Recent Developments in Cuts for MILP
3. Empirical tests

Francois Margot

Carnegie Mellon University

March 2013

Mized-Integer Linear Program (MILP)

max c'x

st. Ax=b
X;j € 7 for i el
xi >0 forie[n]

2-dimensional Relaxed Corner Polyhedron:

. xa_ (h 1

(R ()‘(f>+z<~)
JEN

xj >0forall je N

X1,X0 € Z

Fr={r|jeN}
R(f,T) = convex hull of (RCP)

(LRCP): Linear relaxation of (RCP)

Empirical tests

2-row cuts

e Type 1 and Type 2 triangles

[Basu, Bonami, Cornuéjols, Margot 2011 [BBCM]]
e Type 2 triangles
[Dey, Lodi, Tramontani, Wolsey 2012 [DLTW]]
e Parametric octahedron
[Balas, Qualizza 2012 [BQ]]
e Using the polar
[Louveaux, Poirrier 2012 [LP]]
5-row 10-row or 15-row cuts:
o Generalized Type 1 triangles, octahedron
[Espinoza 2010 [E]]

Separation algorithm [BBCM]

e Assume that f = (0,) with0 < f, < 1

.
X2

Separation algorithm [BBCM]

e Assume that f = (0,) with0 < f, < 1

o p? = (-1, p%): intersection of ray with
x1 = —1 with largest x,-coord

o p3 = (—1,p3): intersection of ray with
x1 = —1 with smallest x»-coord

Y

Separation algorithm [BBCM]

Assume that f = (0,) with 0 < f, < 1

p? = (-1, p3): intersection of ray with
x1 = —1 with largest x,-coord

p® = (—1, p3): intersection of ray with
x1 = —1 with smallest x»-coord

If p?2 = p> or if they do not exist, stop.

.
X2

Separation algorithm (cont.)

Otherwise, p? # p3 well defined

Y

Separation algorithm (cont.)

Otherwise, p? # p3 well defined
e If at least two integer points in int(p?p3):
L? line through p? and (0,1)
L3 line through p* and (0,0)
pl =121 13

Type 2 triangle p'p?p3

Y

.
X2

X

Separation algorithm (cont.)

o If exactly one integer point in int(p?p3):

¢ = (-1, [i2]) NS
q3 = (_]-a LPSJ) v

Separation algorithm (cont.)

o If exactly one integer point in int(p?p3):

¢ =(-1,[p31)
¢* = (-1, |p3))
o If [p3] — p3 < p3 — p3]
L? line through ¢? and (0,1)
L3 line through p* and (0,0)
pl = 12113
Type 2 triangle p'q?p3

Separation algorithm (cont.)

o If exactly one integer point in int(p?p3):

¢ =(-1,[p31)
¢* = (-1, |p3))
o If [p3] — p3 < p3 — p3]
L2 line through ¢? and (0,1)
L3 line through p* and (0,0)
pl = 12113
Type 2 triangle p'q?p3

e Otherwise
L2 line through p? and (0,1)
L3 line through ¢* and (0,0)
pt=1°n1L3
Type 2 triangle p*p?q®

Separation algorithm (cont.)

o If no integer point in int(p%p3):

Separation algorithm (cont.)

o If no integer point in int(p%p3):

Split with sides through (0,1) and (0, 0)
and containing p?p3 2
Py

&

.
X2

Comparing cut generators

Algorithms:
e G: Gomory cut generator
e G-2Rounds: Gomory cut generator, two rounds
e G + Allpairs: G + triangles and splits using above heuristic
for all pairs of rows x; € Z, x; fractional

e G + Deepest: G + deepest triangle or split using above
heuristic for each pairs of rows x; € Z, x; fractional

Empirical Testing of Algorithms

[Hooker 1994 [H]], [Hooker 1995 [H95]]
[McGeoch 2001 [MG]], [McGeoch 2012 [MG12]]

e Run experiments
e Formulate a hypothesis about an algorithm

e Use controlled experiments to test the validity of the
hypothesis using statistical analysis tools

Standard procedure I

e Benchmark a Branch-and-Cut code on a collection of
problems

Standard procedure I

e Benchmark a Branch-and-Cut code on a collection of
problems

e Choice of problems

Standard procedure I

e Benchmark a Branch-and-Cut code on a collection of
problems
e Choice of problems
e Use other cut generators: Tough to see effect of one cut
generator

Standard procedure I

e Benchmark a Branch-and-Cut code on a collection of
problems
e Choice of problems
e Use other cut generators: Tough to see effect of one cut
generator
o Use heuristics: May hide precision problem

Standard procedure I

e Benchmark a Branch-and-Cut code on a collection of
problems
e Choice of problems
e Use other cut generators: Tough to see effect of one cut

generator

o Use heuristics: May hide precision problem

e Do not use heuristics or other cut generators: Longer solution
times

Standard procedure I

e Benchmark a Branch-and-Cut code on a collection of
problems

Choice of problems

Use other cut generators: Tough to see effect of one cut
generator

Use heuristics: May hide precision problem

Do not use heuristics or other cut generators: Longer solution
times

Interpretation of different “optimal” solutions found?

Standard procedure I

e Benchmark a Branch-and-Cut code on a collection of
problems

Choice of problems

Use other cut generators: Tough to see effect of one cut
generator

Use heuristics: May hide precision problem

Do not use heuristics or other cut generators: Longer solution
times

Interpretation of different “optimal” solutions found?

Small differences on most problems

Standard procedure I

e Benchmark a Branch-and-Cut code on a collection of
problems

Choice of problems

Use other cut generators: Tough to see effect of one cut
generator

Use heuristics: May hide precision problem

Do not use heuristics or other cut generators: Longer solution
times

Interpretation of different “optimal” solutions found?

e Small differences on most problems
e Statistical significance of the results?

Standard procedure II

e Benchmark lower bound at the root on a collection of
problems

Standard procedure II

e Benchmark lower bound at the root on a collection of
problems

e Choice of problems

Standard procedure II

e Benchmark lower bound at the root on a collection of
problems
e Choice of problems
e Strength at root not always a good indicator

Standard procedure II

e Benchmark lower bound at the root on a collection of
problems
e Choice of problems
e Strength at root not always a good indicator
e Trade off between speed and lower bound

Standard procedure II

e Benchmark lower bound at the root on a collection of
problems

Choice of problems

Strength at root not always a good indicator

Trade off between speed and lower bound

Inappropriate to gauge precision

Standard procedure II

e Benchmark lower bound at the root on a collection of
problems

e Choice of problems

e Strength at root not always a good indicator
e Trade off between speed and lower bound

e Inappropriate to gauge precision

Two better empirical testing setups:
e Random Diving Towards Optimal Solution [Margot 2009 [M]]
e Dive-and-cut [Cornuéjols, Margot, Nannicini 2013 [CMN]]

Random Diving Towards Optimal Solution [M]

For each problem P in a given collection:
e Record optimal solution (x”, yF)

e Start with original LP formulation
e Repeat
e Generate and apply k rounds of cuts
e Select randomly an integer variable y; with fractional value in
LP solution (Exit if none)
e Sety = yjP
e Check if (x”, y") is still feasible or not (with some tolerance)
e Exit if time limit is reached

Random Diving Towards Optimal Solution [M]

For each problem P in a given collection:
e Record optimal solution (x”, y")

e Start with original LP formulation
e Repeat
e Generate and apply k rounds of cuts
e Select randomly an integer variable y; with fractional value in
LP solution (Exit if none)
e Sety = yjp
o Check if (x7,yP) is still feasible or not (with some tolerance)
e Exit if time limit is reached

Random Diving Towards Optimal Solution [M]

For each problem P in a given collection:
e Record optimal solution (x”, y")

e Start with original LP formulation
e Repeat
e Generate and apply k rounds of cuts
e Select randomly an integer variable y; with fractional value in
LP solution (Exit if none)
e Sety = yjp
o Check if (x7,yP) is still feasible or not (with some tolerance)
e Exit if time limit is reached

Y, :3/‘

Random Diving Towards Optimal Solution [M]

For each problem P in a given collection:
e Record optimal solution (x”, y")

e Start with original LP formulation
e Repeat
e Generate and apply k rounds of cuts
e Select randomly an integer variable y; with fractional value in
LP solution (Exit if none)
e Sety = yjp
o Check if (x7,yP) is still feasible or not (with some tolerance)
e Exit if time limit is reached

y,=3

=1

Random Diving Towards Optimal Solution [M]

For each problem P in a given collection:
e Record optimal solution (x”, y")

e Start with original LP formulation
e Repeat
e Generate and apply k rounds of cuts
e Select randomly an integer variable y; with fractional value in
LP solution (Exit if none)
e Sety = yjp
o Check if (x7,yP) is still feasible or not (with some tolerance)
e Exit if time limit is reached

y,=3

=1

Y%= 2

Random Diving Towards Optimal Solution [M]

For each problem P in a given collection:
e Record optimal solution (x”, y")
e Repeat
e Start with original LP formulation
e Repeat
e Generate and apply k rounds of cuts
e Select randomly an integer variable y; with fractional value in
LP solution (Exit if none)
e Sety = yjp
o Check if (x7,yP) is still feasible or not (with some tolerance)
e Exit if time limit is reached

Random Diving Towards Optimal Solution [M]

For each problem P in a given collection:
e Record optimal solution (x”, y")
e Repeat
e Start with original LP formulation
e Repeat
e Generate and apply k rounds of cuts
e Select randomly an integer variable y; with fractional value in
LP solution (Exit if none)
e Sety = yjp
o Check if (x7,yP) is still feasible or not (with some tolerance)
e Exit if time limit is reached

Random Diving Towards Optimal Solution [M]

For each problem P in a given collection:
e Record optimal solution (x”, y")
e Repeat
e Start with original LP formulation
e Repeat
e Generate and apply k rounds of cuts
e Select randomly an integer variable y; with fractional value in
LP solution (Exit if none)
e Sety = yjp
o Check if (x7,yP) is still feasible or not (with some tolerance)
e Exit if time limit is reached

[]
y=3 y,=10

Dive-and-Cut [CMN]

Instance | with known feasible solutions S

Idea:
e Select randomly a node N of a Branch-and-Bound solving /
e Generate cuts

e test feasibility using solutions in S valid for N

Dive-and-Cut [CMN]

Instance | with known feasible solutions S

Idea:
e Select randomly a node N of a Branch-and-Bound solving /
e Generate cuts

e test feasibility using solutions in S valid for N

Dive-and-Cut:
Select randomly s € S

Select randomly a fraction t € [0, 0.8]

Fix randomly integer variables to their value in s until fraction
t of the initial gap is closed

Generate p rounds of cuts

Use all solutions in S still valid for N to test validity

Gap closed at different depths

MIPLIB3_C_V2 using Random Diving

Depth 0 (root node) | Depth 4 | Depth 8 | Depth 12
G 28.33 57.41 68.15 75.23
G+Allpairs 29.11 58.13 68.43 74.81
G+Deepest 28.80 58.09 68.59 75.40
G-2Rounds 36.66 59.41 68.75 75.47

e Gvs. G+tAllpairs: marginal improvement

e G+Allpairs vs. G+Deepest: G+Deepest better; significant

at depth 12

e G-2Rounds vs. G+tDeepest: G-2Rounds better at depth 0 and

4 (signif.); difference at depth 8 and 12 not significant.

Use Quade test for statistical tests

Separation for Type 2 triangles [DLTW]

2

Choose two rays r!, r

Separation for Type 2 triangles [DLTW]

Use integer hull Y of points z = Ayrt + Apr?
with z € Z2 and A, A >0

Separation for Type 2 triangles [DLTW]

Optimize bisector ¢ of r! and r? over Y — z1

Separation for Type 2 triangles [DLTW]

Compute a neighbor z? of z! on boundary of Y
(iterative ILP)

Separation for Type 2 triangles [DLTW]

Side of triangle through z'z?, endpoints g', g% on r1, r?

Separation for Type 2 triangles [DLTW]

Complete to a Type 2 triangle containing f

Gap closed on random 2-row instances

Density G s T GS GT GST
100% | 75.10 (0.16) | 76.39 (0.17) | 97.99 (0.05) | 92.69 (0.07) | 98.01 (0.05) | 98.94 (0.03)
80% 74.79 (0.18) | 66.82 (0.23) | 94.02 (0.09) | 92.32 (0.08) | 96.66 (0.07) | 98.43 (0.04)
60% 80.06 (0.16) | 56.79 (0.27) | 91.38 (0.14) | 90.29 (0.10) | 97.19 (0.06) | 97.70 (0.05)

e G: Gomory cut generator

e S: Non-simple split cut from 2-rows (coeff. of split in [—3, 3])

e T: For each pair of rays, generate one Type 2 triangle using
the heuristic (use only rows with fractional basic variable that
should be integer)

Findings on random instances

5-row instances:

e All cut families are weaker; 2-row cuts are stronger than 1-row
cuts

e T vs. S: If continuous variables are important, T better than S
and vice-versa

e When many integer non-basic variables, all cuts become
weaker: need other relaxations

Adding bounds on variables:
e Does not affect much comparisons 2-row vs. 1-row

e Does not affect much comparisons T vs. S

Findings on random instances (cont.)

m-row instances, various density:
e 2-row vs. l-row:
e Combining G and T much better than G
e T more important for very dense instances
e Tvs. S:

e T stronger than GS only for very dense instances
e G stronger than T on sparse instances

Parametric octahedron [BQ]

Assume that 0 < f; < 1 for i =1,2
Use the four Type 1 triangles containing unit square U:

Use eight cones whose vertex is a vertex of U and one ray
horizontal or vertical and the other diagonal:

L1 1 ¢

Parametric octahedron (cont.)

MIPLIB3_C_V2

Gap closed | # cuts
G 19.49 19.54
ParamOct 29.06 3903

e Weak Gomory generator (28.33 with stronger generator)
e Large number of cuts

e Only average result, no statistical test

Polar [LP]
Polar of R(f,T):

Q={ac Rﬂ | axM > 1, for all x extreme point of R(f,T);
atV > 1, for all (7, t) extreme ray of R(f,I)}

Separation of ((xB)*, (x")*) from R(f,T):
minz = (x")a
s.t. ae

Then
o 221 ((x), (")) € R(f,T)
e z<1= ax" > 1 separates ((xB)*, (x")*) from R(f,I)

Polar (cont.)

Simplification: For rays in topological order
C,'7,'+1 = {X € R2‘ x=1f+ rix; + ri+1X,'_|_1,X,',X,'+1 > 0}
Xi,i+1: vertices of conv(C i1 N 72)

For X € Xi,i+1 define X = ri§,?< + rit15X - For rl, F, rk € R? define

l+1
F= X+ N

Q = {a € RQ_’ | ;5 + Ozj'?j(> 1,for all X € X i+1,

. ,) 1 i
o <Ny i1@ic1 + Mg aigifor all v’ e cone(r'™t, ')}

Theorem 1 [LP] For c € RN, ¢ >0, min{ca |a € @} and
min{ca | € Q} have the same set of optimal solutions.

Polar (cont.)

Optimizing over Q:
e Generate a small set S; ;1 C x; i1 forall
e let S=U; 51
Q(S) := Q with only inequalities from points in S

Optimize over Q(S) — a

Find x € Z? such that & ¢ Q(S U x)
If no such x, stop

Otherwise, add x to S and iterate

Polar (cont.)

Cut generation loop:
e Forr=1tob

1. Optimize over linear relaxation LP

2. build up to 5,000 2-row models

3. Generate Gomory cuts and add them to LP

4. Reoptimize — x*

5. For each 2-row model, try to generate one cut for x* and add

them to LP
0. If at least one cut found go to 4
G # cuts | GtPolar +cuts | G+Splits +-cuts
MILIB3 29.41 695 36.18 232 34.79 40

MIPLIB2003 | 31.32 4,465 34.53 600 33.07 465

What is gap closed by G?

Reference generator bestgenaway [CMN]
53 problems from MIPLIB 3:

1 round | 2 rounds | 3 rounds | 4 rounds | 5 rounds
[CMN] 23.17 29.57 32.70 34.61 36.03
[LP] 31.02

46 problems from MIPLIB 3 vs. 46 problems from MIPLIB_3_C_V2

1 round | 2 rounds | 3 rounds | 4 rounds | 5 rounds
[CMN] 17.73 22.24 24.57 25.92 27.25
[LP] 21.81

[BBCM] 21.62 26.82
[BQ] 16.54

