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max C 7—X

st. Ax=b
xi >0 forie€|[n]

e Linear Relaxation: Consider all variables as continuous
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Linear Relazation: Optimal Simplex Tableau

max CTX

s.t. wm(iﬁ):b

xi >0 for i € [n]
e A: m x n with m linearly independent rows

e Basis B: m x m invertible submatrix of A
e B, N partition of A

e xB xN: variables corresp. to B and N
Optimal tableau for basis B:

xXB=B1b-BINx"=Ff+) rx
JEN
Solution: x = (x&,xN)

xB =B 1p xN' =0
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Gomory Mized-Integer Cuts (GMI)

Row of the optimal tableau with basic variable x; for i € I:

Xj + E §;ij+E ajx; = ajo

jel—i jel
Define

If fo > 0: Gomory Mixed-Integer Cut (GMI) [Gomory 60 [168]]:

Z fXJ—|— Z fo J+ Z ajjXxj — Z l%ofbéijszfo

JELfi<f JELfi>1 j€l:3;>0 j€l:3;<0
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Split set

(m,mo) such that
e T/ mw€EZ
o 7rj:0forallj€7
o gcd(my,...,mp) =1

All points x € Z! x R statisfy split (r, 70):
x < 7o or < > 7o+ 1
Boundary hyperplanes of (, mp):

e H' = {x € R" | 7x = o}
e H2={x eR" | ix = 7o + 1}

Both H! and H? contain integer points
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(7, 70): split with boundary hyperplanes H! and H?
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Split Cut

QCz x R’: polyhedron
(7, 7o): split with boundary hyperplanes H! and H?

Q =QN{xeR" | mx<m} Q@ =QN{xeR"|mx>m+1}
Q(m,m) = conv(Q® U Q)
Facets of Q(m,mp) that are not valid for Q are split cuts generated
by (7, 7o)

[Cook, Kannan, Schrijver 1990 [88]]
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Corner Polyhedron

[Gomory, Johnson 1972 [172]]

For a basis B, relax constraints x; > 0 for all i € B:
corner(B):
max c’x
st. Ax=b
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xi>0 forielN
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Corner Polyhedron

[Gomory, Johnson 1972 [172]]

For a basis B, relax constraints x; > 0 for all i € B:
corner(B):
max c¢'x
st. Ax=b
x;€?Z forieB
xi>0 forielN
Relax x; € Z for all i € I N N:
e lin. relax is a cone with a single vertex (f,0) € R® x RV
relaxed-corner(B) (RCP(B)):
e x;cZforallie B

e x; e Ry forallie N

[Andersen, Louveaux, Weismantel, Wolsey 2007 [13]]
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Intersection cuts for corner(B)

S: closed convex set S with X € int(S) and no point of Z/ x R/ in
int(S)

e r: direction

e h: half-line f + Ar for A >0

e \*: value such that f + \*r is on the boundary of S (or +00)

"L/J()—)\* . . . .

A* = 400 P(r)=0
Inequality for rays {r/ | j € N}:
YU x=1 (1)

jEN



Ezample: | ={1,2} = B and N = {3,4}




Ezample: | ={1,2} = B and N = {3,4}

Feasible set contained in
{(a, %) =Ff+rx3+r'x | x3s>0x >0}

Want
{(x3,x4) > (0,0) | f 4 r*x3 + r*xq integer}



Ezxample: | = {1,2} = B and N = {3,4} (cont.)

3

4

Any convex set S € R? with f € int(S) with no point of Z2 in
int(S)



Example: | ={1,2} = B and N = {3,4} (cont.)

Compute intersection of the rays with the boundary of S
Cut defined by these points is valid: azxz + agxq > 1

[Balas 1971 [22]]



Using a Different Convex Set

Octahedron S in R?
f € int(S) with no point of Z2 in int(S)



Using a Different Convex Set

Compute intersection of the rays with the boundary of S



Split Cuts

e Strip S in R?
o f € int(S) with no point of Z2 in int(S)



Split Cuts

Compute intersection of the rays with the boundary of S



Intersection cuts for corner(B)

I ={1,2} I ={3}

S’: closed convex set with (f,0) € int(S’)



Intersection cuts for corner(B)
I={1,2} 1={3}

int(S') N (Z' x Ry = ¢



Intersection cuts for corner(B)

I ={1,2} I ={3}

X3

X2

x| .
S: projection of S’ onto R/
Note: int(S) = proj(int(S’)) [289]

int(S)Nz' =0
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o int(S")N(Z! xRN =0



Intersection cuts for corner(B)

I ={1,2} I ={3}

Observe:

o S C s

o int(S")N(Z! xR') =0
In pictures, will assume that sets are of the form S”
= can draw pictures in R/
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Intersection cut: validity

Theorem 6.5: Let C be a closed convex set whose interior
contains the point X but no point of Z/ x R/. The intersection cut
(1) is a valid inequality for corner(B).

Comparison on linear relaxation of corner(B)
e GMI cuts are split cuts (Example 6.10)

e split cuts are intersection cuts
(general case: [Andersen, Cornuéjols, Li 2005 [12]])

e Some intersection cuts are not split cuts

For corner(B), intersection cuts are strongest



Intersection cut for corner(B)

Remark 6.6: Let C;, (> be two closed convex sets whose interiors
contain x but no point of Z! x R!. If C; C G, then the
intersection cut (1) relative to C; dominates the intersection cut
(1) relative to Cy.

Theorem 6.12: Every nontrivial facet of corner(B) is an
intersection cut.



Mazimal Z' x ]R7-free sets

Lemma 6.17: Let C be a full-dimensional maximal Z! x R-free
convex set and let K be its projection onto I_R’. Then K is a
maximal Z/-free convex set and C = K x R/.

Theorem 6.18: Let K C R/ be a full-dimensional set. Then K is
a maximal Z'-free convex set if and only if K is a polyhedron that
does not contain any point of Z/ in its interior but there is a point
of Z! in the interior of each of its facets.

Theorem 6.19: Any full-dimensional maximal Z/-free convex set
K is a polyhedron with at most 2!/l facets.



“Proof” of Theorem 6.18

Assume that K is bounded (general proof is more technical)

e Show that K is a polytope

e Show that all facets of K contain an integer point in their
interior:
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“Proof” of Theorem 6.18

Assume that K is bounded (general proof is more technical)

e Show that K is a polytope

e Show that all facets of K contain an integer point in their

interior:
[ ] [ ] [ ] [ ]
[ ] [ ] [ ]
of
[ ] [ ]



Gauge function

Let L be a lattice-free convex set in R” contaning (f,0) in its
interior.

The function 1) used in (1) to generate the coefficient of the
intersection cut generated by L is the gauge function of L.



Gauge function

Let L be a lattice-free convex set in R” contaning (f,0) in its
interior.

The function 1) used in (1) to generate the coefficient of the
intersection cut generated by L is the gauge function of L.

Theorem [Borozan, Cornuéjols 2009 [BC]]

Let ¢ be the gauge function of a maximal lattice-free set
containing f in its interior. Then ) is nonnegative, positively
homogeneous, piecewise linear and convex
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Intersection cuts from two rows of the tableau

Optimal tableau for basis B:
xXB=BTb-B INX"=Ff+) rx
JjeN
xj >0forallje BUN

e Relax x; > 0 for all i € B = corner(B)
e Select indices of two basic variables i1, b € BN/
e Erase from system all equalities except those defining
x;, and x;, = relaxation: :
Xi = i+ ng
JEN
X = fiy+ D0
JEN
x; > 0forall je N

Xiy > Xiy € 7



Mazimal lattice-free sets in R? x RN

Select maximal Z2 x RN_free convex set C € R? x RN:
e Lemma 6.17: C = K x R! with K full dim. Z2-free set
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Mazimal lattice-free sets in R? x RN

Select maximal Z2 x RN-free convex set C € R? x RN:
e Lemma 6.17: C = K x R/ with K full dim. Z2-free set
e Theorem 6.19: K is a polyhedron with 2, 3, or 4 facets

Quadrilateral
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Maximal Lattice-free triangles

o Type 1:
e Three integral vertices
e Exactly one integral point in the interior of each edge
o Type 2:
e At least one fractional vertex v
o Exactly one integ. point in interior of both edges adjacent to v
e At least two integral points on the third edge

e Type 3:
e Exactly one integ. point in the interior of each edge, no others

Type 1 Type 2 Type 3



Facet defining sets in R? x RV

The facets are
e split inequalities with infinite direction r/ for some j € N or
when a ray condition holds
e triangle inequalities with corners on half-lines f + Ar/ for some
Jj € N, A > 0, or satisfying another ray condition,
e quadrilateral inequalities with corners on half-lines f + A\r/ for
some j € N, A > 0 and satisfying a ratio condition



Separation of 2-dimensional intersection cuts
Ignoring “ray conditions”:
Splits
Type 1 triangles with corner rays

Type 2 triangles with corner rays

Type 3 triangle with corner rays

Quadrilaterals with corner rays



Separation of 2-dimensional intersection cuts

Ignoring “ray conditions”:
e Splits
e Type 1 triangles with corner rays
e Type 2 triangles with corner rays
e Type 3 triangle with corner rays

e Quadrilaterals with corner rays

Questions:
e Should we try?
e Theoretical justification (Friday)
e Empirical evidence (Saturday)






