
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Take home messages

@ EFs are important and interesting

EFs give a way to understand the power of LPs (and SDPs)

We can prove a geometric analogue of P £ NP

We can prove some inapproximability results

There are many links to other areas

There are many open problems

Stay tuned (a new survey is coming)

Thank You! :)
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