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Mixed-Integer Linear Program (MILP)

max cT x
s.t. Ax = b

xi ∈ Z for i ∈ I
xi ≥ 0 for i ∈ [n]

2-dimensional Relaxed Corner Polyhedron:

(RCP) :

(
x1

x2

)
=

(
f1
f2

)
+
∑
j∈N

(
r j1
r j2

)
xj

xj ≥ 0 for all j ∈ N

x1, x2 ∈ Z

Γ = {r j | j ∈ N}

R(f , Γ) = convex hull of (RCP)

(LRCP): Linear relaxation of (RCP)
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Description of R(f , Γ)

Six relaxations of R(f , Γ):

• S(f , Γ) = (LRCP) + all cuts from splits containing f in their
interior

• 4(f , Γ) = (LRCP) + all cuts from triangles containing f in
their interior

• 4i (f , Γ) = (LRCP) + all cuts from triangles of type i
containing f in their interior, for i = 1, 2, 3

• �(f , Γ) = (LRCP) + all cuts from quadrilaterals containing f
in their interior

We have:

R(f , Γ) = S(f , Γ) ∩4(f , Γ) ∩�(f , Γ)
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Comparison of split, triangle and quadrilateral cuts

Theoretical comparison:

• Upper and lower bounds on quality of relaxations vs. R(f , Γ)

• Upper and lower bounds on relaxations between themselves

Empirical comparison:

• Heuristic separation algorithm for some families of cuts

• Compare gap closed in practice

Probabilistic comparison:

• Over all choices of f and Γ in a set L:
• Probability that L generates an inequality improving on the

split closure
• Prob. that some inequalities dominates others (coefficients or

volume cut off)

• Select f and Γ uniformly; compare average and worst-case
strength of split closure vs. triangle closure over all possible
optimization directions
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Comparing families



Domination between families

L ⊆ Rn : lattice-free set; ε > 0

relax(L, ε) = {x ∈ Rn | ||x − x̄ || ≤ ε, for some x̄ ∈ L}

Proposition 2.1 [ACGT] Let L,L′ be families of lattice-free
convex sets. Suppose that for every ε > 0 and every L ∈ L, there
exists L′ ∈ L′ such that L ⊆ relax(L′, ε). Then L′(f , Γ) ⊆ L(f , Γ).

42(f , Γ) ⊆ 41(f , Γ) �(f , Γ) ⊆ 42(f , Γ) 43(f , Γ) ⊆ 42(f , Γ)
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Comparing relaxations

C ⊆ Rn
+: convex set is monotone when

x ∈ C and y ≥ x ⇒ y ∈ C

Example: R(f , Γ), S(f , Γ), 4(f , Γ),�(f , Γ)

C1,C2: monotone convex sets
How much to inflate C2 to contain C1:

ρ(C1,C2) = inf{ 1

α
| C1 ⊆ αC2}

L: family of convex lattice-free sets

L(f , Γ) = (LRCP) + all cuts from sets in L containing f in their
interior
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Computing an upper bound on ρ(L1,L2)

We have

1
ρ(L1,L2) = inf

Γ,f∈L∈L2

∑
j∈Γ

ψL(r j) xj∑
j∈Γ

ψC (r j) xj ≥ 1 for all C ∈ L1 containing f

xj ∈ R+ for all j ∈ Γ

If all L ∈ L2 are bounded:

• Can assume that corner rays are all present

• Can assume that rays are scaled such that ψL(r j) = 1 for all
j ∈ Γ

• Can assume that no ray rk is a convex combination of two
other rays in {r j | j ∈ Γ}

⇒ {r j | j ∈ Γ} is exactly Γ(L) := set of corner rays for L
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Difficulties:

• Need to check all L ∈ L2

• For each L ∈ L2 one inequality for each C ∈ L1
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Unimodular transformation

Unimodular transformation: φ : Rn → Rn with

φ(x) = v + Mx

where
v ∈ Zn

M ∈ Zn×n with det(M) = ±1

Need to check all L ∈ L2 only up to unimodular transformation
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Computing an upper bound on ρ(S ,41)

All L ∈ 41 are identical up to unimodular transformation.
We can just pick one.
T : vertices (0, 0), (0, 2), (2, 0)
TI : vertices (1, 0), (0, 1), (1, 1)

z = min
3∑

j=1

xj

3∑
j=1

ψS(r j) xj ≥ 1 for all split S containing f

xj ∈ R+ for all j = 1, 2, 3

Then 1
z = ρ(S ,41)
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Computing an upper bound on ρ(S ,41) (cont.)

Replace the infinite number of inequalities in the LP by a small
number:
S1: split 0 ≤ x1 ≤ 1
S2: split 0 ≤ x2 ≤ 1
S3: split 1 ≤ x1 + x2 ≤ 2

z = min
3∑

j=1

xj

3∑
j=1

ψSt (r
j) xj ≥ 1 for t = 1, 2, 3

x̃j ∈ R+ for all j = 1, 2, 3

Then 1
z ≥ ρ(S ,41)



Computing an upper bound on ρ(S ,41) (cont.)

Assume that f ∈ TI

z = min x1 +x2 +x3

f1+f2
f1+f2−1x1 +x2 +x3 ≥ 1

x1 + 2−f1
1−f1 x2 +x3 ≥ 1

x1 +x2 + 2−f2
1−f2 x3 ≥ 1

x ≥ 0

Optimal solution:

x∗1 = f1+f2−1
2 x∗2 = 1−f1

2 x∗3 = 1−f2
2

with value z = x∗1 + x∗2 + x∗3 = 1
2
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Computing a lower bound on ρ(S ,41)

Lemma 6.3 [43]: If f is in the interior of triangle TI then the split
closure is defined by S1, S2, S3.

In general, to prove a lower bound on ρ(L1,L2):

• Select L ∈ L2, f

• Find a point x̄ in L1(f , Γ(L))

• z =
∑

j∈Γ(L) ψL(r j) x̄j

• 1
z is a lower bound on ρ(L1,L2)
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Lower, upper bounds on ρ

Entry (i , j): lower bound, upper bound on ρ(i , j)

S 41 42 43 � R

S − 2 +∞ +∞ +∞ +∞
41 +∞ − +∞ +∞ +∞ +∞
42 1 1 − 1.125, 1.5 1.125, 1.5 1.125, 1.5
43 1 1 1 − 1.125, 1.5 1.125, 1.5

� 1 1 1 1.125, 1.5 − 1.125, 1.5

[Awate, Cornuéjols, Guenin, Tuncel 2013 [ACGT]]



Probabilistic comparisons (model (i))

[Del Pia, Wagner, Weismantel 2011 [DPP]]

• Fix a lattice-free convex set L

• Let f vary uniformly in int(L) and use Γ(L) as rays.

• For any z > 1, compute PL(z) := Prob(ρ(S , S ∪ L) ≤ z).

Findings:

• PL(z) tends to 1 when lattice-width of L ∈ 42 tends to 1

PL(z) ≥


0 if 1 < z ≤ w
(z−w)(2zw−w−z)

w2(z−1)2 if w < z ≤ w
w−1

(z−w)(2zw−w−z)+(w−1)2(z−1)2−1
w2(z−1)2 if w

w−1 < z < +∞

(similar result for L ∈ 43)
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Probabilistic comparisons (model (ii))

[Basu, Cornuéjols, Molinaro 2010 [BCM]]

• Let f and Γ be selected uniformly

• Compare average (avg) and worst-case (wc) gap between
closures over all possible cost vector.

• For a cost vector c ∈ RN
+

gap(C1,C2, c) =
{min c x | x ∈ C1}
{min c x | x ∈ C2}

with value +∞ if C1 = ∅ or {min c x | x ∈ C2} = 0.

Findings:

• For α ≥ 1 and |Γ| → +∞: Prob(wc(4,S) ≥ α) ≈ 1
α −

1
4α2

• For α > 1 and ε > 0 (lower bound on entries in c):
Prob(avg(R(f , Γ),S(f , Γ)) ≤ α) ≥ 1− 1

|N|
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Probabilistic comparisons (model (iii))

[He, Ahmed, Nemhauser 2011 [HAN]]

• Let f vary uniformly in the unit square U with uniformly
distributed rays.

• Compare the two splits containing U vs. the four Type 1
triangles containing U;

• Comparison based on coefficients on rays or volume cut off.
Probability that one type dominates the other.

Findings:

• One of the two splits is more likely to dominate a Type 1
triangle than the opposite. Probability tends fast to 0 as
number of rays increases.

• Same conclusion for volume cut off. Probability tends to 1 as
number of rays increases.
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