OPTIMAL CONTROL APPLICATIONS & METHODS
Optim. Control Appl. Meth., 20, 283-296 (1999)

MINIMUM ENERGY TRAJECTORIES FOR
SUBWAY SYSTEMS

MANUEL A. DUARTE* AND PATRICIA X. SOTOMAYOR
Department of Electrical Engineering, University of Chile. Av. Tupper 2007, Casilla 412-3, Santiago, Chile

SUMMARY

The problem of determining the tunnel trajectory together with an optimal control policy of a train in
subway systems is addressed in this paper. The cost function chosen in this study is the total energy
consumed by a train in a round trip. Several constraints such as maximum velocity, maximum slopes,
maximum acceleration, maximum electrical force and so on, as well as a relatively simple model of the train
are considered. The solution is obtained by using the Gradient-Restoration method developed by Angelo
Miele et al. An application considering the kind of trains existing in the Santiago subway is presented and
the results are compared with the existing tunnel profile from an energy consumption viewpoint. Important
energy savings are obtained due to differences in proposed and existing tunnels, assuming that in both cases
the operation policy is the same (optimal for a given tunnel). Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Energy consumption in underground systems is quite significant and represents an important
part of the overall cost operation of electric railway systems. Thus, any attempt to improve
operation efficiency will result in important energy savings. The latter can be accomplished in two
different ways. Designing an optimal control policy (from an energy viewpoint) to operate trains
under certain conditions and for a given tunnel trajectory will result in an energy saving. This
type of solution is appropriate for existing underground systems which are not properly operated.
Several results on this subject have been reported in the literature.!™® All of them attempt to
optimize the operation of existing systems, that is to say systems with a given track. Adaptive
control techniques have also been explored to face this type of problem.” There is another
approach which consists in designing the tunnel trajectories simultaneously with generating an
optimal operation policy for trains. This kind of design can only be applied to proposed systems
since the cost of modifying actual tunnel trajectories could be prohibitive. To the knowledge of
the authors, there are no theoretical results regarding this approach. Hoang'® and Duarte!! use
an heuristic approach to determine suboptimal tunnel trajectories.

In this paper the problem of computing optimal tracks as well as drawing up a minimum
energy policy for electric railways is addressed using numerical techniques rather than an
heuristic approach. The problem can be considered as a double optimization with respect to
control policy as well as train track.
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No electric regeneration is considered during braking periods so that optimization is per-
formed from the starting point until the point at which the train starts braking.

A second-order, non-linear model is considered in the study together with several operational
constraints. Particular values of parameters and special considerations regarding the type of
rolling material and topology of Line No 1 (Escuela Militar—San Pablo) of the Santiago subway
are used in the application shown in this paper.

2. TRAIN MODELLING

In this section, the equations describing the motion of the train are presented. The main
simplificatory hypotheses are briefly stated to justify the rather simple train model utilized in this
study. As a consequence, a non-linear, lumped-parameter dynamical model is obtained. Since the
problem constraints treated in the next section are better expressed in term of the horizontal
displacement ‘L’ rather than time ‘t’, we will state the model equations in terms of ‘L’ as
independent variable, eventhough the resulting equations are more complex than those obtained
using the time as independent variable.

In what follows, it has been assumed that tunnel trajectory lies on the equivalent vertical plane
as shown in Figure 1. This simplification allows to analyse the problem in two rather than three
dimensions. Thus, train position is completely defined at every instant of time by horizontal
displacement (distance) L(t) and vertical displacement (height) h(t).

From physical considerations*-3-1%12 we can write the following equations describing the train
movement:

do/dL = 1/ {30 — [y + kso2] — ks sin(0)}
di /AL = 1/v,
ho(L) = f “L0MDT AL, h0) =0 W)

0
duy/dL = 1/v,{py — [ky + kavi] — k3 sin(0,)}
de,/dL = 1/v,

L

(L) = Iy + J (GLOMLY AL, hy(0) = g

0

HEIGHT

HORIZONTAL OISTANCE

BOTTOM VIEW VERTICAL PROJECTION

Figure 1. Tunnel profile in bottom and equivalent vertical planes
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The subindex ‘a’ denotes the variable when the train is travelling from stations A to B, measured
from station A, whereas the subindex ‘b’ denotes the variable when train travels from stations B to
A, measured from station B (see Figure 2). A distinction between these two sets of variables has to
be made since our aim will be to minimize the round trip energy consumption (from stations A to
B and from stations B to A) and therefore we have to consider both cases in a different way. The
variables are defined as follows:

hpa level difference of station B with respect to station A

vertical displacement of train (height) measured from station A

train velocity

time elapsed

tractive force per unit of effective mass, delivered by the electric system
slope angle of tunnel trajectory (track’s slope)

horizontal displacement of train (distance) from starting station

o=~ e =

ky characteristic constant to include friction effects between wheels and track, and other
mechanical frictions

k, characteristic constant to account for air resistance effects

ks characteristic constant to include gravitational effects

Some of the model variables are shown in Figure 2 where train is represented by a mass ‘m’ at
position (L, h(L)) at certain instant of time.

In the set of equations (1) amongst others, the following simplifications have been introduced.

(1) The train velocity is such that friction effects proportional to velocity are negligible.
(i) The slope angle of track is small so that tg(0) ~ 0, sin(0) ~ 0 and cos(0) ~ 1 is verified.
(iii) Train mass ‘M’ is assumed to be concentrated and the concept of effective mass ‘m’ rather
than the actual mass of train is used* to include inertial effects and train length. This
effective mass is assumed to be constant.
(iv) Parameters ky, k, and k5 are assumed to be constant.

However the simple resulting model contains the main ingredients of real process and it is
representative of the physical situation.

3. PROBLEM CONSTRAINTS

This section is devoted to constraint analyses. These constraints are present in the actual

operation of any subway. The numerical values chosen in this work correspond to the case of
Santiago subway.

The constraints to be taken in to account are listed below and a brief explanation is given in
each case.
3.1. Maximum velocity

Since traction motors can deliver only a nominal electric power to the mechanical system, the
maximum mechanical force reachable from electric system is limited. This fact, together with the
physical consideration that train velocity cannot be negative, gives rise to the constraint

0 <L) < Vm(L), Le[0, L] )

Copyright © 1999 John Wiley & Sons, Ltd. Optim. Control Appl. Meth., 20, 283-296 (1999)
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Figure 2. Variable definitions for train model

where V(L) denotes the maximum velocity at distance L, and L; is the point at which train starts
braking (see Figure 2). In general, this maximum velocity is a function of L to include speed limit
zones. In this study we will choose Vy = 16 (ms~ ') constant along the whole trajectory.

3.2. Maximum and minimum acceleration

From passenger comfort viewpoint, acceleration is not allowed to exceed certain limits either
during tractive period or during train braking. These limits depend upon the kind of wheels and
type of track. This consideration is taken in to account as

la(L)] < Aw, Le[0, Ly] 3)

where Ay is the maximum value of acceleration (or deceleration) allowed during braking and
traction periods and Ly is the total horizontal distance between two stations (see Figure 2). In our
study, since we are not considering the braking period, it can be shown that maximum deceler-
ation due to only gravity and friction effects is —0-67 (ms~?)!? and therefore the constraint is
written as a(L) < AyL € [0, L¢]. Taking into consideration that Santiago subway has rubber tires
rolling on a special track the value 4y was taken as 1-2 (ms ™ ?).

3.3. Maximum and minimum tractive force

As was already stated, propulsion system can only supply a certain maximum power. This fact
in turn implies that the tractive force per unit of effective mass generated is constrained as follows:

1—‘m < V(L) < FMs Le [0’ Lf]

where I,y 'y are the minimum and maximum forces delivered by the propulsion system,
respectively.

Since in this case no electric regeneration is being considered I';,, = 0 and only positive values of
(L) are allowed. From previous studies® it can be shown that this constraint on y(L) is a passive
constraint and therefore we will only consider

(L) =0, Le[0, L] 4

3.4. Maximum and minimum track’s slope

The range in which the track slope is allowed to lay is determined by technical considerations
such as wheel slip, water drainage and safe parking at stations, amongst others. From this
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consideration we write the constraint
|O(L)] < Om, Lel[0, L] 5

where 0y is the maximum allowed slope. In this work we consider that slope in station vicinity is
given by 0. Then we can write

g _ J0. T0<L<L
M™0,, if L, <L <L

where L. is chosen as half of the train length, which in the case of Santiago subway is L, = 70 m
(see Figure 7). In this study 6, = 0-002 and 6, = 0-06 were considered.

Equations (2)-(5) form the set of constraints to be considered in the solution of the problem.
This set of constraints can be rewritten as’?

v(L)Vy — v3(L) > 0,
[Am — v(L)dv/dL] =0
(L) =0,

[Om + O(L)1[0n — O(L) = 0

3.5. Boundary conditions

Besides the previous set of constraints, we shall consider the following boundary and initial
conditions:

(1) to = 0; initial time.

(2) t; = Ty; final time given from traffic considerations and Ty = T — Ty, where Ty is the
total time between stations and T’ is the braking time (time needed to bring train velocity
to zero).

(3) v4(ty) = vy(ty) = 0; initial velocity.

(4) v(t;) = vy(t;) = V; final velocity given from braking considerations. It is assumed that if
train reaches Ly at time t; with speed Vg there exists a suitable braking system to bring train
velocity to zero. Since in this study regeneration phenomenon is not considered, braking
system is of secondary importance.

(5) h,(0) = 0; initial height at station A.

(6) hy(0) = hyup, initial height at station B.

(7) O,L) — 0,(Ly — L) =0 for Le[Lg, L¢] where Lq is the braking distance (see Figure 2). This
constraint arises since track joining stations A and B is unique.

4. PROBLEM STATEMENT

In this section we will clearly state the optimization problem including all the constraints
mentioned in the above section and the criterion function.

As was previously indicated, our aim is to find an optimal control policy applied to the train as
well as an optimal track, such that the energy consumption for a round trip between two
consecutive stations is minimized. This problem can be seen as a double optimization problem.
Let E(u, o) be the energy consumption for a round trip between two consecutive stations joined by

Copyright © 1999 John Wiley & Sons, Ltd. Optim. Control Appl. Meth., 20, 283-296 (1999)
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a trajectory ‘o’ and using a control policy ‘«’. The problem is to find u* and ¢* such that
E(u*, 0*) = E* is minimum, i.e.

E* = min E(u, )

u, o

The performance criterion in this case is defined as the energy consumption for a round trip from
stations A to B and from stations B to A. This gives the following criterion function

I= r {ka[02(L) + v3(L)] + k3[0u(L) + 04(L)]} AL (7)

where some constant terms depending upon final and initial conditions have been excluded.

In order to take into account inequality constraints (6) auxiliary control variables (uy(L), ug(L),
u,(L), us(L)) and auxiliary state variables (y,(L)) are introduced"? so that the following equality
constraints are obtained:

[0y + O(L)]1[0n — O(L))] — ug(L) =0
dy(L)/dL = u,(L)
[Vm — 2u(L)] do(L)/dL — 2y (L)u,(L) = 0 @®)
Ay — o(L) do(L)/dL — u3(L) = 0
L) —uf(L) =0

The new state variable introduced is y,(L) and the new control variables introduced are uy(L),
u,(L), us(L) and ug(L). These variables have to be added to the original variables of the problem.

These new equations have to be included twice to consider the case when train is travelling
from stations A to B and also when it is travelling from stations B to A.

In summary, the following definition of state and control variables is used in the optimization
problem:

State variables Control variables

yl(L) =1, ul(L) =Ya M7(L) = Uvq

yaL) =ty uy(L) =7 ug(L) = uy

ya(L) = v, uz(L) =0, ug(L) = up,

ya(L) = v, ug(L) = 0, uyo(L) = upp
Ys(L) = Yva us(L) = upq up1(L) = up,
Ve(L) = yw ug(L) = ugp uio(L) = ugy

The state and control vectors are now denoted as y(L)=[yy(L),..., ye(L)]"eR® and

u(L) = [uy(L), ..., uo(L)] e R
The problem is now stated as to ‘Minimize cost function (7) subject to constraints (1) and (8)
under initial, final and boundary conditions given in Section 3.5’.

5. METHOD OF SOLUTION

In this section a brief general explanation of the numerical method used to solve the problem
stated in Section 4 is given. The method chosen to solve the optimization problem stated in the
previous section is due to Miele et al.!31%22 and is called gradient-restoration method. This
numerical optimization algorithm consists of two clearly distinguishable steps. The first step,
called restoration phase (R), takes the so-called nominal functions and applies them to satisfy the

Copyright © 1999 John Wiley & Sons, Ltd. Optim. Control Appl. Meth., 20, 283-296 (1999)
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Figure 3. Geometric interpretation of Gradient-Restoration method

problem constraints (equations (1) and (8) in our case). At the beginning (point A in Figure 3), the
nominal functions are given (y,;(L) and u,;(L) in Figure 3) and at any intermediate point these are
defined as those from the previous iteration. Restoration phase involves one or more iterations
until a scalar performance index P, which measures the error in constraints conditions, is
sufficiently small (in Figure 3, three iterations are needed to bring the system from A to B and
these are denoted by Ry, R, and R3). As soon as this condition is satisfied, the second step, called
gradient phase (G), is started. It consists of one iteration and it is designed to decrease the value of
the cost function (equation (7) in our case). This phase is characterized by a scalar performance
index Q which measures the error in optimality conditions. In Figure 3, first gradient phase brings
the system from B to C and it is denoted by G,. The method alternates restoration and gradient
phases so that in one of these cycles (R + G) the functional I is decreased, while problem
constraints are satisfied to some pre-specified accuracy. The algorithm is stopped whenever
indexes P and Q are simultaneously sufficiently small.

A flow diagram of the gradient restoration method is shown in Figure 4.

This algorithm was implemented in FORTRAN in an IBM 4361 computer. A block diagram of
the main program and the corresponding subroutines is shown in Figure 5.

Each subroutine performs the following tasks:

FNOM  generates initial nominal functions!>-*7-18
REST performs one restoration phase!>18
GRAD performs one gradient phase!>:18

CALI computes perform index I from (7)

CALQ computes index Q for optimal conditions!®
CALP computes index P for constraints'®

LTPBVP solves the linear two point boundary value problem (LTPBVP) generated'® ~ 2!

CALALF computes o* which minimizes augmented functional J'413

COEF computes coefficients Hj, and F;'*1°

INTERP interpolates the 51 points to get an analytical expression forcoefficients as a function
of ‘L’1?

SET computes a particular solution of LTPBVP!®

EVSFI computes vectors S and ®*°

EVDER  computes matrices S,, S,, ®, and @, containing partial derivative'>

FCN defines functions in LTPBVP to be used by subroutine DVERK (IMSL Library).

Copyright © 1999 John Wiley & Sons, Ltd. Optim. Control Appl. Meth., 20, 283-296 (1999)
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Figure 4. Flow diagram of Gradient-Restoration method
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Figure 5. Block diagram of Gradient-Restoration program
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The average execution time of the computational program used in solving one pair of stations
was about 10 min.

6. SIMULATION RESULTS

The problem stated in Section 4 was solved using the algorithm presented in Section 5. For this
simulation the following numerical values of the parameter and constraints values were used

ky =01036 ms~ 2, Ay =12ms 2 0. = 0-002 rad
k, =1-:065x 10"+ Kgs*m ™! Vy=16ms !, 6,, = 0-06 rad
ky = 8928 ms™ 2, L, =70m, M = 1-847 x 10° Kg
g=98ms ? Ly=140m m=2027x10°Kg

These values correspond to the type of rolling material used in the Santiago subway trains.
Topology in the equivalent vertical plane corresponding to Stations of Line No. 1 (Escuela
Militar—San Pablo) of Santiago subway was chosen in the study. Actual and computationally
obtained trajectories were compared.

Five car trains were used in the study whose composition is three tractive, one pilot and one
trailer cars. For simulations, the interval of integration was divided into 50 steps and double
precision arithmetic was used.

The energy consumption for actual and optimal tracks are shown in Table I. An average energy
saving of 18% per train is reached if a whole round trip is considered. This energy saving is
obtained comparing the actual Line No. 1 track profile using an optimal control policy generated
by the computer program, versus the computationally obtained ideal track together with an
optimal control policy, both generated by the computer program (solution of the double
optimization problem.

A typical result between two pairs of station is shown in Figure 6. Velocity and height as
functions of horizontal distance ‘L’ are shown for both actual and ideal cases.

This case corresponds to La Moneda— Universidad de Chile stations (TR12) and has the
following characteristics:

Lr=458m, T;=35s
Li=318m, hga=—111lm

From Table I it is possible to distinguish some extreme cases, which are commented in what
follows.

(1) Maximum energy consumption: This situation occurs for stations denoted a TR2 (Nep-
tuno-Pajaritos) where energy consumption is 22-6 and 19-30 KWH for actual and proposed
tunnel profiles, respectively. The distance between stations in this case is the largest of
the whole circuit of Line No. 1 (Ly =990m) and the ratio hga/Ly is the shortest
(hga/Lt = 0-00158).

(2) Minimum energy consumption: This case corresponds to stations denoted as TR12 (La
Moneda-Universidad de Chile) and energy consumption are 9-80 and 6:77 KWH for actual
and proposed trajectories, respectively. This situation corresponds to the shortest distance
between stations in the whole Line No. 1 circuit (Lt = 458 m) and it has the less level
difference between stations (hgp = —1-11 m) in the circuit.

Copyright © 1999 John Wiley & Sons, Ltd. Optim. Control Appl. Meth., 20, 283-296 (1999)
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Table I. Energy consumption for Line No. 1 using actual and proposed tunnel profiles

Stations Actual trajectory Optimal trajectory Energy saving

Energy Energy Total Energy Energy Total

from A to B from B to A energy from A to B from B to A energy

(KWH) (KWH) (KWH) (KWH) (KWH) (KWH) (KWH) (%)
TR1 683 10-10 1690 553 862 14-20 2-76 16-31
TR2 12-10 10-60 22:60 10-60 878 19-30 329 14-54
TR3 11-60 10-40 22-00 10-10 8:69 18-80 3-24 1471
TR4 9-96 7-19 17-10 835 567 14-00 312 1822
TRS 10-60 671 17-30 8-87 522 14-10 318 18-39
TR6 866 567 14-30 732 4-45 11-80 2:56 17-87
TR7 9-52 7-44 17-00 824 5-86 14-10 2-87 1691
TRS 933 393 13-30 773 3-05 10-80 2-47 18:66
TRY 10-70 509 15-80 9-08 3-80 12-90 2-94 18-60
TR10 849 549 14-00 7:03 423 11-30 2:72 19-48
TR11 970 4-13 13-80 816 304 11-20 2-64 19-07
TR12 4-29 551 9-80 2-85 391 677 304 3097
TR13 11-20 2:43 13-60 9-31 1-94 11-20 2-34 17-24
TR14 918 4-97 14-10 7-87 3-89 11-80 2-39 16-89
TR15 9-41 472 14-10 804 3:66 11-70 2:43 1722
TR16 16:50 527 2170 14-:00 422 18-20 352 1621
TR17 11-10 6-39 17-50 9-29 491 14-20 327 1873
TR18 11-60 554 17-10 9-66 426 13-90 320 18:67
TR19 10-90 4-48 15-40 9-21 347 12-70 2:69 17-51
TR20 12-00 3-86 15-80 9-98 2:79 12-80 3-08 19-43
TR21 11-50 371 1520 972 291 12-60 2-56 16-84
TR22 10-80 4-64 15-50 9-16 347 12-60 2:86 1845
TR23 12:30 343 1570 10-10 2-54 12-60 311 19-79
Total 370 303 6630 17-93

(Average)

(3) Maximum energy saving: This fact is observed for stations denoted as TR16 (Baquedano-
Salvador) and energy saving for round trip is 3-52 KWH. The stations here are such that
level difference is the largest in the whole Line No. 1 (hgy = 12:6 m).

(4) Minimum energy saving: This particular case arises between stations denoted as TR13
(Universidad de Chile - Santa Lucia) and the energy saving is of 2:34 KWH. These stations
are characterized by the largest ratio hga/Ly of the whole circuit (hgs/Lt = 0-0236).

(5) Maximum percent energy saving: This situation occurs for the case indicated in (2) where
the minimum energy consumption was experimented.

(6) Minimum percent energy saving: This case corresponds to that mentioned in (1) where the
maximum energy consumption was observed.

7. CONCLUSIONS

A general methodology to simultaneously generate optimal track as well as optimal control
policy for electric railways has been proposed in the paper. This methodology can be used to
study in a reliable fashion problems of the type presented here, either at the planning stages of
a new metro line or optimizing the operation of existing metro lines. The methodology is

Copyright © 1999 John Wiley & Sons, Ltd. Optim. Control Appl. Meth., 20, 283-296 (1999)
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sufficiently general to include modifications on the train model (e.g. to include electric regenera-
tion during braking periods and other effects) as well as modifications on the numerical method
employed to solve the optimization problem, in order to use more proper and efficient numerical
methods to solve specific parts of the algorithm.

As a result of applying this methodology to the case of Line No 1 of Santiago subway, an average
energy saving of 18% is obtained for each train traveling a round trip between extreme stations
(about 25 km). Considering traffic conditions of Line No 1 for years 1989 and 1990, it can be
concluded that an energy saving of 4-5 GWh can be achieved yearly (About US$ 200-000 per year).
From data obtained for later years, these savings are bigger since more trips have been scheduled
for the trains and a larger number of trains have been used to satisfy passengers’ demands.

In the analysis done in this work, the extra cost of building the optimal track has not been
considered in the comparison of actual and proposed trajectories. To make the comparison fair
enough, an exhaustive economic analysis which includes this factor should be done before
considering the possibility of designing optimal tracks using this methodology.
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