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In this paper the problem of nonlinear feature extraction based on the optimization of the
Fisher criterion is analyzed. A new nonlinear feature extraction method is proposed. The15
method does not make use of numerical algorithms and it has an analytical (closed-form)
solution. Moreover, no assumptions on the class probability distribution functions are17
imposed. The proposed method is applied to some standard pattern recognition problems
and compared with other classical methodologies already proposed in the literature. The19
performance of the proposed method turned out to be superior when compared with the
other methods studied.21
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1. Introduction

Advances in computation have made possible to handle large amount of data to25

solve numerous problems in several engineering areas that not so long ago seemed
untractable. Pattern recognition and data mining are some of the fields benefited27

by these developments. Currently it is common to find pattern recognition applica-
tions involving feature vectors of large dimension.8,22 It is also known that feature29

vectors of large dimension cause training troubles in classification algorithms such
as the “dimensionality coarse”3,21 and overtraining, affecting directly the classifier31

generalization capacity.
One alternative to face this dimension problem is to use feature extraction33

techniques. These techniques generate new variables of lower dimension maintain-
ing the discrimination power of the original data. Feature extraction has been the35

object of several studies resulting in numerous algorithms and methods of feature
extraction.19,29,34 The most popular, due to their simplicity and robustness, are37
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Principal Component Analysis (PCA) and Fisher Transformation (FT) or Fisher1

Discriminant Analysis (FDA). Both methods extract the features through a linear
projection of the original data but optimizing different criteria. FDA generates new3

feature vectors preserving the discrimination power of the original data and drasti-
cally diminishing their dimension, but losing other kind of information contained in5

the data (e.g. physical meaning, redundancy, brightness, etc.). PCA instead looks
for the best representation of high dimension data, in the mean square sense, in7

a subspace of lower dimension. Another difference is that FDA is a supervised
method, i.e. uses information about the class where each training pattern belongs,9

whereas PCA is a nonsupervised method.2,14

Since the proposed method will be based on the Fisher criterion, in what follows11

we will present a brief historical background of Fisher developments. In 1937 Fisher
introduced FDA for two class problems.10,11 This procedure allows to find a data13

projection where the quotient between the distance of the projected class means
(inter-class distance) and the sum of the projected class scatter around the projected15

class means, (intra-class distance) is minimized. Rao30 generalized this procedure
to the case of C classes based on the data projection onto a C-1 space, through a17

matrix. Among the advantages of Rao’s procedure is the obtainment of an analytical
solution solving an eigenvalue–eigenvector problem.19

Forty years later, Campell6 proved that FDA solution is equivalent to the
solution obtained by using the maximum a posteriori (MAP) rule for the case21

when classes have normal distributions with equal covariance matrices. In 1990
Fukunaga14 presented an extensive study about the properties of Fisher criterion23

(base of FDA for C classes) and proposed several alternative criteria. Later, in
1996, the generalization of FDA was attempted through numerical methods15,1725

and also using the maximum expectation algorithm.16,18 Three years later, in 1999,
Mika25 proposed a nonlinear extension of FDA for two-class problems, using the27

same ideas used by Scholkopf to generalize PCA.31 This method is known as kernel
Fisher (KFDA). Several improvements have been proposed to the training algo-29

rithms of this method.24,26 Later, Baudat1 published the first attempt to solve
KFDA for C classes, but it was only in 2002 when Navarrete et al.27 solved the31

multiclass KFDA.
Feature extraction methods based on transformations of the input samples (mea-33

surements) produce a new set of features in the transformed space that can exhibit
high “information packing” properties compared with the original input samples.35

The basic reasoning behind transform-based features is that appropriately chosen
transformation can exploit discrimination and remove redundancies, which usu-37

ally exist in a set of samples obtained by measuring devices.34 A certain degree
of class separation can be achieved in the domain of transformed features when39

linear transformations are used, which might be enough for certain type of clas-
sification problems. However, there are some pattern recognition problems where41

classes are quite inbred and using linear transformations is not enough to get good
classification results. In these cases nonlinear transformations of original samples
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are called for in order to improve class separation properties. Another important1

fact supporting nonlinear FDA is that FDA does not work properly when class
means are different or when the information for classification purposes lies on data3

variance rather than in the mean. It is important to point out that there exist
others approaches for nonlinear feature extraction not based on Fisher criterion;5

e.g. the one proposed by Zhang on polygonal principal curves39 or those based on
neural networks.347

In this paper the optimization of the Fisher criterion in a space nonlinearly
related to the original data is studied. In Sec. 2 the problem is solved using calculus9

of variations finding an analytical solution that needs the knowledge of a posteriori
probability density that a vector (pattern)X belongs to each class. Since probability11

densities are in general unknown, the solution is then restricted to transformation
that can be written as a linear combination of basis functions, finding a closed-form13

solution. A procedure is presented in Sec. 3 associated with the proposed solution to
substantially diminish the computational load. In Sec. 4, the classification behavior15

of the combination of three feature extraction methods (no feature extraction, FDA
and quadratic FDA) together with a classifier based on Linear Discriminant Analy-17

sis (LDA), will be compared. Six experiments will be performed using six standard
data sets encountered in pattern recognition literature.4 In order to compare the19

behavior of the feature extraction methods, the classification error using LDA34 as
classifier is computed. LDA was chosen because it is the simplest statistical clas-21

sifier able to generate only linear decision boundaries, and therefore the effect of
the feature extraction methods will be highlighted in the classification rate of the23

system. In all cases, the use of the proposed feature extraction method significantly
improved classification rates.25

2. Non Linear Fisher Transformation

In this section a new approach to Fisher criterion optimization is presented. This27

approach, based on calculus of variations9, does not restrict the feature extraction
function to a linear transformation, case solved by Fisher10,11 and Rao30 in the29

thirties and forties respectively.

2.1. Optimization of Fisher criterion in function spaces31

Let £2 be the space of functions defined on �n → �m, having continuous partial
derivatives of order 1 and 2. Our objective is to find a function Z(X) ∈ £2 (with Z ∈33

�m and X ∈ �n), such that the Fisher index evaluated in the space generated by
Z(X) is maximum. For notation purposes the symbol ∼ over the original variables35

will be used to denote variables in the transformed space. The Fisher index in the
transformed space will be given by37

J = tr{S̃−1
w S̃b} (2.1)
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where1

S̃w =
C∑

i=1

P (wi)Σ̃i (2.2)

S̃b =
C∑

i=1

P (wi)(µ̃i − µ̃0)(µ̃i − µ̃0)T (2.3)
3

µ̃i =
∫ ∞

−∞
Z(X)p(X/wi)dX, µ̃0 =

∫ ∞

−∞
Z(X)p(X)dX (2.4)

Σ̃i =
∫ ∞

−∞
Z(X)Z(X)Tp(X/wi)dX (2.5)

5

S̃w ∈ �m×m is the within-class scatter matrix, Σ̃i ∈ �mm is the covariance matrix
for class wi, P (wi) is a priori probability of class wi, S̃b ∈ �m×m is the between-7

class scatter matrix, µ̃i ∈ �m is the mean of class wi, µ̃0 ∈ �m is the global mean
vector and p(X/wi) is the conditional density. C is the number of classes.9

It is possible to prove (see Appendix A) that the function Z(X) that optimizes
criterion (2.1) satisfies the following relationship11

2
∂J

∂S̃w

Z(X) = −
C∑

i=1

[
p̂(X/wi)

∂J ′

∂µ̃i

]
(2.6)

From (2.6) it is observed that Z(X) explicitly depends on a posteriori probability13

density functions p̂(X/wi) defining the probability of X belonging to each class in
the Bayes sense.15

However, this result is not applicable to real pattern recognition problems since
the form and parameters of p̂(X/wi) are unknown. Even if p̂(X/wi) were explicitly17

known, we would need numerical methods to solve (2.6) due to the dependence of
Z(X) on matrices ∂J/∂S̃w and ∂J/∂µ̃i. Moreover, in the case of known there would19

be no necessity of feature extraction since classification would be done directly using
the Bayes rule, assuring minimum error probability in the classification process.21

2.2. Constrained solution to NLFT problem

In this section we present a methodology for a nonlinear extension of the Fisher23

transformation. To this extent we restrict the class of functions Z(X) to be consid-
ered in the solution of (2.1) to those that can be written as a linear combination of25

K functions {ϕi(X)}K
i=1 with ϕi(X) : �n → �, i.e.

Z(X) =



Z1(X)

Z2(X)
·
·

Zm(X)


 =




∑K
i=1 α

i
1ϕi(X)∑K

i=1 α
i
2ϕ2(X)
·
·∑K

i=1 α
i
mϕi(X)


 ∈ R

m (2.7)

27
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or equivalently1

Z(X) = ΩT Φ(X) (2.8)

where3

ΩT =



α1

1 α2
1 · · · αK

1

α1
2 α2

2 · · · αK
2

· · · · · · · · · · · ·
α1

m α2
m · · · αK

m


 Φ(X) =




ϕ1(X)

ϕ2(X)

·
·

ϕK(X)


 ∈ �K (2.9)

Vector Φ(X) ∈ �K is a vector function whose components ϕi(X) are nonlinear5

scalar functions of the elements of the original feature space X . Matrix Ω ∈ �K×m

contains the parameters of the transformation.7

The idea of using functions of the form (2.8) to find nonlinear solutions to Fisher
criterion is not new. This idea has been successfully used in the kernel Fisher fea-9

ture extraction.27,36 However, in those works function Φ(X) is introduced with the
argument that data separation in the space generated by the nonlinear transforma-11

tion will be improved. The latter is based on the fact that we are implicitly using
high order correlations in the original space.713

In the present work a second interpretation will be given to function Φ(X),
where each component corresponds to a basis function. Thus, each component of15

the optimal solution of the Fisher criterion in £2 is approximated by these basis
functions.17

It can be proved (see Appendix B) that matrix Ω ∈ �K×m optimizing the Fisher
criterion satisfies the following relationship19

(S−1
w Sb)(ΩB) = (ΩB)∆ (2.10)

where B is defined in (B.19). Equation (2.10) shows that the elements of matrix ∆21

and the columns of matrix ΩB correspond to the firstm eigenvalues and eigenvectors
respectively of matrix S−1

w Sb.23

Since matrix Sb is the sum of C independent matrices of rank 1, C − 1 of which
are independent, then Sb is at most of rank C − 1.14 Thus, matrix S−1

w Sb has at25

most rank C − 1, where C is the number of classes. Therefore matrix S−1
w Sb has

C − 1 nonzero eigenvalues. Based on this and considering (2.10) we can determine27

the dimension of the transformed space, we rewrite J using the fact that the trace
of a matrix is equal to the sum of the eigenvalues, i.e.29

J = tr{S−1
w Sb} =

C−1∑
i=1

λi︸ ︷︷ ︸
�=0

+
K∑

j=C

λj

︸ ︷︷ ︸
=0

(2.11)
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From (B.20) and (B.21) we have1

J = tr{BS′−1
w S′

bB
−1} = tr{S′−1

w S′
b} =

C−1∑
i=1

λi︸ ︷︷ ︸
�=0

+
K∑

j=C

λj

︸ ︷︷ ︸
=0

(2.12)

Then if we choose m = C − 1, the value of J in the space Φ(X) of dimension K3

is the same to that obtained using the minimum number of dimensions (i.e. without
zero eigenvalues).5

2.3. Relationship between the general and constrained

solution of NLFT problem7

In Sec. 2.1 we solved the problem

Z∗(X) = max
Z∈C2

{J(Z(X))} (2.13)9

over all Z(X) ∈ C2. However, the solution depends explicitly on a posteriori prob-
ability density of each class. To avoid this difficulty in Sec. 2.2 we restrict the11

solutions to functions Z(X) whose components Zi(X) can be expressed as

Zi(X) =
K∑

j=1

αj
iϕj(X) (2.14)

13

where {ϕj(X)}K
j=1 is a set of basis functions each one defined on �n → �.

Thus, (2.13) can be written as15

Z∗(X) = max
Z∈C2

{J(Z(X))}

subject to
Z(X) = ΩT Φ(X)

(2.15)

Clearly for Φ(X) fixed, (2.15) is equivalent to17

Z∗(X) = max
Ω

{J(ΩT Φ(X))} (2.16)

which is a parametric optimization problem.19

The solution obtained applying this constraint to calculus of variations problems
is known as Ritz approximation13 and was proposed in 1908 by Ritz based on21

the previous work by Lord Rayleigh. The main property of the solution using the
Ritz approximation is that the ith component of the solution corresponds to the23

projection of the ith component of the general solution into the space generated
by the basis functions {ϕi(X)}K

i=1.
23 Based on this property, it is clear that what25

we are doing by considering nonlinear extensions of the Fisher transformation,
employing non linear transformations of data of the form (2.14), is approximating
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the general solution (2.6), through a linear combination of the functions defining the1

transformation. That is to say, the coefficients maximizing the Fisher index satisfy

Ω = R−1
ϕϕRϕZ (2.17)3

where Rϕϕ corresponds to the auto-correlation matrix of functions ϕi(X) and RϕZ

is the cross-correlation matrix between ϕi(X) and Z∗
i (X) where Z∗

i (X) corresponds5

to the ith component of the general solution problem.

3. Nonlinear Fisher Transformation in High Dimensional Spaces7

In general the scatter matrices are of high dimension. In image processing, there
exist some techniques to face the matrix inversion problem of Sw and to handle9

the number of computations associated to these matrices.7 Almost all of them are
based on a procedure that combines PCA and LDA.2 Basically these procedures11

consider projection matrices of the form

A = ALDA · APCA (3.1)13

PCA is used to project the original data onto a subspace with the aim of decreasing
the pattern dimension and where matrix Sw is nonsingular, so that the computation15

of eigenvectors of S−1
w Sb can be easily done. Although these techniques allow

obtaining a solution, in the first projection performed by PCA some directions17

of the originals space, containing relevant information for classification purposes,
can be disregarded. In fact, Chen in 2000 proved that the null subspace of Sw19

contains the information with the most discriminatory power.7 Then by using PCA
and getting a nonsingular Sw in the projected space, we are eliminating the null21

subspace of Sw in the original space and therefore this type of algorithm is not
optimal.23

Hua Yu and Jie Yang38 proposed a different solution known as Direct LDA that
does not eliminate the null space of Sw and that will be used in the NLFT context25

as a tool to diminish the amount of computations. This method is called Inverse
Simultaneous Diagonalization (ISD) and it is explained in Sec. 3.1.27

3.1. Inverse simultaneous diagonalization

The main idea is to use the property that the matrix whose columns are the eigen-29

vectors of S−1
w Sb is the same that allows the simultaneous diagonalization of Sw

and Sb, i.e. if we find a matrix A such that31

ATSwA = D (3.2)

and33

ATSbA = I (3.3)

with D a diagonal matrix, then A is the matrix formed by the eigenvectors of35

S−1
w Sb. Next we present the procedure to find the transformation matrix A without

inverting matrix Sw.37
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(1) Diagonalization of Sb:1

To find a matrix V ∈ �n×n such that

V TSbV = ∆ (3.4)3

where V TV = I and ∆ is a diagonal matrix whose elements are ordered in
decreasing order. Matrix V can be found using eigenvalue–eigenvector compu-5

tation, i.e. V is formed by the eigenvectors of Sb and ∆ contains the eigenvalues
of Sb on its diagonal. Since Sb can be singular some of the eigenvalues can be7

zero. It is necessary to eliminate these zero eigenvalues and the corresponding
eigenvectors since the scatter between classes along these directions are zero,9

and contain no discrimination power. Since the range of Sb is C − 1, where C
is the number of classes, then there exist C − 1 nonzero eigenvalues.11

Let Y be the C − 1 first columns of V , (Y ∈ �n×(C−1)) then we can write

Y TSbY = Db > 0 (3.5)13

where Db corresponds to the main submatrix of (C − 1) × (C − 1) of matrix
∆ and it is a positive definite diagonal matrix, without zero elements on its15

diagonal.
(2) Let Z be defined as Z = Y D

1/2
b with Z ∈ �n×(C−1). Clearly17

(Y D1/2
b )TSb(Y D

1/2
b ) = I(C−1) ⇒ ZT Sb Z = I(C−1) (3.6)

Matrix Z diagonalizes Sb and reduces its dimension from n × n to19

(C − 1) × (C − 1).
(3) Diagonalization of ZT Sw Z.21

To find a matrix U ∈ �(C−1)×(C−1)such that

UTZTSwZU = Dw (3.7)23

with UTU = 1. Again it is possible to find Dw ∈ �(C−1)×(C−1) and U through
an eigenvalue eigenvector analysis of matrix ZTSwZ. Notice that Dw can con-25

tain zero elements on its diagonal.
Matrix Z diagonalizes Sb and reduces its dimension from n × n to27

(C − 1) × (C − 1).
(4) Let A be defined as A = UTZT , with A ∈ R(C−1)×n. Then matrix A simulta-29

neously diagonalizes Sb and Sw and reduces its dimension to (C − 1). A corre-
sponds to the matrix formed by the eigenvectors associated with the (C − 1)31

nonzero eigenvalues of S−1
w Sb, i.e. the solution for the linear optimization of

Fisher criterion.33

3.2. Analysis of eigenvalues–eigenvectors in high

dimensional spaces35

As shown in Sec. 3.1, using ISD it is possible to compute the matrix transformation
even in the case when Sb is not invertible. Although simultaneous inverse diagonal-37

ization reduce computations as compared with the traditional approach, in the first
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stage it is necessary to perform an eigenvalue–eigenvector analysis of the between-1

class scatter matrix Sb, which can be of a very high dimension. This analysis has to
be explicitly done in the space generated by Φ(X), to explicitly compute the non-3

linear transformation Φ(X). Thus we can use the structure of the scatter matrices
to reduce the amount of computations of the eigenvalue–eigenvector analysis.5

To this extent we will use the method stated by Fukunaga in Ref. 14, by Kirby
and Sirovich in Ref. 20 and by Turk and Penland in Ref. 35, to efficiently compute7

the eigenvalues and eigenvectors of matrices Sb and ZTSb Z. The method exploits
the fact that scatter matrices can be expressed as the product of a matrix and its9

transpose, i.e.

Sb =
C∑

i=1

P (wi)(µi − µ0)(µi − µ0)T = ΨbΨT
b (3.8)

11

with

Ψb = [
√
P (w1)(µ1 − µ0),

√
P (w2)(µ2 − µ0), . . . ,

√
P (wC)(µC − µ0)] (3.9)13

Notice that Ψb is an nx C matrix, where n is the pattern size and C is the number
of classes. We now state the following Lemma due to Turke and Penland.3515

Lemma 3.1. Let L be any (n × m) matrix. Then the function V = Lv is a
one-to-one mapping from the eigenvalues of LTL ∈ �m×m to the eigenvectors of17

LLT ∈ �n×n.

Proof. See Ref. 35 for the proof.19

We can directly use Lemma 3.1 in the diagonalization of Sb in (3.4) by consider-
ing L = Ψb. Since Ψb ∈ �n×(C−1),ΨT

b Ψb has (C−1) eigenvectors, the same we need21

to compute for matrix Y in (3.5). The main advantage of computing the eigenvec-
tors through Lemma 3.1 is that it allows direct computation of the C eigenvectors23

associated with the C nonzero eigenvalues of matrix Sb and not the n eigenvalues
of it. Usually the number of classes is around dozens whereas the pattern size can25

be of the order of hundred. Thus, the saving in computations can be significant.
To compute the eigenvectors of matrix ZTSwZ in (3.7) through Lemma 3.1 we27

write ZTSwZ as the product of a matrix and its transpose. To this extent we first
rewrite Sw in the form29

Sw = ΨwΨT
w (3.10)

where Ψw ∈ �n×(C−1) is defined as31

Ψw = [ψ1, ψ2, . . . , ψC ] (3.11)

and ψi ∈ �n is given by33

ψi =
√
P (wi)

∑
X∈wi

(X − µi) (3.12)
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Then we can write1

ZTSwZ = ZT ΨwΨT
wZ =

(
ZT Ψw

) (
ZT Ψw

)T
(3.13)

Under these conditions we can use Lemma 3.1 with L = ZT Ψw. However, there3

still exists the problem of computing Φ(X). If a large number of basis functions are
considered, a large computational effort is needed in computing Φ(X). In the next5

section we analyze the particular case of linear and quadratic terms only.

3.3. Quadratic fisher transformation7

In what follows, a new feature extraction method is proposed, based on the previous
developments, which use linear and quadratic basis functions. The method will be9

called Quadratic Fisher Discriminant Analysis (QFDA).
If we considerer the optimization problem (2.1) and choose a transformation of

the form

Z(X) =



AT

1 X +XTB1X

AT
2 X +XTB2X

.

AT
mX +XTBmX


 , Z ∈ �m, X ∈ �n, Ai ∈ �n, Bi ∈ �n×n (3.14)

which can be written as11

Z(X) = ΩT Φ(X) (3.15)

where13

Φ(X) =




x2
1

x1x2

...
x1xn

x2
2

x2x1

...
x2xn

...
xnx1

xnx2

...
x2

n

x1

x2

...
xn




∈ �n2+n (3.16)
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Φ(X) is a vector of dimension n2 + n and Ω ∈ �m×(n2+n). The dimension of1

Φ(X)can be reduced considering only one cross term and not all of them, imposing
extra conditions on matrices Bi, i.e. Bi = BT

i . Since Φ (X)dimension is high we3

can use the method stated in Sec. 3.1 to solve the Fisher optimization problem.
Moreover, we can use the method in Sec. 3.2 to perform the eigenvalue–eigenvector5

analysis.
Notice that in QFDA the dimension of Φ(X) increases as n2, (n = dim(X)), so7

computation problem can become complex if the dimension of X is high.

3.4. Summary of the proposed method9

Our objective is to find matrix Ω that maximizes the Fisher criterion in the trans-
formed space using the transformation given by (3.8). We have proved that this11

matrix satisfies Eq. (3.10). If we consider, for example a practical problem with
feature vectors of dimension n = 64, matrix Ω will be of dimension K ×m, with13

K = n2 + n = 4160 and m = C − 1, where C is the number of classes.
In order to solve Eq. (3.10) for Ω, the following algorithm can be used to reduce15

the amount of computations.

(a) Use the ISD procedure presented in Sec. 3.1 to find the eigenvalues and eigen-17

vectors of matrix S−1
w Sb .

(b) Use the information on eigenvalues and eigenvectors of S−1
w Sb to find matrix19

ΩB from Eq. (3.10) and then find Ω, since B is nonsingular and of low dimen-
sion.21

(c) In the ISD procedure of step (a) it will be necessary to compute the eigenvalues
and eigenvectors of high dimension matrices (Sb and ZT Sw Z). To reduce the23

amount of work use Lemma 3.1 given in Sec. 3.2.

3.5. Proposed method and kernel Fisher multiclasses25

In what follows we will apply the proposed method to solve kernel Fisher multi-
classes and we will see that it converges to the standard kernel Fisher formulation27

for the two-class problems.
In the two-class problems the transformation between the Φ (X) space and the29

original feature space is of dimension (m×1) where m corresponds to the dimension
of vectors in Φ(X). From kernel theory we deduce that if ωj is the jth column of31

transformation Ω, then we can write it in the form

ωj =
N∑

i=1

αiΦ(Xi) (3.17)
33

i.e. vector ωj belongs to the subspace spanned by the nonlinear transformation of
the training examples Xi.25 Then matrix Ω corresponds to a vector defined as35

Ω =
M∑
i=1

αΦ(Xi) (3.18)
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It is easy to see that matrix Ω can be written as1

Ω =
[∑N

i=1 α
1
i
Φ(X1) · · ·

∑N
i=1 α

N
i Φ(XN )

]
(3.19)

Using (3.19) and the definition of µi we have:3

ΩTµi =




1
Ni

∑N
j=1

∑Ni

m=1 α
1
jK(Xj, X

i
m)

...
1

Ni

∑N
j=1

∑Ni

m=1 α
N
j K(Xj , X

i
m)


 =



αT

1 Mi

αT
2 Mi

...

αT
nMi


 = αTMi (3.20)

where5

(M)i =
1
N

N∑
j=1

K(Xj, Xi) (3.21)

(Mi)j =
1
N

N∑
k=1

K(Xj , X
i
k) (3.22)

7

Then we can write

ΩTSbΩ = αTQα (3.23)9

with Ω ∈ �m×1 and

Q =
2∑

i=1

(Mi −M)(Mi −M)T (3.24)
11

Similarly for Sw we have

ΩTSwΩ = αTRα (3.25)13

where

R = K1(I − 1N1)K
T
1 +K2(I − 1N2)K

T
2 (3.26)15

(Ki)n,m = K(Xn, X
i
m) (3.27)

(Ki)n,m is known as the Kernel Matrix of class i, I denotes the identity matrix17

and 1Ni denotes a matrix whose elements are 1/Ni. Then the Fisher index in the
transformed space can be written as19

tr{(αTRα)−1(αTQα)} (3.28)

Matrices R and Q obtained by this procedure correspond to matrices R and Q21

stated by Mika in his first work on kernel Fisher for two-class problems.25

In Sec. 4 QFDA is used and compared with other classical methods when solving23

different pattern recognition problems.
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4. Experiments and Comparisons of NLFT with Classical Methods1

Throughout this paper it has been emphasized the necessity of extending the Fisher
Transform (FT) or Fisher Discriminant Analysis (FDA) to the nonlinear case, moti-3

vated by the fact that FDA does not work properly when the mean of the classes do
not coincide or when the essential information for classification lies on data variance5

rather than in the mean. Furthermore there exists some previous work25 where the
classification has significantly improved by using kernel Fisher. For this reason in7

this section a series of experiments are presented where the objective is to evaluate
the usefulness of QFDA in real pattern recognition problems.9

4.1. Brief description of data sets used

In what fallows a brief description of data sets used in this study for comparison11

purposes is presented. All of them correspond to real data and they are considered
standard data sets in the literature.4 The first five of them are part of the database13

repository of University of California at Irvine (UCI) and the last one is part of the
benchmark repository of Carnegie Mellon University (CMU).15

(i) Wisconsin Breast Cancer Database (WBCD): This is one of the three
breast cancer data set repository of UC Irving. The information was collected at17

the Wisconsin University by W. U. Wolberg.37 The problem is to predict from a
patient tumor tissue if this is malign benign. The data set has two classes, nine19

attributes and 742 observations. Since 16 observations presented no attributes they
were discarded, using then only 716 observations. From these, 485 examples (65.5%)21

correspond to Class 1 (malign) and the remaining 241 patterns (34.5%) belong to
Class 2 (benign).23

(ii) PIMA Indian Diabetes Database (PIMAIDD): This data set contains
information from women older than 21 years descending from Pima tribe, living in25

the Phoenix Arizona area.33 The problem is to predict if the patient presents dia-
betes based on medical and psychological exams. In this case there are 14 properties27

and 768 observations. Class 1 (positive) contains 500 examples (65.1%), whereas
Class 2 (negative) has 268 patterns (34.9%).29

(iii) Thyroid Disease Database (TDD): Here the problem consists in deter-
mining if a patient presents thyroid disorders based on medical exams. In the data31

set there are three classes (normal, hyperthyroidism and hypothyroidism). This
problem presents 21 features and it is organized in 3772 observations for train-33

ing and 3428 for validation. In the simulations performed in this paper both data
sets were put together since the evaluation of the methods was done using 10 fold35

cross-validation.

(iv) Ionosphere Data base (ID): This data set corresponds to measures of37

the ionosphere radar echo.32 The problem consists in determining if a radar signal
was able to capture the ionosphere structure or if this signal does not contain39



1st Reading

August 8, 2008 20:47 WSPC/115-IJPRAI SPI-J068 00671

14 M. A. Bustos, M. A. Duarte-Mermoud & N. H. Beltrán

information about ionosphere. Data was acquired in Goose Bay, Labrador USA,1

using a 16-array of high frequency radars transmitting a total power of 6.4 KW.
The data set belongs to John Hopkins University. The problem has two classes, 343

characteristics and 341 measurements.

(v) StatLog Vehicle Silhouette Database (SVSD): This data set belongs to5

UCI database repository and was developed by the Turing Institute in Glasgow,
Scotland. The problem consists in predicting the type of a vehicle based on geomet-7

ric attributes of the vehicle silhouette obtained from image processing. The vehicles
included are autobus, Chevrolet Van, Saab 9000 and Opel Manta 400. The problem9

has four classes, 18 attributes and 846 patterns.

(vi) Sonar Database (SD): This data set belongs to CMU benchmark repository.11

The problem consists in determining if the object is a stone or a mine from the
information contained in the power spectrum of sonar signals. The data set has 20813

examples, 60 properties and two classes.

4.2. Methodology used in simulations15

Since the objective of this section is to study the advantages of the proposed feature
extraction method, all of the data sets already described will be classified using the17

Quadratic Fisher Transformation (QFDA) in the feature extraction stage, previous
to the classification stage by LDA. Each experiment will be performed three times;19

first without using any feature extraction method, then using linear Fisher extrac-
tion (FDA) and finally employing QFDA. For the first case (no feature extraction)21

the dimension of the input vectors corresponds to the number of original attributes
mentioned in Sec. 4.1 for each database, whereas in the other two cases (FDA and23

QFDA) the dimension is reduced to C − 1 where C is the number of classes of the
dataset, also indicated in Sec. 4.1. The classification rate will be estimated through25

cross-validation with ten subsets (ten fold cross-validation) and to measure signifi-
cant differences in the methods the McNemar Test of Hypothesis12 will be used.27

Since the purpose of the study is to compare the behavior of the classification
varying the feature extraction method, the same classification method will be used29

in all simulations. To this extent the simplest statistical classifier, linear discrimi-
nant analysis (LDA),34 will be used to realize the effects of the feature extraction31

method being used. LDA consists of applying the maximum a posteriori (MAP)
rule assuming normal data distribution, as well as that each class has the same33

covariance matrix. Using these two assumptions the MAP rule is simplified as:
To assign the pattern X to class wi if and only if35

Ci ≥ Cj ∀i �= j (4.1)

where37

Ck = 2XT
−1∑

µk + µk

−1∑
µk − 2 log(P (wk)) (4.2)
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Σ corresponds to the data covariance matrix, µk is the mean of class wk and P (wk)1

is a priori probability of class wk. Assuming that all classes have the same covari-
ance matrix, LDA is a simplification of the MAP rule for normal distribution that in3

pattern recognition area is known as quadratic discriminant analysis (QDA).34 The
structure of the linear classification implies that decision boundaries are hyper-5

planes. Thus, this algorithm can only classify correctly problems where data is
linearly separable.7

4.3. Simulations and results

Simulation results obtained by applying the three methods on the six databases9

described in Sec. 4.1 are presented in what follows.

(i) Simulation results using the Wisconsin Breast Cancer Database
11

In what follows the results using the Wisconsin Breast Cancer Database (WBCD)
are presented, using cross-validation with ten sets. Table 1 shows the correct classi-13

fication rates using three feature extraction methods. First no feature extraction is
used i.e. LDA is directly applied to data. Next, FDA is used as feature extraction15

and finally QFDA is used a feature extraction method.
From Table 1 we can deduce that feature extraction positively affects the clas-17

sifier behavior and QFDA introduces an improvement of 4% in the classification
rate if compared with the cases with no feature extraction or when using FDA.19

In Table 2 presents the p-value of McNemar Test of Hypothesis12 of the sta-
tistical significance of the three methods studied. We recall that in this Test, the21
classification rate of two classifiers is statically different with a 95% of certainty,
if the p-value of the Test is greater than 3.84. From Table 2 it is observed that23
no significant differences between the first two schemes (without feature extraction
and FDA) whereas there is a significant difference in the classification rates when25
QFDA is considered a feature extraction method.

Table 1. Classification rates for WBCD.

Method Classification Rate Standard Deviation

LDA 0.93 0.010
FDA+ LDA 0.93 0.008
QFDA+ LDA 0.97 0.003

Table 2. McNemar Test of Hypothesis for WBCD.

Method LDA FDA + LDA QFDA +LDA

LDA 0.8 13.1
FDA + LDA 0.8 12.5
QFDA +LDA 13.1 12.5
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Table 3. Confusion matrices for WBCD.

LDA FDA+ LDA QFDA+ LDA

Classified as Classified as Classified as

Cancer No Cancer Cancer No Cancer Cancer No Cancer

Cancer Sample 0.88 0.12 0.88 0.12 0.95 0.05
No Cancer Sample 0.02 0.98 0.02 0.98 0.01 0.99

Table 4. Classification rate for PIMAIDD.

Method Classification Rate Standard Deviation

LDA 0.77 0.003
FDA +LDA 0.78 0.001
QFDA +LDA 0.81 0.001

Table 3, shows the confusion matrices for each method studied (without feature1
extraction, FDA and QFDA). As seen from Table 3, QFDA significantly decreases
the number of confusions.3

(ii) Simulation results using PIMA Indian Diabetes Database
Table 4 presents the results of the three classification methods studied, when applied5

to the PIMA Indian Diabetes Database (PIMAIDD). From Table 4 we can conclude
that the use of a feature extraction method does positively affect the behavior of7

the classifier, diminishing at least the variance of the classification rate which can
be attributed to a better determination of classifier parameters when operating9

in lower dimension spaces. On the other hand, we can see that QFDA gives an
improvement of 3% in the classification rate if compared with FDA11

Table 5 summarizes the p-value of McNemar Test of Hypothesis12 over the
significance in the differences of the classification rates. From Table 5, we conclude13

that there exist significant differences between the three classification schemes.
Table 6 slows the confusion matrices for the three cases studied (without extrac-15

tion, FDA and QFDA). From this table we can conclude that QFDA improved the
classification rate and significantly diminished the number of confusions in at least17
one class.

(iii) Simulation results using Thyroid Disease Database19
Table 7 the classification results of the three methods studied when using the Thy-
roid Disease Database (TDD) are presented. A noticeable improvement is observed21
in the classification rate when using QFDA of about 30%.

Table 5. McNemar Test of Hypothesis for PIMAIDD.

Meted LDA FDA +LDA QFDA+ LDA

LDA 5.14 12.01
FDA +LDA 5.14 6.96
QFDA +LDA 12.01 6.96
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Table 6. Confusion matrices for PIMAIDD.

LDA FDA+ LDA QFDA+ LDA

Classified as Classified as Classified as

Diabetes No Diabetes Diabetes No Diabetes Diabetes No Diabetes

Sample with 0.88 0.12 0.89 0.11 0.91 0.09
Diabetes

Sample without 0.43 0.57 0.42 0.58 0.39 0.61
Diabetes

Table 7. Classification rate for TDD.

Method Classification Rate Standard Deviation

LDA 0.50 0.06
FDA+ LDA 0.51 0.07
QFDA+ LDA 0.81 0.03

Table 8. McNemar Test de Hypothesis for TDD.

Method LDA FDA+LDA QFDA+LDA

LDA 0.5 8.3
FDA+ LDA 0.5 7.9
QFDA+ LDA 8.3 7.9

Table 8 shows the p-values of McNeman Test of Hypothesis12 from which we1

can state that there are significant differences between QFDA and the two other
methods, and there is no significant difference between FDA and the case when no3

feature extraction is used
The confusion matrices for all three cases studied are presented in Table 9.5

From this table we can see that QFDA significantly diminished the number of
confusions. In this experiment QFDA allowed an improvement in the classification7

rate of 30% (see Table 7) diminishing mainly the confusion between classes 2 and
3 (hyperthyroidism and hypothyroidism) as seen in Table 9.9

In Fig. 1 is plotted the projection of the original data through the linear Fisher
transformation.11

Figure 2 shows the projection of the original data through the quadratic Fisher
transformation. Since this problem has three classes (C = 3), the transformed data13

belongs to �2, i.e. (C − 1). From Figs. 1 and 2, an improvement can be seen in the
class separation using QFDA, making the classification problem simpler.15

(iv) Simulation results using Ionosphere Database
In this section we present the classification results of the three methods analyzed17

when applied to the Ionosphere Database (ID), using cross-validation with ten sets.
Table 10 summarizes the classification rates for the three cases studied, where it19

can be seen that QFDA gives 100% of correct classification, improving in almost
14% the classification obtained with the other two methods.21
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Fig. 1. Data projection onto Fisher space using FDA for TDD.

Fig. 2. Data projection onto Fisher space using QFDA for TDD.
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Table 10. Classification rate for ID.

Method Classification Rate Standard Deviation

LDA 0.81 0.002
FDA +LDA 0.86 0.002
QFDA +LDA 1 0.000

Table 11. McNemar Test of Hypothesis for ID.

Method LDA FDA +LDA QFDA+ LDA

LDA 5.2 24.1
FDA +LDA 5.2 18.6
QFDA+ LDA 24.1 18.6

Table 12. Confusion matrices for ID.

LDA LDA + FDA LDA +QFDA

Classified as Classified as Classified as

Information Noise Information Noise Information Noise

Information signal 0.66 0.34 0.76 0.24 1 0
Noise signal 0.03 0.97 0.03 0.97 0 1

Table 13. Classification rates for SVSD.

Method Classification Rate Standard Deviation

LDA 0.77 0.06
FDA +LDA 0.78 0.003
QFDA +LDA 0.96 0.005

Table 14. McNemar Test of Hypothesis for SVSD.

Method LDA FDA +LDA QFDA+ LDA

LDA 5.7 12.8
FDA +LDA 5.7 11.5
QFDA+ LDA 12.8 11.5

Table 11 the p-value of McNemar Test of Hypothesis12 is presented in the three1

cases studied. They indicate that the three methods are statically different.
Table 12 presents the confusion matrices for the three methods compared. It can3

be seen that QFDA improved the classification rate by significantly diminishing the
number of confusions5

(v) Simulation results using the Statlog Vehicle Silhouette database
Table 13 presents the classification rate of the three methods studied when applied7

to Statlog Vehicle Silhouette Database (SVSD) using cross-validation with ten sets.
Table 14 shows the p-values of McNemar Test of Hypothesis.12 From this we9

can conclude that all three methods have significant differences from the statistical
point of view.11

Table 15 presents the confusion matrices for the three cases analyzed.
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From Tables 13–15, it is concluded that QFDA improved the classification rates1

in about 18% if compared with FDA and 19% if compared with the case when no
extraction method is used. Also the number of confusions in the system is noticeably3

diminished when using QFDA.
In Fig. 3 is plotted the original data projection when using FDA and Fig. 4 the5

original data projection when using QFDA. It can be seen that QFDA produces a
subspace with better class separation than FDA.7

(vi) Simulation results using Sonar Database
Table 16 shows the classification rates of the three methods studied when applied9
to Sonar Data Set (SD) and using cross-validation with ten sets.

A 100% of correct classification is achieved with QFDA, improving the results11
obtained with FDA and without extraction methods in 10% and 25% respectively.
In Table 17, the p-values of McNemar Test of hypothesis12 is summarized for the13
three methods and we can conclude that they are statistically different.

Table 18 presents the confusion matrices for the three methods studied where the15
reduction can be seen in the number of confusion when using QFDA as compared
with the other two methods.17

Fig. 3. Data projection onto Fisher space when using FDA for SVSD.
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Fig. 4. Data projection onto Fisher space when using QFDA for SVSD.

Table 16. Classification rates for SD.

Method Classification Rate Standard Deviation

LDA 0.75 0.002
FDA+ LDA 0.90 0.005
QFDA+ LDA 1.00 0.001

Table 17. McNemar Test of Hypothesis for SD.

Method LDA FDA + LDA QFDA +LDA

LDA 9.03 19.01
FDA + LDA 9.03 8.05
QFDA + LDA 19.01 8.05

Table 18. Confusion matrices for SD.

LDA LDA + FDA LDA+ QFDA

Classified as Classified as Classified as

Stone Mine Stone Mine Stone Mine

Stone 0.7216 0.2784 0.8763 0.1237 1.0 0.0
Mine 0.2162 0.7838 0.0721 0.9279 0.0 1.0
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5. Conclusions1

In this paper the optimization of the Fisher criterion in a space nonlinearly related
to the original data was studied. First, the problem was solved using calculus of3

variations in the function space, concluding that although it is possible to solve
the problem, its solution need to know a posteriori probability density that a vec-5

tor (pattern) X belongs to each class. This implies that the results cannot be
used in real pattern recognition problems since probability densities are, in general,7

unknown.
As a way of avoiding this explicit dependence of the solution on probability9

densities, the solution (transformation) was restricted to functions that can be
written as a linear combination of basis functions. By restricting the solutions to11

this type of functions, it is possible to solve the problem without using the knowledge
of the probability densities, obtaining a closed-form analytical solution. Thus, the13

obtained solution corresponds to the projection of each component of the general
solution in the space function of continuous second derivatives, onto the space15

generated by the functions ϕi(X), components of Φ(X).
Although the solution found to the nonlinear optimization of the Fisher cri-17

terion does not depend on the class probability densities (form and parameters),
the computational procedure associated to this solution can be quite demanding.19

A procedure and Lemma were presented in order to substantially diminish the
computational load of the proposed solution and to make its implementation in21

real problems simpler.
Simulation results presented using six standard data sets in pattern recognition23

literature showed that QFDA significantly improved the classification rates in all
six cases and diminished the number of confusions in the system.25

As future work it is proposed to use wavelet decomposition instead of a Taylor
Series to approximate the components of the general optimization solution of the27

Fisher criterion. Due to the wavelets property of approximating functions with
lower number of coefficients, the computational load associated with the method29

will diminish. Besides, the potential advantages in dimension reduction, due to the
particular form of the Haar wavelet will probably reduce the amount of computa-31

tions importantly.
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Appendix A.37

The first variation of J , given by (2.1), due to a change δZ in Z is given by13

δJ = J [Z(X) + δZ(X)] − J [Z(X)] (A.1)39



1st Reading

August 8, 2008 20:47 WSPC/115-IJPRAI SPI-J068 00671

Nonlinear Feature Extraction Using Fisher Criterion 25

Using a Taylor series expansion of (2.1) together with (A.1) we get:1

δJ =
C∑

i=1

[
∂J

∂µ̃i
δµ̃i + tr

{
∂J

∂Σ̃i

δΣ̃i

}]
+O(δ3) (A.2)

From definitions (2.4) and (2.5) we can compute the variations in µ̃i and Σ̃i when3

Z is changed in δZ, obtaining,

δµ̃i =
∫ ∞

−∞
δZ(X)p(X/wi)dX (A.3)

5

δΣ̃i =
∫ ∞

−∞

(
δZ(X)Z(X)T + Z(X)δZ(X)T

)
p(X/wi)dX (A.4)

Neglecting the high order terms in (A.2) and using relations (A.3) and (A.4) we
have

δJ =
C∑

i=1

[
∂J

∂µ̃i

∫ ∞

−∞
δZ(X) · p(X/wi)dX

+ 2 · tr
{
∂J

∂Σ̃i

∫ ∞

−∞
δZ(X)Z(X)T p(X/wi)dX

}]
(A.5)

Permuting the trace and integral functions and using the property that tr(AV UT ) =7

V TATU where V, U ∈ �n and A ∈ �n×n5 the second term of (A.5) can be written as

2
∫ ∞

−∞
δZ(X)T

[
∂J

∂Σ̃i

]T

Z(X)p(X/wi)dX (A.6)
9

Thus, (A.5) can be written as

δJ =
∫ ∞

−∞
δZ(X)T

C∑
i=1

[
∂J

∂µ̃i
+ 2

∂J

∂Σ̃i

Z(X)
]
· p(X/wi)dX (A.7)

11

To find the extreme of (A.7) the following must be satisfied9

δJ = 0, ∀δZ (A.8)13

Thus, any Z(X) maximizing (2.1) should satisfy

2
C∑

i=1

[
p(X/wi)

∂J

∂Σ̃i

]
Z(X) = −

C∑
i=1

[
p(X/wi)

∂J

∂µ̃i

]
(A.9)

15

Using definitions (2.1)–(2.3), we see that J depends on Σ̃i only through S̃w and
does not explicitly depend on Σ̃i. This allows computing ∂J/∂Σ̃i, as follows17

∂J

∂Σ̃i

=
∂J

∂S̃w

· ∂S̃w

∂Σ̃i

(A.10)

From (2.2) the partial derivative ∂S̃w/∂Σ̃i can be computed as19

∂S̃w

∂Σ̃i

=
∂

∂Σ̃i


 C∑

j=1

P (wj) · Σ̃j


 = P (wi) (A.11)
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Then (A.10) becomes1

∂J

∂Σ̃i

= P (wi) · ∂J
∂S̃w

(A.12)

Thus, condition (A.9) can be expressed as3

2
C∑

i=1

[p(X/wi)P (wi)]
∂J

∂S̃w

Z(X) = −
C∑

i=1

[
p(X/wi)

∂J

∂µ̃i

]
(A.13)

Applying the total probability theorem28 we recognize that the term5

C∑
i=1

P (wi)p(X/wi) = p(X) (A.14)

corresponds to the total probability density of X . Thus, we can write (A.13) as7

2p(X)
∂J

∂S̃w

Z(X) = −
C∑

i=1

[
p(X/wi)

∂J

∂µ̃i

]
(A.15)

If we define9

p̂(X/wi) =
P (X)p(X/wi)

p(X)
(A.16)

and11

∂J ′

∂µ̃i
=

1
P (X)

∂J

∂µ̃i
(A.17)

we can express (A.15) in the following form13

2
∂J

∂S̃w

Z(X) = −
C∑

i=1

[
p̂(X/wi)

∂J ′

∂µ̃i

]
(A.18)

Appendix B.15

Let us consider (2.8) under the conditions given in Sec. 2.2. The first variation of
Z(X) for fixed Φ(X) is defined as17

δZ = δΩT Φ(X) (B.1)

Replacing (2.8) and (B.1) in (A.7) we have19

δJ =
∫ ∞

−∞
ΦT (X)δΩ

C∑
i=1

[
∂J

∂µ̃i
+ 2

∂J

∂Σ̃i

ΩT Φ(X)
]
p(X |wi)dX (B.2)

Integrating and factorizing (B.2) we get21

δJ = tr

{
δΩ

C∑
i=1

[
∂J

∂µ̃i
µT

i + 2
∂J

∂Σ̃i

ΩT Σi

]}
(B.3)



1st Reading

August 8, 2008 20:47 WSPC/115-IJPRAI SPI-J068 00671

Nonlinear Feature Extraction Using Fisher Criterion 27

Imposing the extreme condition on J1

δJ = 0, ∀δZ (B.4)

we get3

2
C∑

i=1

∂J

∂Σ̃i

ΩT Σi = −
C∑

i=1

∂J

∂µ̃i
µT

i (B.5)

Using the same argument as in (A.10), the partial derivative can ∂J/∂Σ̃i be com-5

puted as (see (A.12))

∂J

∂Σ̃i

= P (wi)
∂J

∂S̃w

(B.6)
7

On the other hand ∂J/∂S̃w can be expressed as

∂J

∂S̃w

=
∂

(
tr

{
S̃−1

w S̃b

})
∂S̃w

= −S̃−1
w S̃bS̃

−1
w (B.7)

9

Replacing (B.7) in (B.6) we get

∂J

∂Σ̃i

= −P (wi)S̃−1
w S̃bS̃

−1
w (B.8)

11

Similarly, we can compute ∂J/∂µ̃i as

∂J

∂µ̃i
=

∂J

∂S̃b

∂S̃b

∂µ̃i
(B.9)

13

where

∂J

∂S̃b

=
∂

(
tr

{
S̃−1

w S̃b

})
∂S̃b

= S̃−1
w (B.10)

15

and from (2.3)

∂S̃b

∂µ̃i
=
∂

(∑C
i=1 P (wi)(µ̃i − µ̃0)(µ̃i − µ̃0)T

)
∂µ̃i

(B.11)

=
∂

(∑C
i=1 P (wi)(µ̃iµ̃

T
i − µ̃0µ̃

T
i − µ̃iµ̃

T
0 + µ̃0µ̃

T
0 )

)
∂µ̃i

(B.12)

= 2P (wi)(µ̃i − µ̃0) (B.13)

Then, replacing (B.10) and (B.13) in (B.9) we have

∂J

∂µ̃i
= 2P (wi)S̃−1

w (µ̃i − µ̃0) (B.14)
17
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Replacing (B.8) and (B.14) in (B.5), the extreme condition can be written as1

C∑
i=1

P (wi)S̃−1
w S̃bS̃

−1
w ΩT Σi =

C∑
i=1

S̃−1
w P (wi)(µ̃i − µ̃0)µT

i (B.15)

S̃bS̃
−1
w

C∑
i=1

ΩTP (wi)Σi = ΩT
C∑

i=1

P (wi)(µi − µ0)(µi − µ0)T (B.16)
3

S̃bS̃
−1
w ΩTSw = ΩTSb (B.17)

Since Sb and Sw are symmetric matrices (B.17) can be expressed as5

(S−1
w Sb)Ω = Ω(S̃−1

w S̃b) (B.18)

Since the Fisher index is invariant under nonsingular transformation, we can use7

the Simultaneous Matrix Diagonalization Lemma14 in the transformed space to
transform equation (B.18) into an eigenvalue eigenvector equation without altering9

the solution.
Let us consider the change of variable11

Y ′ = BTY (X) (B.19)

where Y ′ ∈ �m, B ∈ �m×m is a nonsingular matrix and Y ∈ �m. The scatter13

matrices in the space Y ′ are defined as

S̃′
w = BT S̃wB = Im (B.20)15

S̃′
b = BT S̃bB = ∆ (B.21)

where Im denotes the (m×m) identity matrix and ∆ is an (m×m) diagonal matrix17

containing the eigenvalues of S̃b. Since S̃′
w is the identity, it is easy to observe

that the elements of the diagonal matrix ∆ correspond to the m eigenvalues of19

S̃′−1

w S̃′
b ordered in descending order. After the change of variable, Eq. (B.18) can

be expressed as21

(S−1
w Sb)(ΩB) = (ΩB)(S̃′−1

w S̃′
b) (B.22)

Replacing (B.20) and (B.21) in (B.22) we get23

(S−1
w Sb)(ΩB) = (ΩB)∆ (B.23)
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