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A new crossover technique for genetic algorithms is proposed in this paper. The technique is called 
probabilistic adaptive crossover and denoted by PAX. The method includes the estimation of the 
probability distribution of the population, in order to store in a unique probability vector P 
information about the best and the worse solutions of the problem to be solved. The proposed 
methodology is compared with six crossover techniques namely: one-point crossover, two-point 
crossover, SANUX, discrete crossover, uniform crossover and selective crossover. These 
methodologies were simulated and compared over five test problems described by ONEMAX 
Function, Royal Road Function, Random L-MaxSAT, Bohachevsky Function, and the Himmelblau 
Function. 

Keywords: Genetic algorithms; adaptive crossover; crossover methodologies. 

1.   Introduction 

Genetic Algorithms (GAs)1 is one of the techniques known under the name of 
Evolutionary Algorithms (EAs), where also Evolutionary Strategies,2 Evolutionary 
Programming3 and Genetic Programming4 belong. All of them are inspired by the 
concept of biological evolution.  The main idea is that each individual of the population is 
represented by a binary strip called chromosome, where each element in the strip is called 
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gene or locus. Each individual in the population corresponds to a possible solution of the 
problem to be solved. The evolution of the population will take place by generating 
randomly new possible solutions corresponding to the result of a crossover among the 
different individuals selected from the population according to the fitness of each 
individual (measured in terms of an objective function). New solutions can also be 
obtained by introducing mutation in the individuals. 

In 1975 Holland1 proposed the technique called one-point crossover. This crossover 
methodology basically consists of choosing a point (gene) within the individuals selected 
as parents and generate new individuals (offspring) by interchanging the contents of the 
parents from both sides of the selected point. 

In his doctoral thesis published in 1975, De Jong5 generalized the one-point crossover 
technique to an N-points crossover technique, interchanging the N-1 segments of the 
parents located between the crossing points to create the new individuals. The scheme 
with N = 2 was the most successful because the two-points crossover showed a better 
performance than the one-point crossover and also was less destructive than those of 
higher order (which is interesting from the Schemata Theorem viewpoint proposed 
previously by Holland). 

In 1987, Ackley6 proposed the uniform crossover technique, usually attributed to 
Syswerda,7 that in 1989 presented a theoretical study of uniform crossover. This 
methodology can be seen as a generalization of the N-points crossover technique, where 
N is not fixed. Although this methodology is highly destructive presents the advantage of 
having no positional bias, as occurs with the one and two-point crossover techniques. 

Also, some techniques that differ from the traditional genetic conception have been 
proposed.  A group of these techniques are crossover methodologies where the new 
individuals are generated from more than two parents, like the one proposed by Eiben.8 
An example of this is given by Ackley,9 that proposed the Stochastic Iterated Genetic 
Hill-climbing (SIGH) using a voting method (where the voters are all the individuals of 
the population) to determine the values of the new binary strip. This methodology 
demonstrated to be more efficient in four of the six problems where it was proven, when 
compared with the one and two-point crossover and uniform crossover techniques.  

Mühlenbein10 proposed a methodology denominated Gene-Pool Recombination 
(GPR) that consists in selecting several possible parents for each individual, choosing 
with replacement two parents for each locus to generate the crossover using any 
traditional operator. It is shown an improvement of 25% in the results obtained on the 
ONEMAX6 problem as compared with the traditional algorithms. 

A different approach from those mentioned previously, that moves away from the 
GAs since does not use the concept of crossover, corresponds to the Estimation of 
Distribution Algorithm (EDA).11 This basically considers the probability distribution of 
the population and from this estimation new individuals are generated. One of the first 
approaches was proposed by Syswerda12 and called Bit Simulated Crossover (BSC), 
where the objective is to try to maintain the expected number of ones and zeros for each 
locus when applying uniform crossover. 
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There exist also works where the estimation of the distribution of a variable is 
performed taking into account some dependencies. This theory can be found in works 
like Bi-variate Marginal Distribution Algorithms (BMDA).13 

Another type of crossover techniques can be grouped under the term adaptive 
crossover, where some kind of adaptation is applied when the crossover is made. This 
kind of techniques will be presented later in this paper.  

The main idea of this paper is to introduce a new adaptive crossover technique called 
Probabilistic Adaptive Crossover (PAX), where the estimation of the distribution of the 
population is made in a new fashion rewarding the best individuals of the population and 
penalizing the worse individuals. Once the estimation of the distribution is obtained, two 
parents are selected for generating new individuals transferring to the offspring the allele 
of each locus when the parents are equal and applying the estimated distribution to 
determine the alleles where the parents are different. From simulations it is empirically 
explored the kind of problems where PAX presents advantages over the existing 
methods. 

The paper is organized as follows. In Chapter 2 some works related to the proposed 
methodology are discussed. Chapter 3 is devoted to the description of the new crossover 
technique. A brief explanation of the test problems used in this study is presented in 
Chapter 4, whereas in Chapter 5 an evaluation of the proposed method is performed and 
compared with six other crossover techniques, applied to the five classical test problems 
of Chapter 4. A discussion of the results obtained, some conclusions of the study and the 
future work still to be done are presented in Chapters 6, 7 and 8, respectively.  

2.   Related Work 

There exists a set of crossover operators depending on a criterion which is established 
from the results of previous crossover and from the performance obtained with the 
generated individuals. This set of operators differs from the static operators, where 
always the same crossover is applied. 

According to Yang14 the way in which the crossover is adapted can be classified into 
three categories:  

(a) Adaptation of the crossover type: This is an adaptation that occurs at high level, 
where the crossover type (or the operator) to be used is selected.  Davis15 proposes a 
methodology in which the operator to be employed is chosen from a set of operators 
(crossover or mutation), which has a fixed probability associated. Later, Spears16 
proposed a method where each individual has an extra bit that indicates if it must be 
crossed using two-point crossover (in the case that the additional bit is 1) or using 
uniform crossover (in the case that the additional bit is 0). If two individuals that 
have the same value in the additional bit are selected as parents, the crossover 
associated with that value will be used and in case that the value is different for both 
individuals, one of the two crossover methodology will be used with probability 0.5. 
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Eshelman and Schaffer17 proposed a mechanism that selects the best crossover 
operator between Half Uniform Crossover (HUX), which is a variant of the uniform 
crossover where half of the different bits between parents are modified, and Shuffle 

Crossover (SHX), which is a variant of one-point crossover without positional bias. 
This mechanism takes place when a population has converged to some maximum, 
then the population is reinitiated excepting the best individual and the crossover 
method is alternated. 

(b) Adaptation of the crossover rate: A second alternative of adaptation is proposed            
to operate at a medium level, where the operators to be used are fixed, but the 
probabilities of using one of each operator is adapted. Corne, Roos and Fang18 
proposed Cost Operating Based Rate Adaptation (COBRA), a methodology that 
updates a vector that represents the probability of applying each operator. The 
updating is made proportional to the contribution made to the fitness function of the 
individuals.  Later, Tuson and Ross19 incorporate the probability of the operators 
(crossover or mutation) to each individual, which is evolving with them. 

(c) Adaptation of the crossover position or the probability of change of each bit: 

This kind of adaptation is considered a low level adaptation, since acts directly on 
the bits. Shaffer and Morishima20 proposed a method called Punctuated Crossover, 
in which a bit map is attached to each individual and indicates the positions where it 
is possible to apply crossover. This bit map co-evolves with each individual. Louis 
and Rawlins21 proposed a Masked Crossover, methodology that adds an extra binary 
strip to each chromosome, which is used like mask. This mask is compared in both 
parents and the points which are different are defined as crossover points. Then, 
using information about the fitness and information about the parents, the mask is 
updated. 

Later, White and Oppacher22 proposed Adaptive Uniform Crossover (AUX ), 
where each bit of each individual is increased including an automata that contains the 
crossover probability of each bit. This operator also uses information of the 
evaluation function to identify the bits that remain together (dependencies) when 
crossover is applied. 

Vekaria and Clack23 proposed Selective Crossover, where each chromosome is 
increased by a dominance vector that represents the contribution of that bit to the 
fitness of that individual.  When the crossover is applied, the bits of larger 
dominance are chosen for one son and the remaining bits for the other, updating later 
the dominance vector. This updating is made by increasing the values of the 
dominance vector in those positions where the son differs from the father (comparing 
the nearest individuals) proportional to the increment in the adaptation function.  
Initially the values for the dominance vectors are generated in a random fashion. 

Later, Yang14 proposed Statistics-Based Adaptive Non-Uniform Crossover 

(SANUX ). This method assigns a smaller crossover probability to a bit of a 
chromosome, if the frequency of its value is high within the population.  To do this 
an additional vector f1(i, t) is used in each generation, corresponding to the frequency 
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of 1’s at the position i in generation t. Then, the probability of interchanging the 
value of the i-th position is computed according to 

 1 1

1 1

( , ) ( , ) 0.5
( , )

1 ( , ) ( , ) 0.5s

f i t if f i t
p i t

f i t if f i t

 ≤=
 − >

 (2.1) 

Once the probability of interchanging the value of the i-th position is calculated, 
a mask from the probabilities vector is created and those positions where the value of 
the mask is 1 are interchanged. 

2.1.   Estimation of Distribution Algorithms (EDAs) 

The Estimation of Distribution Algorithms (EDAs)11  is another family of algorithms that 
are used in optimization problems. These are more recent than the GAs and they do not 
have an inspiration in the Mendelian theory as the GAs do.  In spite of this, some of the 
elements of EDAs, like the existence of a codified population accordingly to the problem, 
the existence of a stopping condition and also the performance obtained when they are 
applied to certain problems, are similar to GA. 

The essential difference between EDA and GA, is the way in which the individuals of 
the next generation are generated. The EDA estimates the distribution of the best 
individuals of a population and uses this estimation to generate new possible solutions. 
The simplest EDA considers only independent variables (or bits).  There exists also 
another set of algorithms that consider relationships between variables, called Bivariate 

Marginal Distribution Algorithm (BMDA).13 
Next, some of the algorithms that do not consider relationships between variables are 

presented. 

2.2.   Bit-Based Simulated Crossover (BSC) 

Syswerda12 proposed this new methodology, in which no explicit form of crossover 
between two parents appears. The population is treated like a conditional variable of a 
probability density function that predicts the probability of generating possible solutions 
in the space of the problem under study. The method considers all the population and 
after its application produces a new population of individuals that will have the same 
distribution of ones and zeros that one generated using uniform crossover. 

This mechanism assumes that each locus in a population contains certain number of 
ones and zeros and that the individuals to whom these loci belong, have an assigned 
probability of being selected for crossover.  Then, this probability can be used to compute 
a weighed average of ones and zeros that is expected to appear in each locus in the new 
population.  If the probability obtained for each locus is used in the generation of loci for 
the new individuals of the next population, it will be obtained that in average the number 
of zeros and ones will be equal to that obtained using uniform crossover. 
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2.3.   Population-Based Incremental Learning (PBIL) 

Baluja and Caruana24 proposed this methodology that is very similar to BSC with the 
following differences:   

•  The probability vector P does not consider the probability of the individuals to be used 
as parents of the next generation (as it is done in BSC). To compensate this fact, only 
the best M individuals are used to update the vector P.   

•  The probability vector P is not calculated at each generation in an independent way, 
but it is updated with a rate of learning δ (0 < δ < 1) . PBIL considers for each selected 
individual the following update rule 

 (1 )· · _ .P P Selected Individual= − +δ δ  (2.2) 

2.4.   Univariate Marginal Distribution Algorithms (UMDA) 

UMDA
11 also belongs to the EDA family and it can be described as a mixture of BSC and 

PBIL, since a probability distribution vector is estimated (like in BSC), using only some 
selected individuals according to some pre-specified criterion to build the probability 
vector (like in PBIL).   

The probability distribution vector is defined as  

 ∏
−

=

=
1

0

)()(
n

i

ii xpXp . (2.3) 

where pi(xi) corresponds to the probability of the i-locus of the chromosome, calculated 
as the frequency of ones in each locus of the selected individuals to estimate the 
probability distribution. 

3.   Probabilistic Adaptive Crossover (PAX) 

3.1.   Motivation of the method 

There exist two main properties that are desirable in a search method, both of them are 
present in the GAs.  These properties correspond to the exploration and the exploitation 
characteristics. 

The exploration is the ability to explore new regions in the search space, whereas              
the exploitation corresponds to the fair use of the information about the search space                 
to guide the search towards the regions that presents a larger potential. Roughly speak- 
ing we could say that in GAs the exploration is mainly done by mutation, since                     
this mechanism introduces new solutions to the problem, whereas the exploitation                    
is performed by crossover, since this mechanism preserves the common bits of the 
parents.25 Nevertheless, both operators do exploration.   

 Using the information of the population distribution when applying crossover, has 
shown advantages in the exploitation of the best solutions. An example of this is SANUX 
where the information of the distribution is used to determine the points where crossover 
has to be done.   
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The main idea in the crossover methodology being proposed in this paper is to 
introduce a more effective combination between the exploration and exploitation 
characteristics, using the information of all the population to determine the value of the 
offspring. The information of the entire population will be used when applying crossover 
in those points in which the two parents are different. Thus, a faster propagation of the 
best solutions throughout the population will be obtained, allowing a larger exploration, 
since the number of possible different children would be greater than the case of using 
other crossover methodologies. 

Using some of the original ideas of the genetics that establish the existence of natural 
selection to explain the way how individuals adapt to the environment, the aim is when 
two parents are chosen to perform crossover, those genes where the parents have the 
same value are directly transferred to the children. It is expected that by natural selection, 
the fact that both parents have the same genetic content in certain positions, implies that 
this value in those positions is inheritable to the children in a direct way, since it has 
produced good adaptation to their parents. 

For those genes where the values of the parents are different, instead of inheriting the 
value of one’s of the parents in each one of the offspring, what will be studied is which of 
the values of the parents produces a greater adaptation to the environment. This 
information is found from the experience of the entire population. 

3.2.   Description and characteristics of the method 

The proposed crossover methodology uses an adaptive vector of probabilities P for the 
entire population, which is being constantly updated. Each element of this vector P 
represents the probability that a bit of an individual in the offspring takes the value 1 
when both parents have different values at this point. This vector considers the 
information of the previous generations and is updated using the fitness of the individuals 
of the population. The vector updating is made considering as positive examples to 
follow, those individuals that present a fitness over  the average of the population and as 
negative examples, those individuals that present fitness below the average. 

When performing the updating process the information of the previous generations is 
introduced, weighed by a forgetting factor. This forgetting factor is introduced because 
the average of the fitness of the individuals theoretically increases, which is the reason 
why a solution that was on the average in generation t can be below the average in                    
the generation t + 1. Thus, the probability vector is updated considering the history of                    
the population, as well as the current population. 

Another characteristic that is achieved using this updating method is that the 
contribution to the adaptive vector of probabilities of those individuals which are over  
the average is weighted in a different way. That is to say, each individual that is over              
the average does not contribute equally to update of the probability vector, but the 
contribution is made proportional to the fitness of each individual with respect to the 
others. The same concept is used for those individuals that are below the average, where 
those individuals of worse performance will be the most highly punished. 
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In case that no allele stands out over the rest in some loci, the vector of probabilities 
should converge to 0.5, which would transform the method into a discrete crossover.26 

In a formal way the application of a forgetting factor α is written as 

 ( 1) ( ( ) 0.5·1)·(1 ) 0.5·1P t P t α+ = − − +
� �

ɶ  (3.1) 

where 1
�

means a vector of length L, and all the components in it has the value 1 and Pɶ  is 
an intermediate probability vector. 

After the application of the forgetting factor, the individuals of the population 

tPobl are separated between the individuals that their fitness is over the mean and those 
that the fitness is below the mean. These two groups are denoted as two sub-sets pobl+ 
and pobl–, that are defined as 

 { }| ( ) ( ) .
t t t

pobl x Pobl f x f t+ = ∈ ≥  (3.2) 

 { }| ( ) ( ) .
t t t

pobl x Pobl f x f t− = ∈ <  (3.3) 

Finally, the probability vector is updated as follows: 

 
( ) ( )( ) ( ) · ( ) ( ) ·( 1) ( ) ( ) · ( ) ( ) ·( 1)

( 1) ( 1)
2 ( ( ) ( )) ( ( ) ( ))

t t

t t

t t t t t t t t

x pobl x poblt t

x pobl x pobl

f x f t x f x f t x f x f t x f x f t x
P t P t

f x f t f x f t

γ

+ −

+ −

∈ ∈

∈ ∈


− + − − − + − −

+ = + + −
− −



∑ ∑
∑ ∑

� �� � � �

ɶ  

 
( ) ( )( ) ( ) · ( ) ( ) ·( 1) ( ) ( ) · ( ) ( ) ·( 1)

( ( ) ( )) ( ( ) ( ))
t t

t t

t t t t t t t t

x pobl x poblt t

x pobl x pobl

f x f t x f x f t x f x f t x f x f t x

f x f t f x f t
+ −

+ −

∈ ∈

∈ ∈


− + − − − + − − 

+ = + + − 
− − 



∑ ∑
∑ ∑

� �� � � �

 (3.4) 

where γ corresponds to the learning rate, that determinates the maximum value that can 
be used to update one position of the vector P. This value is reached in the case where all 
the individuals in the set pobl+ have the same value in one position and the individuals in 
the set pobl– have the opposite value in the same position (in the case of a binary 
alphabet). By construction each component of vector P lies in the interval [0 , 1]. 

Once the probabilities vector P is updated, the individuals that will be the parents of 
the next generation are selected according to the desired selection scheme (selection by 
tournament, ranking selection, SUS, etc.). Next, the chosen parents are grouped in pairs, 
to give rise to two new children, that will have the same value of the parents in those 
positions where the value of the parents coincide. The rest of the positions will be filled 
up with 1, with the probability indicated by the vector P. After this, it is possible to apply 
tournament between children and parents, elitism operators or mutation, according to the 
desired scheme. 

3.3.   Application example 

Let us consider the population in generation t, composed by four different individuals of 
length L = 4, described by 
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Let us consider a probability vector P(t) = (0.5   0.7   0.4   0.6) a forgetting factor 
α = 0.3 and  a learning rate γ = 0.2. Replacing these values in Equation (3.1) we will get 
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( 1) (0.5 0.64 0.43 0.57)P t+ =ɶ
 

Evaluating Equation (3.4) we obtain 
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This is the probability vector that will be used in the crossover. In Fig. 1 the crossover 
between the second and the third individual of the population is shown. 

In Fig. 1 it can be observed that in the first loci both children acquire the value 1 from 
Father 1, because from the probability vector, the probability in that position indicates 
that one is better than zero. In the third and fourth loci it is seen that values one and zero 
are generated, one for each son. It is in this fashion that a greater exploitation and 
exploration is obtained. 
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Fig. 1.  Crossover example using PAX. 

3.4.   Evaluation and comparison of the methodology 

In order to analyze empirically the performance of the proposed method, it is compared 
with different crossover methodologies. For comparison purposes, some classic 
methodologies are considered (one and two-point crossover, uniform crossover and 
discrete crossover) and also some adaptive methodologies are chosen (SANUX and 
Selective Crossover). All of them are studied using a GA with the following 
characteristics: 

• Selection methodology: Fitness proportional selection with stochastic universal 
sampling (SUS). 

• Crossover probability: Pc = 0.7. 
• Bit flip mutation probability: Pm = 0.01 

These parameters were chosen since they are used in several works done in this area 
like those of Vekaria27 and Yang.14 Several test problems were selected having different 
characteristics so that they allow us to draw conclusions on the PAX behavior.  The 
number of individuals in each population and the length of these will depend on each 
problem.  In the next section the different test problems used in this study are described. 

4.   Test Problems Used in the Study 

4.1.   ONEMAX function 

The ONEMAX function6 corresponds to a linear evaluation function (in terms of the 
Hamming distance), where each bit in each individual contributes to its fitness 
proportional to the contribution of other bits with value 1.  Mathematically this evaluation 
function is defined as 
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0.79 0.58 0.37 

0 1 1 

Father 1 1 1 0 0 

Crossover points (where the bits are different) 

Probability vector P 

Next generation obtained applying PAX 
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1 



Probabilistic Adaptive Crossover (PAX )    1141 

 
0

.
l

i

i

fitness x
=

=∑  (4.1) 

This evaluation function is characterized as a simple linear optimization problem, 
with only one maximum, that does not present epitasis or deception. The optimal solution 
of the problem is well known and is defined by the length of the individuals that are used. 

In order to run the different tests a population of one hundred individuals and a strip 
length of fifty were used. The stopping criterion corresponds at the moment in which the 
global maximum is reached, that is to say, the moment that the fitness of one of the 
individuals takes the value fifty.  One hundred different initial populations were used, 
performing one hundred tests with each one of them, modifying for each test the random 
number generator seed. 

4.2.   Royal Road function 

The Royal Road problem was proposed initially by Mitchell, Forrest and Holland28. To 
perform tests in GAs, particularly in one point crossover, the structure consists of small 
building blocks (defining-length 7) having a small contribution to the fitness function 
(Level 0).  When joining two of these adjacent blocks (from left to right), they produce 
larger blocks (Level 1) and thus schemes of higher levels are obtained, until the solution 
of the problem is built, where the 64 bits composing each individual take value 1 and the 
fitness is 192 (which corresponds to the sum of the contributions of all the schemes of 
Levels 0, 1 and 2). 

Later, using this same idea Vekaria and Clack29 proposed modifications to this kind 
of problems. Those basically consist of changing the structure of the low level building 
blocks, increasing their defining-length.  

This type of functions present a high epitasis degree, because the contribution of each 
bit to the fitness is conditioned to the values of the other bits defining the building block, 
since independently these bits do not contribute to the fitness. 

The problem does not present deception, since when putting together two building 
blocks the result never gets worse. 

In order to study the performance of the different crossover methodologies, the same 
parameters used by Mitchell, Forrest and Holland28 were considered here. The number of 
individuals is N = 128 and their length is L = 64. Like in the case of ONEMAX, where 
the optimal global is known, the stopping criterion corresponds to the moment in which 
the fitness of some individual is 192. One hundred different initials populations were 
used, performing one hundred tests, modifying each time the random number generator 
seed. 

4.3.   Random L-MaxSAT problems 

The problems of Boolean satisfaction correspond to problems satisfying constraints, 
consisting in finding values of the variables to satisfy a collection of clauses that are 
generally in a Conjunctive Normal Form (CNF). This problem corresponds to an NP-
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Complete problem,30 even in the cases when the number of variables by clause is 3 (the 
3-SAT),31 which means that it is not known if there exists a deterministic algorithm able 
to solve the problem in polynomial time. 

The authors Mitchell, Selman and Levesque32 proposed a generator of L-Sat 
expressions, that later was used by De Jong, Potter and Spears33 to conduct studies on            
the behavior of the algorithms considering different epitasis levels (interaction between 
genes of a chromosome).  This generator of expressions consists basically in forming                
C clauses of length L on a universe of V variables.  Each clause is generated selecting               
L of the V variables and denying each one of them with probability 0.5, producing that 
each variable is present on average in C⋅ L/V clauses. Because the Conjunctive Normal 
Form is used, it is enough that one of the L variables of each clause can be fulfilled in 
order to consider that the clause is satisfied. 

While the number of clauses is increased, it is expected that each variable appears in a 
larger number of clauses, producing an increase in the epitasis of the problem, being 
more difficult to find combinations of 0’s and 1’s to satisfy the larger number of clauses. 

The simplest codification for the representation of this problem is the use of binary 
strips of length V where each bit represents a variable. The fitness corresponding to each 
individual is 

 ∑
=

=
C

i

iclausef
C

individualf
0

)_(
1

)( . (4.2) 

where f (clause _i) corresponds to the individual contribution of the clause i, having  
value 1 if the clause is satisfied or 0 if is not. 

The parameters used to perform the tests are the same as those used by De Jong, 
Potter and Spears,33 where the number of variables is V = 100, the length of the clauses is 
L = 3 and the number of clauses is varied from 300 clauses (for an experiment presenting 
low epitasis) to 1200 clauses (for a case with average level of epitasis) and up to 2400 
clauses (for a problem with high level of epitasis).  Because not always all the clauses can 
be satisfied, the existence of a global maximum equal to 1 can not be assured and 
therefore a stopping criterion is established when the number of generations is 600.  A 
population of size N = 100 is considered. The results are obtained after the generation of 
50 sets of different clauses, considering 10 different initial populations for each one                 
of them. 

4.4.    Bohachevsky function 

The inverted Bohachevsky function is shown in Fig. 2 which corresponds to the            
formula 

 )7.0)··4·cos(4.0)··3·cos(3.0·2(6042.3),( 22 +−−+−= yxyxyxf ππ . (4.3) 

This function has multiple local maxima and a unique global maximum located                           
at (0, 0), where f (0, 0) = 3.6042. This function will be used to verify premature 
convergence under different crossover schemes, using the niche methodology called 
deterministic crowding.35 
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Fig. 2. Bohachevsky function. 

 
17 bits were used to code each variable in the interval [–1, 1] and a population of              

500 individuals was chosen. The results were registered after 200 generations and              
every 20 generations the number of individuals around the global maximum was  
verified. The results were obtained performing simulations over 200 different initial 
populations and for each initial population 5 simulations were performed.  To appreciate 
the effect of the learning rate γ in the PAX scheme, two values of γ were considered; 
γ = 0, 2 and γ = 0.002. 

4.5.   Himmelblau function 

The normalized inverted Himmelblau function is shown in Fig. 3. This function 
corresponds to one with multiple maxima of similar size (in some cases they are 
considered equals but they are not) located at the points indicated in Table 1. 

This function is used to verify that the multiple maxima are reached and preserved. 
To do this deterministic crowding35 is used, combining several crossover techniques.            
To appreciate the effect of the learning rate γ in PAX methodology, two values will be 
used; γ = 0, 2 and γ = 0.002. 

A 15 bits coding is used for each variable restricted to the interval [–6, 6], and a 
population of 100 individuals was chosen. The results obtained after 200 generations are 
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Fig. 3. Himmelblau function. 

 Table 1. Maxima of the Himmelblau function. 

x y f (x, y) 

3.0000 2.0000 1.00000000000000 
3.5840 –1.8480   0.99999999566791 

–3.7790   –3.2830   0.99999999748801 
–2.8050   3.1310 0.99999999801805 

 
registered and every 100 generations the number of individuals around each maximum           
is verified.  The results were obtained performing simulations over 200 different initial 
populations and for each initial population 5 simulations were done. 

5.   Simulation Results 

In this section the results obtained with PAX and six other crossover techniques are 
presented and compared. The methodologies used in the simulations are one-point 
crossover, two-point crossover, SANUX, discrete crossover, uniform crossover, selective 
crossover and they are compared with the proposed methodology probabilistic adaptive 
crossover (PAX ). These methodologies were used over each of the five test problems 
described in Section 4. 
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The choice of the parameters used in simulations for each test problem described in 
Sections 4.1 to 4.5 were chosen either from other works (for comparison purposes) or 
after a series of previous experiments (to choose the more adequate).  

5.1.   ONEMAX  

In Table 2 the average number of computations and the standard deviation needed to 
reach the maximum of ONEMAX is shown. The number of computations corresponds to 
the number of times that the function is called for evaluation. This average is considered 
over each different initial population and the different simulations performed on each 
initial population. 

Figure 4 shows the curves corresponding to the average of the best individual as a 
function of the number of computations, for each one of the crossover techniques studied 
on the ONEMAX function.  
 
Table 2. Average number of computations needed to reach the maximum of ONEMAX. In parenthesis the 
standard deviation is shown. 

Crossover 
Methodology PAX Discrete 

One 
Point 

Two 
Points Uniform 

Selective 
Crossover SANUX 

Average 
number of 

computations 

907.0 

(134.8) 

6469.3 
(1984.0) 

6935.5 
(2073.8) 

6193.4 
(1730.2) 

7195.8 
(2441.3) 

12791.5 
(51042.9) 

5735.1 
(1378.5) 

 

 
Fig. 4. Average fitness function of the best individual over ONEMAX. 
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From Fig. 4 is observed that all the crossover techniques compared reach the 
maximum of the ONEMAX function, having differences in the behavior of the 
methodologies only in the number of computations, i.e. in the speed of  convergence to 
the optimum. 

The average number of computations employed by the GA with PAX is much               
lesser than those used by the other crossover methodologies, corresponding to a                
15.81% of those employed by SANUX, the second methodology as far as behavior                
is concerned. 

5.2.   Royal Road function 

Table 3 shows the average number of computations used by each methodology over the 
different variants on the Royal Road function. In parenthesis the standard deviation is 
shown. 
  
Table 3. Average number of computations needed to reach the maximum on the different codification of  Royal 
Road function. In parenthesis the standard deviation is shown. 

Crossover/Basis RoyalRoad – A RoyalRoad – B RoyalRoad – C RoyalRoad – D 

PAX 
26885.4 

(13823.1) 
26807.9 

(13508.5) 
26789.3 

(13914.2) 
26877.1 

(13822.7) 

Discrete 
23564.2 
(9694.8)  

23462.0 
(9863.7)  

23240.3 
(9826.0)  

23302.0 
(9832.2)  

One-Point 
27071.8 

(14622.9) 
28209.1 

(15746.8) 
29004.2 

(14730.9) 
31058.6 

(13113.5) 

Two-Points 
23826.6 

(12888.4) 
24667.1 

(13407.9) 
26781.4 

(12661.4) 
28970.0 

(12108.1) 

Uniform 
26991.6 

(12155.8) 
26633.2 

(12173.3) 
26469.1 

(12196.7) 
26452.1 

(12341.2) 

Selective 
40381.8 

(23520.9) 
39407.7 

(23291.3) 
39104.7 

(23033.6) 
39318.3 

(23269.5) 

SANUX 
23227.2 

(9536.4)  

23258.6 

(9802.9)  

22973.0 

(9876.6)  

23113.7 

(9617.9)  

 
From Table 3 is appreciated that the one-point and two-point crossover deteriorates 

their performance when the defining length is larger. The other crossover techniques 
behave similarly for all codifications. Also, it is observed that SANUX is the best 
methodology for the different codification.  

The average curve of the best individual as a function of the number of computations 
for the database Royal Road A is presented in Fig. 5.  In general, the curves obtained for 
the other codifications (Royal Road B, C and D) are quite similar for all the crossover  
techniques studied except for the one and two-point crossover techniques. For these 
techniques there is positional bias and their behavior is poor with respect to those  
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Fig. 5. Average fitness on  Royal Road A. 

 
Fig. 6. Average fitness on Royal Road B. 
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Fig. 7. Average fitness on Royal Road  C. 

 
Fig. 8. Average fitness on Royal Road D. 
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codifications where the definition length of the building blocks is larger  as compared 
with those in which the length is smaller. The evolution of the average of the best 
individuals for the codification Royals Road B, C and D are shown in Figs. 6, 7 and 8  
respectively. 

For this type of test database there is no individual contributions of each locus, but 
the contribution to the objective function is only considered when the complete scheme 
appears. Due to this, the probability vector used in PAX only receive useful information 
on specific loci when this is part of a scheme completely constituted on one individual. 
This is the reason why PAX uses approximately a 15% more computations than SANUX  
and discrete crossover in reaching the maximum. Compared with the uniform crossover, 
the number of computations is similar, fact that can be observed from Figs. 4 to 8. 

It is important to point out that in the case of the selective crossover we were not able 
to reproduce the results reported in the thesis by Vekaria27 and the performance was the 
worse of all the schemes studied. 

5.3.   Random L-MaxSAT 

The average fitness reached by the best individual after 600 generations is shown in 
Table 4. This average is obtained over all the initial populations with different epitasis 
levels, using the testing function L-SAT. In parenthesis the standard deviation is shown. 
 
Table 4. Average maximum reached by the best individual for database LSAT with different epitasis degrees.    
In parenthesis the standard deviation is shown. 

Crossover/Basis LSAT-200 LSAT-1200 LSAT-2400 

PAX 1.0000 
(0) 

0.9558 
(0.0028) 

0.9347 
(0.0022) 

Discrete 0.9941 
(0.0043) 

0.9336 
(0.0036) 

0.9176 
(0.0028) 

One-point 
0.9980 

(0.0031) 
0.9408 

(0.0042) 
0.9231 

(0.0032) 

Two-points 
0.9981 

(0.0031) 
0.9411 

(0.0039) 
0.9235 

(0.0031) 

Uniform 
0.9934 

(0.0041) 
0.9330 

(0.0037) 
0.9171 

(0.0027) 

Selective 
0.9936 

(0.0057) 
0.9343 

(0.0051) 
0.9184 

(0.0038) 

SANUX 0.9944 
(0.0043) 

0.9337 
(0.0036) 

0.9178 
(0.0028) 

 
In Figs. 9 to 11 the average curve obtained for each epitasis degree are depicted. 
For the three epitasis levels it is observed that the GA combined with PAX finds a 

solution that satisfies a larger number of clauses, which is reflected in the value reached 
by the adaptation function. This is particularly appreciated in cases of larger epitasis, 
where some clauses may not be feasible since they are contradictory to each other. 
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Fig. 9. Average fitness over the basis LSAT-200. 

 

 
Fig. 10. Average fitness over the basis LSAT-1200. 
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Fig. 11. Average fitness over the basis  LSAT-2400. 

 
Another interesting factor is the larger evolution speed reached by the GA using PAX 

as compared with the other crossover methodologies. For example, for the case of 3-SAT 
with an epitasis level of 300 clauses, the GA with PAX takes on average about 15% of 
the time taken by one and two-point crossover. 

The good performance exhibited by the GA using PAX for high epitasis levels is 
explained as follows. Although PAX is performing an independent estimation for each 
locus through the probability vector, if appears an individual satisfying a larger number 
of clauses (which is reflected in its adaptation function) the values contained in each 
locus are distributed in a faster way to the rest of the population. This is due to the way in 
which the probability vector is updated, giving higher weights to those individuals 
presenting a better behavior.    

5.4.   Himmelblau function 

In Table 5 the average number of individuals and its standard deviation around the four 
maxima, considering two different radii is shown. This information was extracted from 
generation 100 and 200. 

Notice that the variance around each maximum using PAX with γ = 0.2 is larger than 
the rest of crossover methodologies. Since this is a problem with multiple maxima, the 
maximum found first by the algorithm will be surrounded by a larger number of  
 



1152    S. A. Salah, M. A. Duarte-Mermoud & N. H. Beltrán 

Table 5. Average number of individuals around the maxima of the Himmelblau function. In parenthesis the 
standard deviation is shown. 

Maximum Radius Generation 
PAX 

(γ = 0.2) 
PAX 

(γ = 0.002) 
Discrete 

One-
Point 

Two 
Point 

Un i fo r m SANUX 

Point 
(3,2) 

0.1414 

100 
65.50 

(42.75) 
39.41 

(21.44) 
29.26 

(13.70) 
16.03 

(10.57) 
28.92 

(13.05) 
35.52 

(17.27) 
1.67 

(1.65) 

200 
69.03 

(43.67) 
56.92 

(26.33) 
44.29 

(14.38) 
27.93 

(11.44) 
36.00 

(11.10) 
48.96 

(18.18) 
2.08 

(2.13) 

0.0141 

100 
8.48 

(23.25) 
1.51 

(5.48) 
0.28 

(0.92) 
0.02 

(0.21) 
0.41 

(1.04) 
0.91 

(3.92) 
0.01 

(0.08) 

200 
25.89 

(41.68) 
23.81 

(27.99) 
6.85 

(9.48) 
1.04 

(3.45) 
10.41 

(10.87) 
17.58 

(19.99) 
0.01 

(0.10) 

Point 
(3.6,-1.8) 

0.1414 

100 
11.02 

(27.71) 
16.62 

(15.89) 
12.94 
(9.75) 

17.38 
(8.99) 

15.38 
(9.99) 

15.33 
(12.50) 

1.33 
(1.37) 

200 
11.20 

(29.14) 
21.21 

(20.37) 
18.96 

(10.95) 
25.25 

(10.39) 
19.03 
(9.76) 

20.26 
(13.65) 

1.70 
(1.78) 

0.0141 

100 
0.19 

(3.20) 
0.10 

(0.70) 
0.03 

(0.18) 
0.12 

(0.55) 
0.21 

(0.94) 
0.03 

(0.22) 
0.00 

(0.03) 

200 
1.18 

(9.71) 
2.52 

(10.55) 
0.36 

(1.71) 
2.42 

(5.45) 
3.63 

(6.58) 
1.18 

(4.63) 
0.00 

(0.05) 

Point 
(–3.7, –3.3) 

0.1414 

100 
5.00 

(18.59) 
5.09 

(6.18) 
5.55 

(4.84) 
9.25 

(6.43) 
8.46 

(5.66) 
5.87 

(6.05) 
1.21 

(1.22) 

200 
5.30 

(20.55) 
5.00 

(7.52) 
8.28 

(6.14) 
13.25 
(7.26) 

12.23 
(6.34) 

7.63 
(7.26) 

1.50 
(1.50) 

0.0141 

100 
0.27 

(4.10) 
0.01 

(0.14) 
0.00 

(0.05) 
0.02 

(0.16) 
0.03 

(0.17) 
0.01 

(0.08) 
0.00 

(0.04) 

200 
0.97 

(9.25) 
0.20 

(2.12) 
0.06 

(0.32) 
0.29 

(1.18) 
0.34 

(1.10) 
0.10 

(0.65) 
0.00 

(0.04) 

Point 
(–2.8, 3.1) 

0.1414 

100 
12.25 

(29.40) 
12.42 

(12.24) 
10.38 
(7.43) 

13.33 
(7.92) 

21.08 
(10.59) 

11.96 
(10.45) 

1.71 
(1.58) 

200 
13.33 

(32.02) 
14.02 

(16.61) 
13.65 
(8.51) 

17.20 
(8.24) 

26.67 
(10.90) 

15.20 
(12.42) 

2.07 
(1.91) 

0.0141 

100 
0.72 

(7.41) 
0.04 

(0.35) 
0.02 

(0.17) 
0.15 

(0.73) 
1.06 

(2.86) 
0.03 

(0.36) 
0.00 

(0.03) 

200 
2.60 

(14.77) 
1.14 

(5.62) 
0.25 

(1.14) 
1.95 

(4.42) 
9.16 

(10.25) 
1.02 

(4.72) 
0.00 

(0.04) 

 
 

individuals of the population, since the value of the variables will be diffused through the 
probability vector and therefore the variance of the number of individuals around the 
maximum is larger for PAX. 

This larger diffusion of the maximum brings as a consequence that also PAX with  
γ = 0.2 has a little  better speed of convergence. In Fig. 12  the average evolution of the 
individuals when applying the different crossover schemes over the Himmelblau function 
is shown. 

It is surprising that SANUX, which showed a good behavior in the other test 
functions, exhibits a rather modest behavior this time. 
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Fig. 12. Average adaptation function for Himmelblau problem. 

5.5.   Bohachevsky function 

Next, in Fig. 13 it is shown the average curves obtained by using the best individual                
of each population for the crossover techniques under study, for the case of the 
Bohachevsky function. 

In general the results are quite similar to those corresponding to the Himmelblau 
function, where there is a higher diffusion of the optimum in the population when                
PAX is used with  γ = 0.2. All the schemes simulated reach the global maximum. The 
number of individual around the global optimum can be seen in Figs. 14 and 15 for two 
different values of the radius. 

When analyzing the number of individuals around the optimum in PAX and 
considering a radius of 0.01414, the number of individuals approaching the optimum 
experiment a stagnation, which is attributed to a possible convergence (for the 
simulations using some initial population) to the optimum value around a radius of 
0.01414. This behavior is not observed when a smaller learning rate γ = 0.002 is used. 
This can be seen as one of the possible disadvantages of PAX with respect to other 
methodologies. Premature convergence appears also when using a selection of 
individuals highly biased to the best individuals. The role of the parameters of PAX in the 
trade-off of exploration and exploitation will be determinant to avoid this kind of 
problems. The effect of the parameter modification can be seen through the previous 
example where different learning rates are used obtaining also different results. 
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Fig. 13. Average fitness function using the Bohachevsky function. 

 

 
Fig. 14. Evolution of the average number of individuals around the optimum of the Bohachevsky function 
(Radius = 0.1414). 
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Fig. 15. Evolution of the average number of individuals around the optimum of the Bohachevsky function 
(Radius = 0.01414). 

6.   Analysis and Discussion of the Results 

The simulations were carried out in 12 Pentium IV computers of 1.5 GHz and 256 MB of 
RAM memory running independently. The software used for the simulation was 
MATLAB 6.5 with the Toolbox Genetic Algorithm.34 The different crossover 
methodologies studied do not present important differences as far as the processing time 
per generation is concerned. However the processing time is different depending on the 
function to be considered. 

In the case of the ONEMAX problem, the approximate time for the evaluation of each 
individual is 75 [ms] giving a processing time per simulation (a complete run for an 
initial population) from 0.56 [s] for the case of PAX until 17.2 [s] for the selective 
crossover case. 

For the case of Royal Road functions the evaluation is approximately 1.04 [s] giving 
processing times for one simulation ranging from 11.25 [s] to 47.03 [s].  

In the case of L-SAT functions, the processing time depends on the epitasis level. 
With 200 clauses an average time of 6.82 [ms] is obtained for the evaluation of each 
individual, giving processing times of 5 minutes per simulation. It is important to notice 
that for each crossover method  about 3,500 simulations were performed, taking about 
752 hours to obtain a result (on one computer). In the case of 600 clauses the evaluation 
of each individual is slower taking about 19.45 [ms], which corresponds to 13 minutes 
per simulation, taking approximately 752 hours to obtain a result (on one computer). If 
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the number of clauses is augmented to 1200, the time also increases requiring 38.77 [ms] 
per evaluation and 26 minutes per simulation (4 months of simulations on one computer). 
In order to reduce the computation time 12 computers were used in the study.  

The time used to evaluate the Himmelblau function is about 3.03 [ms] and                      
6.6 seconds per simulation. In the case of the Bohachevsky function the average time is 
15.12 [ms] per evaluation and 10.52 [s] per simulation.   

In the optimization problems with a unique maximum and with individual 
contributions of each bit to the adaptation function, like the ONEMAX and L-SAT, it is 
observed that the performance of PAX  is much better in the sense of the solution reached 
as well as in the computations needed to reach it. In the case of ONEMAX it is required 
only a 15.81% of the computations needed by SANUX, the methodology which is in 
second place.  

For L-SAT problems with a low epitasis level, the utilization of PAX reveals that a 
lower number of computations to reach the maximum is necessary as compared to the 
other schemes. When using PAX and the epitasis level is augmented, besides reaching 
the results obtained by the other methodologies with a lower number of computations, the 
solution found by PAX is superior in the sense that a larger number of clauses is satisfied. 

When there is no individual contribution to the adaptation function, the performance 
of the proposed methodology is slightly inferior with respect to the other methodologies 
used in the study and similar to that using uniform crossover. An example of this can be 
found with the different codification of the Royal Road problem, where it can be 
appreciated that PAX has no positional bias and the evolution of the GA with PAX is 
slightly inferior than the others using up to 15% more computations. This result is 
attributed to the non existence of individual contributions of each locus to the fitness 
function.   

When using PAX in multimodal problems it is appreciated that there is not an evident 
overexploitation that avoids reaching results close to the maximum. It is important not to 
use too high learning rates since this can lead to premature convergence.  

For the case of the Himmelblau function, the four maxima are reached. The variance 
of the number of individuals around each is higher for the case of PAX with a high 
learning rate. This is attributed to the fact that the optimum solution which is reached first 
is diffused in the population, although the other solutions are also reached and 
maintained.  

For the Bohachevsky function, the results indicate that using PAX the global 
maximum is reached without premature convergence to some local maximum. Similar to 
the case of the Himmelblau function, it is observed that the learning rate determines the 
speed of convergence as well as the number of individuals around a maximum. With 
small learning rates, the speed of convergence is slower and the increment in the number 
of individuals around the maximum is also lower.   

In conclusion, PAX presents significant advantages in the problems with a unique 
maximum and when each locus contributes individually to the objective function. In the 
multiple maxima problems or when there are no explicit contributions of each locus to 
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the objective function,  PAX has no significant advantages over the other methodologies 
and its performance is similar. 

7.   Conclusions 

A new crossover methodology for GAs, denoted as PAX, has been proposed in this 
paper. The method include the estimation of the probability distribution of the population, 
in order to store in a unique probability vector P information about the best and the worse 
solutions of the problem to be optimized.  

From the tests performed over artificial problems like L-SAT, ONEMAX, Royal 
Road, Himmelblau and Bohachevsky functions, as well as over a Chilean wine database 
composed of liquid chromatograms (not shown here)36,37,38 it can be seen that using PAX 
in an optimization problem with only one global optimum where there exist individual 
contributions of each bit of the chromosome to the objective function, finds better 
solutions using a much lesser number of computations as compared with the other 
crossover schemes studied. 

In problems where there are no explicit contributions of each bit of the chromosome 
to the objective function, the proposed methodology evolves in a similar fashion to the 
other schemes studied. 

Although the proposed methodology does not correspond to those where the 
distribution is estimated using a jointly probability approach, PAX has good performance 
in problems with different epitasis degrees, since the dependence or epitasis is reflected 
in the probability vector. 

When facing multimodal problems, PAX finds all the different optima even though in 
some cases a premature convergence scenario can be found. This premature convergence 
can be controlled through the different parameters of the method such as the learning 
rate, the bounding parameters and the forgetting factor.   

Comparing PAX with other adaptive schemes such as SANUX and Selective 
Crossover, it presents a competitive behavior in one maximum problems. When applied 
to multimodal problems PAX retains in a better fashion the characteristics observed in 
one maximum problems whereas the other adaptive schemes strongly deteriorate their 
performances. 

The introduction of new parameters in the proposed crossover methodology gives 
advantages and disadvantages. The advantages are that the evolution of the GA can be 
handled with these parameters. The disadvantages are that more parameters have to be 
adjusted which can generate very different results depending on the values chosen for the 
parameters.  

Finally, it is suggested to use PAX in order to face one maximum optimization 
problems with GA, because the advantages can be considerable whereas the 
disadvantages are rather small. Even considering a situation of premature convergence, 
due to the high speed attained by the optimization process with PAX, this could be used 
as a first step within a scheme of approaching the optimum. Next we can proceed to a 
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second phase that considers as initial population the solutions attained with PAX. This 
kind of idea has been used by Beligiannis et al.39 

8.   Future Research 

From the results obtained in this work it is possible to visualize several future research 
lines. One interesting subject for further study is the inclusion of mutation using a 
probability vector updated in a similar fashion like the one proposed in PAX. This will 
allow having more control over the loci to mutate improving a possible scenario of 
premature convergence. 

Also it is important to modify in the proposed methodology the way in which the 
probability vector is updated, passing from an independent probability approach to a one 
considering jointly probabilities, such as the one presented in the methodology BMDA. 

It is also attractive to study the use of the probability vector considered in PAX in 
EDA schemes, where it is possible to consider a probability estimate which is close to the 
best individuals and it is far from the worst individuals. 

Besides, we can think of developing an updating procedure for the probability vector 
for mutimodal problems, where more than one probability vector could be considered. 
These vectors could be updated with adaptation functions based on the closest individuals 
to be considered only when these individuals are used in the crossover. 

Another modification that can be studied for the proposed scheme PAX, could 
consider the use of adjustable time-varying  parameters, allowing for example a wider 
diffusion of the best solutions at the beginning of the execution and a lower diffusion of 
these from a specific generation and on (according to a decreasing function of the number 
of generations). 
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