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Mixed-Integer Linear Program (MILP)

max cT x
s.t. Ax = b

xi ∈ Z for i ∈ I
xi ≥ 0 for i ∈ [n]

2-dimensional Relaxed Corner Polyhedron:

(RCP) :

(
x1
x2

)
=

(
f1
f2

)
+
∑
j∈N

(
r j1
r j2

)
xj

xj ≥ 0 for all j ∈ N

x1, x2 ∈ Z

Γ = {r j | j ∈ N}

R(f , Γ) = convex hull of (RCP)

(LRCP): Linear relaxation of (RCP)



Empirical tests

2-row cuts

• Type 1 and Type 2 triangles

[Basu, Bonami, Cornuéjols, Margot 2011 [BBCM]]

• Type 2 triangles

[Dey, Lodi, Tramontani, Wolsey 2012 [DLTW]]

• Parametric octahedron

[Balas, Qualizza 2012 [BQ]]

• Using the polar

[Louveaux, Poirrier 2012 [LP]]

5-row 10-row or 15-row cuts:

• Generalized Type 1 triangles, octahedron

[Espinoza 2010 [E]]



Separation algorithm [BBCM]

• Assume that f = (0, f2) with 0 < f2 < 1

• p2 = (−1, p22): intersection of ray with
x1 = −1 with largest x2-coord

• p3 = (−1, p32): intersection of ray with
x1 = −1 with smallest x2-coord

• If p2 = p3 or if they do not exist, stop.
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Separation algorithm (cont.)

Otherwise, p2 6= p3 well defined

• If at least two integer points in int(p2p3):

L2 line through p2 and (0, 1)

L3 line through p3 and (0, 0)

p1 = L2 ∩ L3

Type 2 triangle p1p2p3

x1

x2

p3

p2

f



Separation algorithm (cont.)

Otherwise, p2 6= p3 well defined

• If at least two integer points in int(p2p3):

L2 line through p2 and (0, 1)

L3 line through p3 and (0, 0)

p1 = L2 ∩ L3

Type 2 triangle p1p2p3

x1

x2

p3

p2

f p1



Separation algorithm (cont.)

• If exactly one integer point in int(p2p3):

q2 = (−1, dp22e)
q3 = (−1, bp32c)

• If dp22e − p22 ≤ p32 − bp32c
L2 line through q2 and (0, 1)

L3 line through p3 and (0, 0)

p1 = L2 ∩ L3

Type 2 triangle p1q2p3

• Otherwise

L2 line through p2 and (0, 1)

L3 line through q3 and (0, 0)

p1 = L2 ∩ L3

Type 2 triangle p1p2q3
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Separation algorithm (cont.)
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Separation algorithm (cont.)

• If no integer point in int(p2p3):

Split with sides through (0, 1) and (0, 0)
and containing p2p3
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Comparing cut generators

Algorithms:

• G: Gomory cut generator

• G-2Rounds: Gomory cut generator, two rounds

• G + Allpairs: G + triangles and splits using above heuristic
for all pairs of rows xi ∈ Z, xj fractional

• G + Deepest: G + deepest triangle or split using above
heuristic for each pairs of rows xi ∈ Z, xj fractional



Empirical Testing of Algorithms

[Hooker 1994 [H]], [Hooker 1995 [H95]]
[McGeoch 2001 [MG]], [McGeoch 2012 [MG12]]

• Run experiments

• Formulate a hypothesis about an algorithm

• Use controlled experiments to test the validity of the
hypothesis using statistical analysis tools



Standard procedure I

• Benchmark a Branch-and-Cut code on a collection of
problems

• Choice of problems
• Use other cut generators: Tough to see effect of one cut

generator
• Use heuristics: May hide precision problem
• Do not use heuristics or other cut generators: Longer solution

times
• Interpretation of different “optimal” solutions found?
• Small differences on most problems
• Statistical significance of the results?
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Standard procedure II

• Benchmark lower bound at the root on a collection of
problems

• Choice of problems
• Strength at root not always a good indicator
• Trade off between speed and lower bound
• Inappropriate to gauge precision

Two better empirical testing setups:

• Random Diving Towards Optimal Solution [Margot 2009 [M]]

• Dive-and-cut [Cornuéjols, Margot, Nannicini 2013 [CMN]]



Standard procedure II

• Benchmark lower bound at the root on a collection of
problems

• Choice of problems

• Strength at root not always a good indicator
• Trade off between speed and lower bound
• Inappropriate to gauge precision

Two better empirical testing setups:

• Random Diving Towards Optimal Solution [Margot 2009 [M]]
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Random Diving Towards Optimal Solution [M]

For each problem P in a given collection:

• Record optimal solution (xP , yP)

• Repeat

• Start with original LP formulation
• Repeat

• Generate and apply k rounds of cuts
• Select randomly an integer variable yj with fractional value in

LP solution (Exit if none)
• Set yj = yP

j

• Check if (xP , yP) is still feasible or not (with some tolerance)
• Exit if time limit is reached
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Dive-and-Cut [CMN]

Instance I with known feasible solutions S

Idea:

• Select randomly a node N of a Branch-and-Bound solving I

• Generate cuts

• test feasibility using solutions in S valid for N

Dive-and-Cut:

• Select randomly s ∈ S

• Select randomly a fraction t ∈ [0, 0.8]

• Fix randomly integer variables to their value in s until fraction
t of the initial gap is closed

• Generate ρ rounds of cuts

• Use all solutions in S still valid for N to test validity
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Gap closed at different depths

MIPLIB3 C V2 using Random Diving

Depth 0 (root node) Depth 4 Depth 8 Depth 12

G 28.33 57.41 68.15 75.23

G+Allpairs 29.11 58.13 68.43 74.81

G+Deepest 28.80 58.09 68.59 75.40

G-2Rounds 36.66 59.41 68.75 75.47

• G vs. G+Allpairs: marginal improvement

• G+Allpairs vs. G+Deepest: G+Deepest better; significant
at depth 12

• G-2Rounds vs. G+Deepest: G-2Rounds better at depth 0 and
4 (signif.); difference at depth 8 and 12 not significant.

Use Quade test for statistical tests



Separation for Type 2 triangles [DLTW]

f

Choose two rays r1, r2



Separation for Type 2 triangles [DLTW]

f

Y

Use integer hull Y of points z = λ1r
1 + λ2r

2

with z ∈ Z2 and λ1, λ2 ≥ 0



Separation for Type 2 triangles [DLTW]

c
f

z1

Y

Optimize bisector c of r1 and r2 over Y → z1



Separation for Type 2 triangles [DLTW]

z2z1

f

Y

Compute a neighbor z2 of z1 on boundary of Y
(iterative ILP)



Separation for Type 2 triangles [DLTW]

f

z1 z2
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Y

Side of triangle through z1z2, endpoints q1, q2 on r1, r2



Separation for Type 2 triangles [DLTW]

f

z1 z2
q1

q2

q3

Y

Complete to a Type 2 triangle containing f



Gap closed on random 2-row instances

Density G S T GS GT GST

100% 75.10 (0.16) 76.39 (0.17) 97.99 (0.05) 92.69 (0.07) 98.01 (0.05) 98.94 (0.03)
80% 74.79 (0.18) 66.82 (0.23) 94.02 (0.09) 92.32 (0.08) 96.66 (0.07) 98.43 (0.04)
60% 80.06 (0.16) 56.79 (0.27) 91.38 (0.14) 90.29 (0.10) 97.19 (0.06) 97.70 (0.05)

• G: Gomory cut generator

• S: Non-simple split cut from 2-rows (coeff. of split in [−3, 3])

• T: For each pair of rays, generate one Type 2 triangle using
the heuristic (use only rows with fractional basic variable that
should be integer)



Findings on random instances

5-row instances:

• All cut families are weaker; 2-row cuts are stronger than 1-row
cuts

• T vs. S: If continuous variables are important, T better than S

and vice-versa

• When many integer non-basic variables, all cuts become
weaker; need other relaxations

Adding bounds on variables:

• Does not affect much comparisons 2-row vs. 1-row

• Does not affect much comparisons T vs. S



Findings on random instances (cont.)

m-row instances, various density:

• 2-row vs. 1-row:
• Combining G and T much better than G
• T more important for very dense instances

• T vs. S:
• T stronger than GS only for very dense instances
• G stronger than T on sparse instances



Parametric octahedron [BQ]

Assume that 0 < fi < 1 for i = 1, 2
Use the four Type 1 triangles containing unit square U:

Use eight cones whose vertex is a vertex of U and one ray
horizontal or vertical and the other diagonal:



Parametric octahedron (cont.)

MIPLIB3 C V2

Gap closed # cuts

G 19.49 19.54

ParamOct 29.06 3903

• Weak Gomory generator (28.33 with stronger generator)

• Large number of cuts

• Only average result, no statistical test



Polar [LP]

Polar of R(f , Γ):

Q = {α ∈ RN
+ | αx̄N ≥ 1, for all x̄ extreme point of R(f , Γ);

αt̄N ≥ 1, for all (r̄ , t̄) extreme ray of R(f , Γ)}

Separation of ((xB)∗, (xN)∗) from R(f , Γ):

min z = (xN)∗α

s.t. α ∈ Q

Then

• z ≥ 1 ⇔ ((xB)∗, (xN)∗) ∈ R(f , Γ)

• z < 1 ⇒ αxN ≥ 1 separates ((xB)∗, (xN)∗) from R(f , Γ)



Polar (cont.)

Simplification: For rays in topological order

Ci ,i+1 = {x ∈ R2| x = f + r ixi + r i+1xi+1, xi , xi+1 ≥ 0}
χi ,i+1: vertices of conv(Ci ,i+1 ∩ Z2)

For x̄ ∈ χi ,i+1 define x̄ = r i s̄xi + r i+1s̄xi+1 For r i , r j , rk ∈ R2 define

r j = λji ,k r
i + λjk,i r

k

Q̄ = {α ∈ RN
+ | αi s̄

x
i + αj s̄

x
j ≥ 1, for all x̄ ∈ χi ,i+1,

αi ≤ λii−1,i+1αi−1 + λii+1,i−1αi+1for all r
i ∈ cone(r i−1, r i+1)}

Theorem 1 [LP] For c ∈ RN , c > 0, min{cα |α ∈ Q} and
min{cα |α ∈ Q̄} have the same set of optimal solutions.



Polar (cont.)

Optimizing over Q̄:

• Generate a small set Si ,i+1 ⊆ χi ,i+1 for all i

• Let S = ∪i Si ,i+1

• Q̄(S) := Q̄ with only inequalities from points in S

• Optimize over Q̄(S) → ᾱ

• Find x ∈ Z2 such that ᾱ 6∈ Q̄(S ∪ x)

• If no such x , stop

• Otherwise, add x to S and iterate



Polar (cont.)

Cut generation loop:

• For r = 1 to 5

1. Optimize over linear relaxation LP
2. build up to 5,000 2-row models
3. Generate Gomory cuts and add them to LP
4. Reoptimize → x∗

5. For each 2-row model, try to generate one cut for x∗ and add
them to LP

6. If at least one cut found go to 4

G # cuts G+Polar +cuts G+Splits +cuts
MILIB3 29.41 695 36.18 232 34.79 40

MIPLIB2003 31.32 4,465 34.53 600 33.07 465



What is gap closed by G?

Reference generator bestgenaway [CMN]
53 problems from MIPLIB 3:

1 round 2 rounds 3 rounds 4 rounds 5 rounds
[CMN] 23.17 29.57 32.70 34.61 36.03

[LP] 31.02

46 problems from MIPLIB 3 vs. 46 problems from MIPLIB 3 C V2

1 round 2 rounds 3 rounds 4 rounds 5 rounds
[CMN] 17.73 22.24 24.57 25.92 27.25

[LP] 21.81
[BBCM] 21.62 26.82

[BQ] 16.54


