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Abstract - An ANFIS based neuro-fuzzy system to classify
sleep-waking states and stages in healthy infants has been
developed. The classifier takes five input patterns identified
from polysomnographic recordings on 20 s frames and assigns
them to one out of f ive possible classes (WA, NREM-I, NREM-
II , NREM-II I& IV or REM). Eight polysomnographic
recordings of healthy infants were studied, making a total of
3510 frames. Of these, four r ecordings were used for training,
two for validation and two for testing. Results on the testing
data achieved on average 88.2% of expert agreement in sleep-
waking state-stage classification. These results were compared
with the ones obtained using a multi-layer perceptron neural
network (87.3%) and by applying the expert’s rules for sleep
classification (86.7%). The neuro-fuzzy approach also rendered
fuzzy classification rules, which were analyzed and compared
with the expert’ s rules.

Keywords - Sleep classification, sleep stages, ANFIS, neuro-
fuzzy classifier , automated rule generation.

I. INTRODUCTION

The sleep classification process is divided into three
steps: data acquisition, pattern identification and sleep-
waking state-stage classification. In the first step, several
signals generated by bioelectrical and biomechanical activity
of the infant's body are recorded by a polygraph, generating
a large number of pages with graphical data. The pattern
identification process is performed for each page. The expert
determines the background predominant frequency range in
the electroencephalogram (EEG) according to [1-3]; relevant
for this study are the slow delta (SD) (0.5-2 Hz) and theta
(TH) (3-7 Hz) frequency ranges. The EEG is also examined
to detect sigma spindles (SS), which are in the 12-14 Hz
range. The electrooculogram (EOG) and the
electromyogram (EMG) are used to determine the presence
of rapid eye movements (REMov) and muscular tone (MT),
respectively. The polygraph records additional signals which
the expert uses as context information, such as
electrocardiogram (ECG), detection of body movements
(BM), abdominal ventilatory movements, nostril s airflow,
body temperatures and oxymetry.

The most basic division in sleep classification is to
distinguish between wakefulness (WA) and being asleep.
There are two sleep states called REM and Non-REM
(NREM). NREM is subdivided in turn into four stages
called NREM-I, NREM-II, NREM-III and NREM-IV.
NREM-III and IV were considered as a single stage called
NREM-III &IV in this study. The difference between the two
is the threshold of SD presence.

To determine the sleep state or stage, the experts
establi shed certain rules, based on [2-3],  that are shown in
table I. However, sleep classification is not completely
standardized and usually experts from different research

 TABLE I
 EXPERT’S RULES FOR SLEEP-WAKING STATE-STAGE

CLASSIFICATION
A: absent, P: present, X: irrelevant. A particular state or stage has to last at

least one minute to be assessed as such.
   Sleep-Waking States & Stages

Pattern NREM-
I

NREM-
II

NREM-
III&IV

REM WA

REMov A A A P P
TH P X X P X
SD A A P A A
SS A P X A A
MT X X X A P

centers have slightly different approaches. Even between
expert co-workers there is usually less than 90% agreement
in sleep classification [4].

The large amount of data, the complexity of the
classification analysis and the variabil ity among human
experts are reasons to develop an automated sleep
classification system. An evaluation of the computerized
system ALICE 3 using fifty subjects [5] showed substantial
differences between automated computer scoring and
manually scored paper polysomnographies. A manual
edition of the computer scoring enhanced agreement to
75.7% with the paper polysomnography scoring. In [1] a
pattern identification system for sleep stage classification
which emulates the way the expert searches for each of the
five relevant patterns was implemented. A ganglionar lattice
system performed the classification, achieving 84.9% of
expert agreement, after manually removing several “noisy”
pages from the database. Later on, in [6], the pattern
detection algorithms were redesigned in order to enhance
their robustness, and evaluated with an enlarged database
using the expert’s rules of table I. An 86.7% of correct
classification was achieved for the testing set, which had no
manual intervention and included “noisy” data.

In order to discover rules that may explain how the
classification process should be performed and to find
parameters that define the degree of presence or absence for
a pattern, a neuro-fuzzy approach was chosen. The weight of
each rule and the parameters of the membership functions
were determined by supervised learning through an ANFIS
[7] based  neuro-fuzzy classifier (NFC) [8]. Non-relevant
rules were eliminated by applying a pruning algorithm. The
remaining rules were analyzed and compared with the
expert' s rules.

II . METHODS

A. Data Acquisition
Eight continuous sleep recordings were obtained from

infants between 6 and 13 months of age on a TECA lA97



18-channel polygraph connected as follows: five EEG
channels with electrode placement adapted for infants from
the international 10-20 system (FP1-C3, C3-O1, FP2-C4,
C4-O2, and C3-C4); EOG for REMov detection; tonic chin
and diaphragmatic EMGs; ECG; body movement detection
of upper and lower limbs using piezo-electric crystal
transducers; abdominal ventilatory movements, using a
mercury strain gauge; and nostril s airflow, by means of a
thermistor. All data were simultaneously recorded on paper
and on digital means at a 250-Hz sampling rate. The digital
data were collected on hard disk and then stored in laser
media for off-line analysis. Infant behavior was also
observed directly and noted on the polygraph paper.
Depending on the polygraph settings, a page can last 20 or
30 seconds. The digital recordings were divided in 20 s
frames, which represented one paper page in most cases.

B. Pattern Identification
The system described in [6] was applied to obtain a

level of presence for each of the five relevant patterns. The
pattern detection system outputs are either percentages of
presence or quality indices of a given pattern per frame. The
outputs are in the [0, 1] range.

The data set was divided into 4 records with 2067
frames for the training set, 2 records with 585 frames for the
validation set and 2 records with 858 frames for the testing
set. The training set was used to adjust the parameters with
supervised learning in order to achieve over 80% agreement
on the validation set, for each sleep-waking state-stage when
using the expert's rules of table I. Two additional recordings
were left for testing the system.

C. ANFIS based Neuro-Fuzzy Classifier
A neuro-fuzzy classifier (NFC) based on [7-8] was

applied on the detected patterns to perform sleep-waking
state-stage classification. Each of the five relevant patterns
were associated to two fuzzy concepts, present and absent,
with sigmoidal fuzzification functions.
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where s is the slope and c is the center of the sigmoid. The
sign of s determines if the concept means present (+) or
absent (-). Parameters s and c are determined through a
training process, using the delta rule
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where ∆W is the adjustment for the parameter W, ε is the
sum of the squared error, and µ is the learning rate. The
weights of the linear combinations at layer 3 were also
determined by supervised learning using the delta rule (2).
The NFC architecture allowed us to implement a fuzzy
classification system with differentiable fuzzification
functions at layer 1 (in our case sigmoidal functions),
including parameters that were trained using the delta rule

FIGURE 1. NEURO-FUZZY CLASSIFIER ARCHITECTURE.
 Layer 1 is the fuzzification layer. Three input variables are shown here (X1,
X2 and X3), each with two associated fuzzy concepts (Ai and Bi). Layer 2
generates all the possible rules of the form IF X1 is A1 and X2 is B2 and X3

is A3, with a T-norm operator (Π), considering one fuzzy concept per input
variable. The output of layer 2 is a strength parameter for each of the rules.
Each node at layer 3 performs a linear combination of the rules and uses a
sigmoidal function to determine the degree of belonging of the input pattern
to each class (C1, C2, C3).

(2) with the squared error as the objective function
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where m is the number of output classes, n is the number of
examples, d is the desired output (0 or 1) and ο  is the node
output at layer 3.

The validation set was used to establish when to stop the
learning algorithm, and consider the tuned parameters as
final. The testing set was used to evaluate the performance
of the tuned system with independent data. Nonlinear
relations resulted after training between the NFC input and
output spaces.

A simplified diagram of the NFC system architecture is
shown in Fig. 1. A detailed explanation about the training
process of an ANFIS network is given in [7]. The actual
NFC model applied to the sleep problem had 5 inputs, each
one with two associated fuzzy membership functions, and 5
output classes (WA, NREM-I, NREM-II, NREM-III&IV
and REM). The combination of the fuzzy concepts of layer 1
produced a total of 32 rules at layer 2. The maximum output
at layer 3 determined the class associated to each input
vector. The weights at layer 3 were initialized with random
values in the [0, 1] interval. The center c was initially
determined at half of the maximum input from all the
respective training examples and the parameter s was set at

� 5.



D. Postprocessing
In order to reduce the number of rules and thus produce

a more expert-li ke set of fuzzy if-then rules, a pruning
algorithm was implemented. For every output class, the
average contribution of each rule was evaluated and a
threshold of 0.01 was used to eliminate the least significant
rules (the observed contribution values were always in the
[0, 1] range). The last step of the classification process took
into account that, according to expert criteria, every sleep-
waking state-stage had to last at least one minute [2]. A state
duration algorithm (SDA) was developed to ensure this
condition [6].

In order to compare the performance of the system with
a general classification method, a multi-layer perceptron
(MLP) neural network with 5 input nodes, a hidden layer
with 10 nodes and 5 output nodes was trained, using the
same training, validation and testing sets as for the NFC.

III . RESULTS

Ten simulations with the ANFIS based NFC were
performed and the test results were post-processed applying
the SDA algorithm. The average results for the training,
validation and test sets are summarized in table II. This table
also shows the results of classifying these sets using a MLP
neural network, and using the expert's rules of table I.

Only a few of the 32 rules survived after applying the
pruning algorithm, for each of the 5 possible outputs
(classes). As an example, the rules generated to classify
NREM-I with the results of one of the ten simulations will
be described in what follows. A similar analysis could be
performed for all the other output classes. Fig. 2 shows the
average contribution to the node output for the rules that
were not pruned. Table III shows the surviving rules (R1,
R2 and R3), with their respective fuzzy concepts associated
to each rule (absent or present). Only the examples classified
as NREM-I by the NFC were considered in the average
calculation.

TABLE II
PERFORMANCES OF THE IMPLEMENTED NFC, A MULTI LAYER
PERCEPTRON NEURAL NETWORK  (MLP) AND THE EXPERT’S

RULES
The results show the over-all classification performance on a frame by
frame basis except for the last column, which shows results on a one-

minute basis after applying the State Duration Algorithm (SDA).

Training Validation Test Test with
SDA

NFC 86.2 ± 0.1% 87.7 ± 0.2% 83.9 ± 0.4% 88.2± 0.5%

MLP 87.1 ± 0.7% 87.3 ± 0.4% 83.4 ± 0.6% 87.3 ± 0.9%

Expert's Rules 84.1% 87.2% 82.6% 86.7%

FIGURE 2. SYSTEM RULES FOR NREM-I
The average contribution of the surviving rules for NREM-I after pruning is
shown. To simplify the analysis, the rules have been grouped in pairs (R1,
R2 and R3), in accordance with their order of average contribution. The
only difference in each pair of rules is the fuzzy concept associated to the
MT input (presence or absence).

Table IV shows the system performance for classifying
NREM-I after eliminating one of the three rules. Finally,
Table V shows the relative activation frequency of rules R1,
R2 and R3, as a function of the sleep-waking state previous
to NREM-I. A rule was considered active when its
contribution to the output was above 0.2 (in the [0,1] range).

TABLE III
 FUZZY RULES GENERATED TO ASSESS STAGE NREM-I

The letters represent: A: absent, P: present, X: irrelevant. Absent and
Present  are fuzzy concepts defined by sigmoidal functions.

Fuzzy Rules Generated
Pattern

R1 R2 R3

 REMov A A A

 TH P A P

 SD A A P

 SS A A A

 MT X X X

TABLE IV
CLASSIFICATION PERFORMANCE DEGRADATION FOR STAGE
NREM-I WHEN ONE OF THE RULES (R1, R2, R3) IS SUPRESSED

NREM-I Stage Classification Performance

Supressed
Rule None R1 R2 R3

% of Correct
Classification

82.4% 19.7% 65.0% 76.8%

TABLE V
RELATIVE ACTIVATION FREQUENCY FOR RULES R1,R2 AND R3

IN NREM-I

 Previous State to NREM-I R1 R2 R3
 NREM 40.7% 70.0% 100%

 REM OR WA 59.3% 30.0% 0%



IV. DISCUSSION

The results of applying MLP and NFC (table II ) were
statisticall y non-different at a level of significance of 0.01 (t-
test), for all data sets (training, validation and test). Both
methods show an enhancement over applying the crisp
expert's rules of table I. The last column of table II shows
the results after applying the state duration algorithm, which
improved the classification percentages because it
eliminated isolated frames with different patterns. The same
partition of sets used in [6] was maintained in order to
perform meaningful comparations between NFC, the crisp
classifier and the MLP.

To evaluate the pruning algorithm, the results of the
NFC applied to the training, validation and test set with and
without pruning were compared, showing no statisticall y
significant differences.

Fig. 2 and Tables III and IV show that there is a
hierarchy among rules. R1 can be considered as the main
rule while R2 and R3 are complementary rules; their
combination made the system achieve a performance of over
80%. R1 matches exactly the expert’s rule for NREM-I
(table I). R2 and R3 are new discovered fuzzy rules.

Table V shows relative activation frequency for the
surviving rules as a function of the preceding sleep state. It
shows that R2 and R3 activate mainly within NREM sleep.
These results suggests that NREM-I sleep within NREM
may have different characteristics than NREM-I following
WA or REM state. The rules R2 and R3 may help to identify
this differences.

V. CONCLUSIONS

An ANFIS based neuro-fuzzy classifier with a pruning
algorithm was implemented and applied to the classification
of sleep–waking states-stages in infants, using the sleep
pattern detection system of [6] to generate the inputs.
Including artifacted pages, an average of 88.2% of expert
agreement was achieved for testing data. As a result of the
training process and pruning, rules and parameters that
defined a fuzzy classification system were also determined.
Analyzing the rules obtained for sleep stage NREM-I, it was
found that the main rule matched the expert rule to classify
NREM-I. Additional rules were discovered that complement
the classification and may provide additional information
about the characteristics of this sleep stage. This is a
promissory result, and further research is needed in this
topic.

Future work includes implementation of a clustering
algorithm to determine the initial parameters of the system,
training the system with a different objective function, such
as the max-type error function described in [8], and
evaluating the performance of different T-norms at layer 2

in Fig. 1. The development of a general methodology for
rule discovery and interpretation is also of interest.
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