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Linear programming
Example

max 4x1 + 3x2

subject to −x1 + 4x2 6 16
x1 + x2 6 9
3x1 − x2 6 15

x1 > 0
x2 > 0

Opt. sol.
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LP in general form:

max
d∑

i=1

wixi = wᵀx

subject to Ax 6 b
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Linear programming
A successful tool

Fact

Linear programming is very successful both in practice and theory

3 reasons for this success:

1 Many problems can be expressed as LPs

t

cut

s

2 Rich theory: LP duality can certify the quality of solutions

max wᵀx
s.t. Ax 6 b

= min bᵀy
s.t. Aᵀy = w

y > 0

3 There exist powerful algorithms for solving LPs



Linear programming
Algorithms

Algorithm / method Poly-time? In practice? Generalizes
to convex?

(simplex) No Very fast No

x(1)

(ellipsoid) Yes Slow Yes

w

(int. point) Yes Fast Yes

All practical algorithms have sensitivity to size of input LP

=⇒ try to minimize size: variables, constraints are resources



Linear programming
Algorithms

Algorithm / method Poly-time? In practice? Generalizes
to convex?

(simplex) No Very fast No

x(1)

(ellipsoid) Yes Slow Yes

w

(int. point) Yes Fast Yes

All practical algorithms have sensitivity to size of input LP

=⇒ try to minimize size: variables, constraints are resources



Linear programming
Algorithms

Algorithm / method Poly-time? In practice? Generalizes
to convex?

(simplex) No Very fast No

x(1)

(ellipsoid) Yes Slow Yes

w

(int. point) Yes Fast Yes

All practical algorithms have sensitivity to size of input LP

=⇒ try to minimize size: variables, constraints are resources



Combinatorial optimization
LP formulation of TSP

TSP: Given a graph G = (V,E) and dis-
tances dij for each ij ∈ E, find tour of
minimum length.

min
∑
ij∈E

dijxij

s.t. x ∈ {0, 1}|E| encodes tour of G

x ∈ TSP(G)
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Combinatorial optimization
TSP polytope

TSP polytope of G:

TSP(G) := conv{x ∈ {0, 1}|E| | x encodes tour of G}

min
∑
ij∈E

dijxij

s.t.

Issue: System Ax > b for TSP(G) is huge, not known
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Extended formulations
Reformulating an LP

In general, we hope to go from this:

min

d∑
i=1

wixi

s.t. Ax > b ← large, not known, complicated

. . . to this:

min
d∑

i=1

wixi

s.t. Ex+ Fy = g, y > 0 ← small, explicit, simple

In such a way that: Ax > b ⇐⇒ ∃y : Ex+ Fy = g, y > 0
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Extended formulations
Definitions (1/2)

P = {x ∈ Rd | Ax > b} polytope in Rd

P

Definition (Extended formulation = EF)

Ex+ Fy = g, y > 0 is an EF of P if

Ax > b ⇐⇒ ∃y : Ex+ Fy = g, y > 0

Definition (Extension)

Polytope Q in Re is an extension of P if ∃ linear π with π(Q) = P
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Extended formulations
Definitions (2/2)

Definition (Size)

Size of EF := #inequalities in EF
Size of extension := #facets of extension

Definition (Extension complexity)

Extension complexity of P = xc(P ) := minimum size of an EF of P
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Extended formulations
Example: Regular polygons

Theorem (Ben-Tal & Nemirovski’01)

If P is a regular n-gon, then xc(P ) = O(log n) !!!

Exercise. Prove this using reflections.

xc(P ) = xc(conv(P1 ∪ σ(P1))) 6 xc(P1) + 2
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Fundamental question and dictionary

Within the framework of EFs, we ask:

Regarding (variables and) constraints as resources, what problems
can be solved via LP with a given amount of resources?

Dictionary:

Algorithmic Geometric

Problem Polytope

Algorithm EF

Complexity Size

Hardness result Lower bound



Fundamental question and dictionary

Within the framework of EFs, we ask:

Regarding (variables and) constraints as resources, what problems
can be solved via LP with a given amount of resources?

Dictionary:

Algorithmic Geometric

Problem Polytope

Algorithm EF

Complexity Size

Hardness result Lower bound



Course outline

In this course on extended formulations (EFs), we will see:

1 many examples of EFs

2 techniques for constructing EFs

3 techniques for proving lower bounds on the size of EFs

4 a proof that TSP(Kn) has no polynomial-size EF
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(Convex) polytopes

1 A V -polytope is the convex hull of a finite set of points

P = conv{v1, . . . , vn}
where

vj ∈ Rd ∀j

2 A H-polytope is the intersection of a finite # of halfspaces
(provided this intersection is bounded)

P = {x ∈ Rd | h1(x) 6 0, . . . , hm(x) 6 0}
where

hi(x) = Aix− bi ∀i
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Fundamental theorem

Theorem

For all P ⊆ Rd:

P is a V -polytope ⇐⇒ P is a H polytope

Proof (=⇒)

P = conv{v1, . . . , vn}

=

x ∈ Rd | ∃y ∈ Rn : x =

n∑
j=1

yjvj ,

n∑
j=1

yj = 1, yj > 0 ∀j


=

{
x ∈ Rd | ∃y ∈ Rn : Ex+ Fy = g, y > 0

}
So P is the projection into x-space of a H-polytope! This is our
2nd example of an EF. (Exercise. What kind of polytope is Q?)

P = projx(Q) where Q =
{
(x, y) ∈ Rd+n | Ex+ Fy = g, y > 0

}



Eliminating one variable (Fourier-Motzkin elimination)

To conclude the proof, it suffices to show that eliminating a single
variable from a system of linear constraints “produces” a new
system of linear constraints (changing notations):

Q = {(x, y) ∈ Rd+1 | Aix+ biy 6 ci ∀i}

=

(x, y) ∈ Rd+1 |
Ai0x 6 ci0 ∀i0 ∈ I0

y 6 b−1
i+
ci+ − b−1

i+
Ai+x ∀i+ ∈ I+

y > b−1
i−
ci− − b−1

i−
Ai−x ∀i− ∈ I−


where I0 = {i | bi = 0}, I+ = {i | bi > 0}, I− = {i | bi < 0}

Then projx(Q) is defined by:

Ai0x 6 ci0 ∀i0 ∈ I0

b−1
i−
ci− − b−1

i−
Ai−x 6 b−1

i+
ci+ − b−1

i+
Ai+x ∀i+ ∈ I+, i− ∈ I−

�



Projections

From proof, see that if Q = {(x, y) ∈ Rd+k | Ax+By 6 c} then

projx(Q) = {x ∈ Rd | uᵀAx 6 uᵀc for finite # of u ∈ C},

where C := {u ∈ Rm | uᵀB = 0, u > 0} is the projection cone



Farkas’ lemma

Lemma (Farkas’ lemma)

If P = {x ∈ Rd | Ax 6 b} is a H-polyhedron and cᵀx 6 δ is valid
for P , then either

P = ∅ or

cᵀx 6 δ′ is positive combination of Ax 6 b for some δ′ 6 δ

that is, either

∃u > 0 : uᵀA = 0, uᵀb = −1 or

∃u > 0 : uᵀA = cᵀ, uᵀb = δ′ 6 δ
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Polar of a projection is an intersection

To prove other direction of the fundamental theorem, we polarize

If P is (V - or H-)polytope in Rd with 0 ∈ int(P ), polar of P is

P∆ := {z ∈ Rd | ∀x ∈ P : xᵀz 6 1}

Then (two last eqs. from Farkas’ lemma):

(conv{v1, . . . , vn})∆ = {x ∈ Rd : vᵀ1x 6 1, . . . , vᵀnx 6 1}(
{x ∈ Rd : A1x 6 1, . . . , Amx 6 1}

)∆
= conv{Aᵀ1, . . . , A

ᵀ
m}

(P∆)∆ = P

Exercise. Prove that the polar of projecting polytope Q into
x-space is intersecting polytope Q∆ with x-space, and use this to
prove other direction of fundamental theorem.



Polar of a projection is an intersection

To prove other direction of the fundamental theorem, we polarize

If P is (V - or H-)polytope in Rd with 0 ∈ int(P ), polar of P is

P∆ := {z ∈ Rd | ∀x ∈ P : xᵀz 6 1}

Then (two last eqs. from Farkas’ lemma):

(conv{v1, . . . , vn})∆ = {x ∈ Rd : vᵀ1x 6 1, . . . , vᵀnx 6 1}(
{x ∈ Rd : A1x 6 1, . . . , Amx 6 1}

)∆
= conv{Aᵀ1, . . . , A

ᵀ
m}

(P∆)∆ = P

Exercise. Prove that the polar of projecting polytope Q into
x-space is intersecting polytope Q∆ with x-space, and use this to
prove other direction of fundamental theorem.



Polar of a projection is an intersection

To prove other direction of the fundamental theorem, we polarize

If P is (V - or H-)polytope in Rd with 0 ∈ int(P ), polar of P is

P∆ := {z ∈ Rd | ∀x ∈ P : xᵀz 6 1}

Then (two last eqs. from Farkas’ lemma):

(conv{v1, . . . , vn})∆ = {x ∈ Rd : vᵀ1x 6 1, . . . , vᵀnx 6 1}(
{x ∈ Rd : A1x 6 1, . . . , Amx 6 1}

)∆
= conv{Aᵀ1, . . . , A

ᵀ
m}

(P∆)∆ = P

Exercise. Prove that the polar of projecting polytope Q into
x-space is intersecting polytope Q∆ with x-space, and use this to
prove other direction of fundamental theorem.



Elimination blows up the number of inequalities

If Q is defined by m constraints

Then projx(Q) is defined by at most m2

4 inequalities

. . . after projecting out 1 variable.

Exercise. Verify that this is tight. Find an upper bound when 2
variables are projected out. Is this bound tight?

=⇒ when projecting out k variables: exponential blow-up!

EFs try to exploit this phenomenon: by adding few variables,
decrease much the number of inequalities
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Faces of a polytope

Definition (Face)

If P is a polytope in Rd and cᵀx 6 δ is valid for P , then

F := P ∩ {x ∈ Rd | cᵀx = δ} is a face of P

Particular cases:

∅ is a face, of dimension −1 (use 0ᵀx 6 1)

a face of dimension 0 is a vertex

a face of dimension 1 is an edge

a face of dimension dim(P )− 1 is a facet

P is a face of itself, of dimension dim(P ) (use 0ᵀx 6 0)

L(P ) = (F(P ),⊆) face lattice of P
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Cones

1 A V -cone is the nonnegative hull of a finite set of vectors

C = cone{g1, . . . , gk}

2 A H-cone is the intersection of a finite # of linear halfspaces

C = {x ∈ Rd | Ax > 0}

∀C ⊆ Rd : C is a V -cone ⇐⇒ C is a H-cone
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General polyhedra

1 A V -polyhedron is the sum of a polytope and a cone

P = conv{v1, . . . , vn}+ cone{g1, . . . , gk}

2 A H-polyhedron is the intersection of a finite # of halfspaces

P = {x ∈ Rd | Ax 6 b}

=+

∀P ⊆ Rd : P is a V -polyhedron ⇐⇒ P is a H-polyhedron
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Slack matrices
. . . Of polytopes

P = {x | A1x 6 b1, . . . , Amx 6 bm}

P = conv{v1, . . . , vn}

Definition

Slack matrix S ∈ Rm×n
+ of polytope P : Sij := bi −Aivj

i

Ai = bi

vj

j

Sij

Sij
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Nonnegative factorizations

Definition

A rank-r nonnegative factorization of S ∈ Rm×n is

S = TU where T ∈ Rm×r
+ and U ∈ Rr×n

+

= T US · r

r

Definition (nonnegative rank of S)

rk+(S) := min{r | ∃ rank-r nonnegative factorization of S}
= min{r | S is sum of r nonnegative rank-1 matrices}
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Factorization theorem

Theorem (Yannakakis’ factorization theorem)

Let P be a polytope with dim(P ) > 1.
For every slack matrix S of P : xc(P ) = rk+(S)



Factorization theorem
Example: regular polygon

v = v(0)

v(1)

v(3)

v(4)

v(2)

l3

l1

l2

l0

F = F (0)

F (1)

F (2)

F (3) = F (4)

Halfspaces: `+1 , `+2 , . . .
Folding sequence of vertex v: v(0) = v, v(1), v(2), . . .
Folding sequence of facet F : F (0) = F , F (1), F (2), . . .
Slack (v(i) w.r.t. F (i)) = slack (v(i+1) w.r.t. F (i+1)) + correction
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