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Definitions, factorization theorem and 1st bounds

Polytope P = {x | A1x 6 b1, . . . , Amx 6 bm} = conv{v1, . . . , vn}

Extension complexity of P : xc(P ) = min. size of an EF of P

Slack matrix S ∈ Rm×n+ of P : Sij := bi −Aivj
Rank-r nonnegative factorization of S:

S = TU where T ∈ Rm×r+ and U ∈ Rr×n+

Nonnegative rank of S:
rk+(S) := min{r | ∃ rank-r nneg. factorization of S}

Factorization theorem [Yannakakis’91]: xc(P ) = rk+(S)

Communication complexity: log rk+(S) = min complexity
of a protocol computing S in expectation +O(1)

Rectangle covering bound: rk+(S) > rc(S)

xc(d-cube) = 2d, xc(regular n-gon) = Θ(log n), . . .
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Generic n-gons

Theorem (F, Rothvoß & Tiwary’12)

If P is a generic n-gon, then xc(P ) >
√

2n

P

Q

v
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History
Previous related results

Theorem (Yannakakis’91)

Every symmetric EF of the traveling salesman polytope
TSP(n) := TSP(Kn) has super-polynomial size. This also applies
to the perfect matching polytope of Kn.

Theorem (Kaibel, Pashkovich & Theis’10)

Some polytopes have no poly-size symmetric EF but poly-size
non-symmetric EFs

Theorem (Rothvoß’11)

There are 0/1-polytopes P in Rd such that every EF has size
2(1/2−o(1))d
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History
Yannakakis’s problem

From Yannakakis’11, repeating a problem in Yannakakis’91:

F, Massar, Pokutta, Tiwary & de Wolf’12 solve this problem
and prove:

Theorem (FMPTW’12)

xc(TSP(n)) = 2Ω(n1/2)

⇑
xc(CUT(n)) = 2Ω(n)

⇓
∃ (Gn) s.t. xc(STAB(Gn)) = 2Ω(n1/2)
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Proof

Let M = M(n) be the 2n × 2n matrix with

Mab := (1− aᵀb)2

for a, b ∈ {0, 1}n

M has rank Θ(n2)

M not a slack matrix, but embeds in a slack matrix

suppmat(M) appears in de Wolf’03 for separating classical
vs. quantum nondeterministic complexity
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For b ∈ {0, 1}n:

1− 〈2 diag(a)− aaᵀ, bbᵀ〉 = 1− 2〈diag(a), bbᵀ〉+ 〈aaᵀ, bbᵀ〉

= 1− 2〈diag(a), diag(b)〉+ 〈aaᵀ, bbᵀ〉
= 1− 2 aᵀb+ (aᵀb)2

= (1− aᵀb)2

= Mab

COR(n) := conv{bbᵀ ∈ Rn×n | b ∈ {0, 1}n} correlation polytope

Lemma (Key lemma)

For every a ∈ {0, 1}n, the inequality

(?) 〈2 diag(a)− aaᵀ, x〉 6 1

is valid for COR(n). The slack of vertex bbᵀ w.r.t. (?) is Mab.
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Consider complete linear description for COR(n) starting with

〈2 diag(a)− aaᵀ, x〉 6 1 ∀a ∈ {0, 1}n

and corresponding slack matrix S

bbT

M

〈2diag(a)− aaT , x〉 6 1

S
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xc(COR(n))

= rk+(S)

> rk+(M)

> rc(M)

= 2Ω(n) (de Wolf’03, building on Razborov’92)



bbT

M

〈2diag(a)− aaT , x〉 6 1

S

xc(COR(n)) = rk+(S)

> rk+(M)

> rc(M)

= 2Ω(n) (de Wolf’03, building on Razborov’92)



bbT

M

〈2diag(a)− aaT , x〉 6 1

S

xc(COR(n)) = rk+(S)

> rk+(M)

> rc(M)

= 2Ω(n) (de Wolf’03, building on Razborov’92)



bbT

M

〈2diag(a)− aaT , x〉 6 1

S

xc(COR(n)) = rk+(S)

> rk+(M)

> rc(M)

= 2Ω(n) (de Wolf’03, building on Razborov’92)



bbT

M

〈2diag(a)− aaT , x〉 6 1

S

xc(COR(n)) = rk+(S)

> rk+(M)

> rc(M)

= 2Ω(n) (de Wolf’03, building on Razborov’92)



Cut polytope. xc(CUT(n)) = xc(COR(n− 1)) = 2Ω(n)

Lemma (monotonicity)

Q is an extension of P =⇒ xc(Q) > xc(P )

P contains F as a face =⇒ xc(P ) > xc(F )
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Stable set polytope. ∀ k ∃ Hk with O(k2) vertices s.t.
STAB(Hk) has a face F = F (k) that is an extension of COR(k).

ii ii

ij ij ij ij

jj jj

xc(STAB(Hk)) > xc(F (k))

> xc(COR(k))

= 2Ω(k)

=⇒ ∀ n ∃ n-vertex Gn s.t. xc(STAB(Gn)) = 2Ω(n1/2)
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tices s.t. TSP(Hk) is an
extension of COR(k).

Theorem (FMPTW’12)

xc(TSP(n)) = 2Ω(n1/2)
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Extension/extended formulation of a pair

P ⊆ Q ⊆ Rd with P polytope, Q polyhedron

L ⊆ Re polytope

Definition (extension/EF of a pair)

L is an extension of (P,Q) if ∃ linear π with P ⊆ π(L) ⊆ Q

π
L

P

Q

Definition (extension complexity of a pair)

xc(P,Q) = min{#facets(L) | L is an extension of (P,Q)}
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Slack matrix of a pair

Let V = {v1, . . . , v`} ⊆ Rd s.t. P = conv(V )

Let A ∈ Rk×d, b ∈ Rk s.t. Q = {x ∈ Rd | Ax 6 b}
Q

P

Definition (slack matrix)

Slack matrix S = SP,Q ∈ Rk×`+ of (P,Q) (w.r.t. Ax 6 b and V ):

SP,Qij := bi −Aivj

i

Ai = bi

vj

j

Sij

Sij



Remark. Every nneg matrix is the slack matrix of some pair!

Theorem (Factorization theorem for pairs)

For every slack matrix SP,Q of (P,Q): xc(P,Q) = rk+(SP,Q)
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Linear encodings of combinatorial optimization problems

Definition (linear encoding)

A linear encoding of a comb. opt. problem is a pair (L,O) where

L ⊆ {0, 1}∗ feasible solutions

O ⊆ R∗ admissible objective functions

An instance is a pair (d,w) where d > 1 and w ∈ O ∩ Rd

Given (d,w), find x ∈ L ∩ {0, 1}d such that wᵀx is max/min

“Faithfulness” condition:

instances of the problem −→ instances of the linear encoding

“Constraints do not depend on instance, only on d.”
“Instances are encoded in the objective function.”
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Approximate extended formulations
For a maximization problem

Linear encoding (L,O) pair of nested polyhedra P ⊆ Q:

P := conv({x ∈ {0, 1}d | x ∈ L})
Q := {x ∈ Rd | ∀w ∈ O ∩ Rd : wᵀx 6 max{wᵀy | y ∈ P}}

Definition (ρ-approximate extended formulation, ρ > 1)

Ex+ Fy = g, y > 0 is a ρ-approximate EF w.r.t. (L,O) if

1 ∀w ∈ Rd:

max{wᵀx | Ex+ Fy = g, y > 0} > max{wᵀx | x ∈ P}
2 ∀w ∈ O ∩ Rd:

max{wᵀx | Ex+ Fy = g, y > 0} 6 ρmax{wᵀx | x ∈ P}

Geometrically: P ⊆ {x | ∃y : Ex+ Fy = g, y > 0} ⊆ ρQ
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Sizes of approximate extended formulations

L P = conv(V )

O  Q = {x ∈ Rd | Ax 6 b}

Q

P

Observation:

1 ρQ = {x ∈ Rd | Ax 6 ρb}
2 SP,ρQij = ρbi −Aivj = SP,Qij + (ρ− 1)bi

Corollary

Minimum size of a ρ-approximate EF = rk+(SP,ρQ)



Polyhedral inapproximability of CLIQUE

Theorem

W.r.t. natural (faithful) linear encoding, CLIQUE has

a (trivial) poly-size n-approximate EF

no 2o(n
2ε)-size n1/2−ε-approximate EF, for all ε ∈ (0, 1/2)

NEWS: Braverman and Moitra improved n1/2−ε to n1−ε (tight)

The encoding:

d = n2

x ∈ {0, 1}n×n is feasible if xij = bibj for b ∈ {0, 1}n

w ∈ Rn×n is admissible if

wii ∈ {0, 1} for all i
wij = wji ∈ {−1, 0} for all i, j

G graph with V (G) ⊆ [n] −→ wG := I(G)−A(Ḡ)
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Theorem (nonnegative rank of shifted UDISJ)

Let M be any 2n × 2n matrix such that

Mab = 1 + (ρ− 1) if |a ∩ b| = 0

Mab = 0 + (ρ− 1) if |a ∩ b| = 1

Then

1 rk+(M) = 2Ω(n) if ρ is a fixed constant

2 rk+(M) = 2Ω(n1−2β) if ρ = O(nβ) for some constant β < 1/2

Remark: This is the Unique DISJointness (partial) matrix when
ρ = 1.



The corruption bound in general

Consider any matrix S ∈ Rk×`+

Assume that weights µ ∈ Rk×` (−’s allowed) satisfy:

〈µ,X〉 6 ||X||∞ ∀X ∈ Rk×`+ that is rank-1

Then if S =
∑r

i=1Xi where Xi ∈ Rk×`+ are rank-1:

〈µ, S〉 = 〈µ,
r∑
i=1

Xi〉

=

r∑
i=1

〈µ,Xi〉

6
r∑
i=1

||Xi||∞

6 r||S||∞

=⇒ r >
〈µ, S〉
||S||∞
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Core tool: Razborov’s corruption lemma

Let 1 6 ` 6 (n+ 1)/4

Distribution µ on pairs (a, b) ∈ 2[n] × 2[n] with |a| = |b| = `:

on A := {(a, b) | |a ∩ b| = 0}: 1
4 × uniform

on B := {(a, b) | |a ∩ b| = 1}: 3
4 × uniform

Random variable: X(a, b) := f(a)g(b) with f, g > 0

Lemma (Razborov’s corruption lemma, improved)

Then for every 0 < ε < 1:

2
ε2

4 ln 2
`+O(log `) ((1− ε)E [X |A]− E [X |B]) 6 ‖X‖∞
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The threefold way

The following are equivalent [Yannakakis’88/91, FFGT’11]:

1 A linear system Ex+ Fy = g, y > 0 with y ∈ Rr s.t.

P = {x ∈ Rd | ∃y ∈ Rr : Ex+ Fy = g, y > 0}

π
Q

P

2 A rank-r nonnegative factorization S = TU of slack matrix S

= T US · r

r

3 A log r-complexity randomized protocol computing S in
expectation
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2 A rank-r PSD factorization Sij = 〈Ti, U j〉 of slack matrix S
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∈ Sr+
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Take home messages

EFs are important and interesting

EFs give a way to understand the power of LPs (and SDPs)

We can prove a geometric analogue of P 6= NP

We can prove some inapproximability results

There are many links to other areas

There are many open problems

Stay tuned (a new survey is coming)

Thank You! :)
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