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Passivity-based control for stabilization, regulation and
tracking purposes of a class of nonlinear systems
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Department of Electrical Engineering, University of Chile, Av.Tupper 2007, Casilla 412-3, Santiago, Chile

SUMMARY

In this paper, a new passivity-based control (PBC) scheme based on state feedback is proposed in order to
solve tracking, regulation and stabilization problems for a class of multi-input multi-output (MIMO)
nonlinear systems expressed in the normal form, with time-invariant parameters and locally bounded
reference weakly minimum phase. For the proposed control scheme two new different state feedbacks, one
non-adaptive for the case when the system parameters are assumed to be known and the other adaptive for
the case of unknown parameters, are developed. For the adaptive case it is assumed that the unknown
parameters appear linearly in the equations. Analysis of the transient behaviour of the proposed control
schemes is presented through the simulation of two examples. Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

During the last three decades, feedback stabilization of nonlinear systems has been widely
studied [1–13]. Different techniques, non-adaptive as well as adaptive, have been used to solve
this problem. Amongst the most interesting we can cite is the work by Aeyels in 1985 [1] which
considers the stabilization problem via non-adaptive smooth feedback for systems of the form

’xðtÞ ¼ f ðxÞ þ buðtÞ in the neighbourhood of an equilibrium point. Additionally, by means of
centre manifold theory a lower order system is introduced, showing that if this system is
stabilizable then also is the original system. Marino and Tomei [6] presented a global robust
stabilizing non-adaptive state feedback controller for a class of single-input nonlinear systems.
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The system has bounded unmodelled time-varying disturbances, whose bounds are known,
entering nonlinearly in the state equations. The design assumes that the undisturbed system is
globally feedback linearizable and that a triangularity condition holds for the uncertain terms.

For the case of stabilizing locally weakly minimum-phase nonlinear systems with relative
degree 1, passivity-based control (PBC) is an important methodology [2–5, 8–10]. This technique
is based on two steps; first, it obtains a Cr-passive equivalent nonlinear system via state
feedback, and then a stabilizing controller is applied to the passive system, which is easier to
control than the original system. If the system is already passive the controller can be directly
applied. A synthesis of concepts and conditions under which the nonlinear system with zero
equilibrium point, represented in the normal form, can be rendered Cr-passive via smooth non-
adaptive state feedback are presented in [5]. The system considered has the following form:

’yðtÞ ¼ aðA; y; zÞ þ bðB; y; zÞuðtÞ

’zðtÞ ¼ f0ðC; zÞ þ pðP; y; zÞyðtÞ

where f0ðC; zÞ is the zero dynamics and all the system parameters are assumed to be known.
Feedback passivity by means of state feedback for systems containing uncertain elements is

studied in [7–10]. This problem is also treated in [14–17] for nonlinear systems with linear
parametric uncertainties. Here, adaptive state feedbacks to obtain Cr-passive equivalent systems
were proposed for nonlinear systems considering the same conditions as in [5], but restricted to a
class of nonlinear systems with linear explicit parametric dependence in the normal form
expressed as

’yðtÞ ¼Aa0ðy; zÞ þ Bb0ðy; zÞuðtÞ

’zðtÞ ¼Cf 00ðzÞ þ p0ðy; zÞPyðtÞ

where A;B;C and P are unknown parameters. These adaptive techniques assume unknown
parameters and they are robust under parameter variations. For the case where all parameters
of this reduced class of nonlinear systems with linear explicit parametric dependence are
assumed to be known, the non-adaptive solution is a particularization of the adaptive solution.
The results from [14,17] are developed for stabilizing single-input single-output (SISO)
nonlinear systems, using time-varying adaptive gains and also for fixed adaptive gains for
adjusting the adaptive parameters, respectively. The results from [15,16] are extensions for the
stabilization of multi-input multi-output (MIMO) nonlinear systems. The stabilization scheme
shown in Figure 1 has been proposed by Byrnes et al. [5], Duarte-Mermoud et al. [14–16] and

Figure 1. General PBC scheme for stabilization purposes.
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Castro-Linares and Duarte-Mermoud [17] for the non-adaptive and adaptive cases. Once the
system is rendered Cr passive, if it is locally zero-state observable, a controller of the form
upðtÞ ¼ �KyðtÞ with K 2 Rm�m any positive definite matrix, asymptotically stabilizes the system
around the equilibrium point x ¼ 0:

The equivalence between model reference adaptive control (MRAC) theory [18] and the
adaptive PBC for stabilization purposes [17] has been established in [19]. In [18, 19] it is shown
that obtaining an asymptotically stable error model (by any technique) is the main objective of
the adaptive control theory. Based on the results given in [19] the adaptive state feedback
presented in this paper was developed.

A generalization of the nonlinear non-adaptive [5] and adaptive state feedback [17] proposed
earlier for stabilization is presented in this paper. The new state feedbacks are proposed as part
of a new control scheme, which also considers a controller for tracking an arbitrary
differentiable reference signal, this being the main result of this paper. In this case locally
bounded reference weakly minimum-phase property is needed to achieve tracking.

For completeness, in Section 2 of this paper, the basic concepts of non-adaptive and adaptive
state feedbacks involved in a PBC scheme for stabilization of nonlinear systems are briefly
exposed. In Section 3, a new general PBC scheme for tracking purposes, together with non-
adaptive and adaptive state feedbacks, is proposed. Simulation results of the proposed control
schemes for the non-adaptive and adaptive cases are exposed in Section 4, to verify the
behaviour of the controlled system. Finally, in Section 5 some conclusions are drawn.

2. PBC RELATED CONCEPTS

Basic passivity concepts given in [5] consider a nonlinear system of the form

’xðtÞ ¼ f ðxÞ þ gðxÞuðtÞ

yðtÞ ¼ hðxÞ
ð1Þ

with state space X ¼ Rn; set of input values on U ¼ Rm and set of output values Y ¼ Rm: The
set U of admissible inputs consist of all piecewise continuous functions R! U ¼ Rm: Besides,
f 2 Rn and g 2 Rn�m: f and the m columns of g are smooth vector fields (i.e. f ; g 2 C1), and
h 2 Rm is a smooth mapping (h 2 C1). It is supposed that the vector field f has at least one
equilibrium point and without loss of generality, after possibly a co-ordinate shift, we can write
that f ð0Þ ¼ 0 and hð0Þ ¼ 0 [5]. Next, for completeness we recall some definitions and
assumptions from [5], particularized for systems of the form (1).

Definition 2.1 (Byrnes et al. [5])
A system of the form (1) is said to be Cr-passive if there exists a Cr non-negative function
V : Rn ! R; called storage function, with Vð0Þ ¼ 0; such that for all u 2 U; for all xð0Þ ¼ x0 2 X
and t50; it satisfies

VðxðtÞÞ � Vðx0Þ4
Z t

0

yTðsÞuðsÞ ds ð2Þ

where V is a continuous storage function with continuous r-order derivatives (V 2 Cr).
Condition (2) can also be expressed as ’V4yðtÞTuðtÞ: The system is said to be lossless for the case
when ’V ¼ yðtÞTuðtÞ:
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Definition 2.2 (Byrnes et al. [5])
A system of the form (1) is locally zero-state detectable if there exists a neighbourhood N of 0
such that for all x0 2 N we have

hðFðt;x0; 0ÞÞ ¼ 0 for all t50 ) lim
t!1

Fðt; x0; 0Þ ¼ 0 ð3aÞ

where Fðt; x0; 0Þ denotes the state response at time t for zero input, starting from the initial state
x0 at t ¼ 0: If N ¼ X ; then the system is said to be zero-state detectable.

System (1) is locally zero-state observable if there exists a neighbourhood N of 0 such that for
all x0 2 N we have

hðFðt;x0; 0ÞÞ ¼ 0 for all t50 ) x ¼ 0 ð3bÞ

If N ¼ X ; then the system is said to be zero-state observable.

Assumption 2.1 (Byrnes et al. [5])
Let us assume that system (1) has relative degree f1; 1; 1; . . . ; 1g at x ¼ 0; the matrix
LghðxÞ ¼ ð@hðxÞ=@xÞgðxÞ is non-singular in a neighbourhood of x ¼ 0; and the distribution
spanned by vector fields g1ðxÞ; . . . ; gmðxÞ is involutive.

Definition 2.3 (Byrnes et al. [5])
It is shown in [5] that for a system (1) under Assumption 2.1, it is possible to find a new set of
local co-ordinates zðxÞ 2 Rn�m; m4n; defined around x ¼ 0 and vanishing at x ¼ 0; under which
this system, together with the m components of the output map y ¼ hðxÞ; can be represented in
the normal form as follows:

’yðtÞ ¼ aðA; y; zÞ þ bðB; y; zÞuðtÞ

’zðtÞ ¼ cðC; y; zÞ
ð4Þ

where aðA; y; zÞ 2 Rm; bðB; y; zÞ 2 Rm�m; cðC; y; zÞ 2 Rn�m and bðB; y; zÞ is invertible for all ðy; zÞ
around ð0; 0Þ: The zero dynamics of system (4), denoted as ’z ¼ cðC; 0; zÞ ¼ f0ðC; zÞ 2 Rn�m; is
defined [5] as those internal dynamics which are consistent with the external constraint y ¼ 0:
Thus, system (4) can be represented as

’yðtÞ ¼ aðA; y; zÞ þ bðB; y; zÞuðtÞ

’zðtÞ ¼ f0ðC; zÞ þ pðP; y; zÞyðtÞ
ð5Þ

where f0ðC; zÞ 2 Rn�m and pðP; y; zÞ 2 Rðn�mÞ�m: A;B;C and P are symbolic representations of
the system parameters. Note that cðC; y; zÞ ¼ f0ðC; zÞ þ pðP; y; zÞyðtÞ 2 Rn�m:

Definition 2.4 (Byrnes et al. [5])
Let us assume that Lghð0Þ is non-singular. System (5) is said to be locally weakly minimum phase
if there exists a positive definite Cr-function WðzÞ; defined near 0, with r52 and Wð0Þ ¼ 0;
satisfying

Lf0ðC;zÞWðzÞ ¼
@WðzÞ
@z

f0ðC; zÞ40 ð6Þ

for all C and all z in the neighbourhood of zðtÞ ¼ 0:
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Definition 2.5 (Byrnes et al. [5])
System (1) is said to be locally equivalent via feedback to a Cr�passive system, if there exists a
state feedback uðtÞ such that the resulting closed-loop system is passive with a proper Cr-storage
function V ; according to Definition 2.1.

Assumption 2.2 (Byrnes et al. [5])
Let us assume that system (2) is locally weakly minimum phase, according to Definition 2.4.

Assumption 2.3 (Byrnes et al. [5])
Let us assume that system (4) has a matrix bðB; y; zÞ which is invertible for all ðy; zÞ (globally
invertible).

For a system of form (1) under Assumptions 2.1–2.3 the following stabilization scheme shown
in Figure 1 has been proposed [5, 14–17] for the non-adaptive and adaptive cases.

2.1. Non-adaptive stabilization using PBC

Let us consider system (1) under Assumptions 2.1–2.3. We will first assume that plant
parameters and vector fields of its normal form (5) are completely known. To make system (5)
equivalent via feedback to a Cr-passive system, in [5] it is chosen a state feedback of the form

uðtÞ ¼ bðB; y; zÞ�1yoðtÞ ð7Þ

where y ¼ ½�Im � Im Im� 2 Rm�3m; o ¼ ½aTðA; y; zÞ ðLpðP;y;zÞW0ðzÞÞ
T ðupðtÞÞT�T 2 R3m and

upðtÞ 2 Rm is a new control input. bðB; y; zÞ 2 Rm�m; aðA; y; zÞ 2 Rm and LpðP;y;zÞW0ðzÞ 2 Rm are
smooth functions defined locally near x ¼ 0 and bðB; y; zÞ are invertible for all ðy; zÞ around ð0; 0Þ;
(Assumption 2.3). Im denotes the identity matrix of dimension m: For the resultant closed-loop
system we can write

’Vðy; zÞ ¼
@Vðy; zÞ
@y

� �T

½aðA; y; zÞ þ bðB; y; zÞbðB; y; zÞ�1yoðtÞ�

þ Lf0ðC;zÞW0ðzÞ þ ðLpðP;y;zÞW0ðzÞÞ
Ty

where V is a positive Cr-storage function defined as Vðy; zÞ ¼ ð1=2ÞyTyþW0ðzÞ; with W0ðzÞ
satisfying (6) and Vð0Þ ¼ 0: Since @Vðy; zÞ=@y ¼ y; we will have the following:

’Vðy; zÞ ¼ yT½aðA; y; zÞ þ yoðtÞ� þ Lf0ðC;zÞW0ðzÞ þ ðLpðP;y;zÞW0ðzÞÞ
Ty

Replacing y and o in (7) we get

’Vðy; zÞ ¼ yTðtÞupðtÞ þ Lf0ðC;zÞW0ðzÞ4yTðtÞupðtÞ ð8Þ

where in the previous expression we have used Assumption 2.2.
According to Definition 2.5, the system has been turned passive from upðtÞ to yðtÞ via the state

feedback (7) and if it is zero-state observable, according to Definition 2.2, then this system can
be stabilized using the results contained in Theorem 2.1 stated next.

Theorem 2.1 (Byrnes et al. [5])
Let us consider a passive system of the form (5) satisfying Assumptions 2.1–2.3, with a Cr; ðr51Þ
proper storage function V, which is positive definite. Suppose the system is locally zero-state
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observable, according to Definition 2.2. Then the controller

upðtÞ ¼ �KyðtÞ ð9Þ

with K 2 Rm�m any positive definite matrix, asymptotically stabilizes the system around the
equilibrium point x ¼ 0:

Proof
Replacing the control law given by (9) in inequality (8), we can obtain the following:

’Vðy; zÞ4� yðtÞTKyðtÞ ð10Þ

which is negative semi-definite, assuring stability of the equilibrium x ¼ 0; and therefore y; z 2
l1: Integrating both sides of Equation (10) we obtainZ 1

0

’V dt4�
Z 1
0

yðtÞTKyðtÞ dt

or equivalently

Vð1Þ � Vð0Þ4�
Z 1
0

yðtÞTKyðtÞ dt

Therefore, we can conclude that yðtÞ 2 l2: From the controller definition given in (7) and since
upðtÞ 2 l1; we conclude that uðtÞ 2 l1: From (5) we can write ’y 2 l1: Using the Barbalat Lemma
[18], since yðtÞ 2 l2 and ’yðtÞ 2 l1; then limt!1 yðtÞ ¼ 0: Since the system is locally zero-state
observable and additionally limt!1 yðtÞ ¼ 0 then we can conclude that limt!1 zðtÞ ¼ 0: &

From the above result we can conclude that the system is asymptotically stable around the
equilibrium point x ¼ 0: The resulting PBC scheme is shown in Figure 1, where the state
feedback is fixed, since the parameters are assumed to be known.

If system (1) is zero-state observable and V is proper, controller (9) globally asymptotically
stabilizes the equilibrium point x ¼ 0:

2.2. Adaptive stabilization using PBC

Let us consider system (1) under Assumptions 2.1–2.3, unknown and constant plant parameters,
and with linear explicit parametric dependence of the form

’yðtÞ ¼Aa0ðy; zÞ þ Bb0ðy; zÞuðtÞ

’zðtÞ ¼ f0ðC; zÞ þ p0ðy; zÞPyðtÞ
ð11Þ

where a0ðy; zÞ 2 Rp; b0ðy; zÞ 2 Rm�m; f0ðC; zÞ 2 Rn�m; p0ðy; zÞ 2 Rðn�mÞ�m and b0ðy; zÞ are inver-
tible for all ðy; zÞ (Assumption 2.4). A 2 Rm�p; B 2 Rm�m;P 2 Rm�m are the parameters of the
plant, and B is invertible (Assumption 2.4). For system (11), under the new Assumption 2.4
stated below, we choose the following adaptive state feedback [5, 16]

uðtÞ ¼ b0ðy; zÞ�1yðtÞoðtÞ ð12Þ

where o ¼ ½a0ðy; zÞT ðLp0ðy;zÞW0ðzÞÞ
T upðtÞT�T 2 Rpþ2m: upðtÞ 2 Rm is the new control input and

yðtÞ ¼ ½y1ðtÞ y2ðtÞ y3ðtÞ� 2 Rm�ðpþ2mÞ are adjustable parameters with y1ðtÞ 2 Rm�p; y2ðtÞ 2 Rm�m
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and y3ðtÞ 2 Rm�m: These parameters are updated using the adaptive law

’yðtÞ ¼ �signðBÞyðtÞoðtÞT ð13Þ

In the above expression, matrix B has been assumed to be diagonal and signðBÞ represents a
diagonal matrix in whose diagonal are located the sign of the elements of the diagonal matrix B;
which are assumed to be known (see Remark 2.1 for more general forms of B).

Assumption 2.4 (Castro-Linares and Duarte-Mermoud [17])
Let us assume that B is a diagonal matrix and that matrices B and b0ðy; zÞ are invertible for all
ðy; zÞ (globally invertible).

Let us consider the storage function Vðy; z;FÞ ¼ 1
2
yTyþW0ðzÞ þ 1

2
TraceðjBjFTFÞ: For the

resultant closed-loop system the following equality is satisfied

’Vðy; z;FÞ ¼
@VðyÞ
@y

� �T

½Aa0ðy; zÞ þ Bb0ðy; zÞb0ðy; zÞ�1yðtÞoðtÞ�

þ Lf0ðC;zÞW0ðzÞ þ ðLp0ðy;zÞW0ðzÞÞ
TPyþ TraceðjBj ’FðtÞTFðtÞÞ

where FðtÞ ¼ yðtÞ � yn 2 Rm�ðpþ2mÞ is the parameter error with the ideal parameters
yn ¼ ½yn1 yn2 yn3 � ¼ B�1½�A � P I � 2 Rm�ðpþ2mÞ: V is a Cr-storage function with Vð0Þ ¼ 0: jBj
represents a diagonal matrix in whose diagonal are located the magnitude of the elements of the
diagonal matrix B; which are assumed to be unknown. Since @Vðy; z;FÞ=@y ¼ y; we can write
the following:

’Vðy; z;FÞ ¼ yT½Aa0ðy; zÞ þ ByðtÞToðtÞ�

þ Lf0ðC;zÞW0ðzÞ þ ðLp0ðy;zÞW0ðzÞÞ
TPyþ TraceðjBj ’FðtÞTFðtÞÞ

Replacing y and o in (12) we have

’Vðy; z;FÞ ¼ yT½Aa0ðy; zÞ þ By1ðtÞa0ðy; zÞ þ By2ðtÞLp0ðy;zÞW0ðzÞ þ By3ðtÞupðtÞ � upðtÞ�

þ yTupðtÞ þ Lf0ðC;zÞW0ðzÞ þ ðLp0ðy;zÞW0ðzÞÞ
TPyþ TraceðjBj ’FðtÞTFðtÞÞ

Since yn is constant then we replace ’FðtÞ ¼ ’yðtÞ given by (13) to obtain the following:

’Vðy; z;FÞ ¼ yTðtÞupðtÞ þ Lf0ðC;zÞW0ðzÞ

From Definition 2.4 and Assumption 2.2, Lf0ðC;zÞW0ðzÞ40 and we have

’Vðy; z;FÞ4yTðtÞupðtÞ ð14Þ

According to Definition 2.5, the original system is equivalent via feedback to a passive one.
Furthermore, if the resulting system is zero-state observable according to Definition 2.2, then,

the controller given in (9) asymptotically stabilizes the system around the equilibrium point
x ¼ 0: The proof is similar to that given for Theorem 2.1 in Section 2.1 and therefore it is
omitted. The reader is referred to [15, 16] for more details on the proof. The resulting adaptive
PBC scheme is shown in Figure 1, where the state feedback block is now adaptive.

Remark 2.1
The solution given in (12) and (13) corresponds to the case when matrix B is diagonal. Solutions
for the cases, when B is positive definite and for B general, can be found in [15, 16].
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Remark 2.2
For the class of nonlinear system (11) studied, with linear explicit parametric dependence, the
adaptive solution is a generalization of the non-adaptive one. The particular solution for the
non-adaptive case considers a static state feedback with the controller parameter known, fixed
and equal to the ideal parameters y ¼ yn and oðtÞ ¼ ½a0ðy; zÞT ðLp0ðy;zÞW0ðzÞÞ

T upðtÞT�T:

3. PBC FOR TRACKING PURPOSES

In this section a PBC scheme, which is valid for tracking purposes, is discussed. In what follows
it will be assumed that the reference signal ynðtÞ and its first time derivative ’ynðtÞ are available to
the designer (Assumption 3.1). It is studied that a class of nonlinear systems (1), satisfying
Assumptions 2.1–2.3 (or 2.4), which according to Definition 2.3, can be represented as

’*yðtÞ ¼ aðA; *yþ yn; zÞ þ bðB; *yþ yn; zÞuðtÞ � ’yn

’zðtÞ ¼ cðC; *yþ yn; zÞ
ð15Þ

where *yðtÞ ¼ yðtÞ � yðtÞn: A;B and C are symbolic representations of the system parameters. The
zero dynamics of system (15), can be identified as ’z ¼ cðC; 0þ yn; zÞ ¼ f0ðC; yn; zÞ 2 Rn�m: Thus,
system (15) can be represented as

’*yðtÞ ¼ aðA; *yþ yn; zÞ þ bðB; *yþ yn; zÞuðtÞ � ’yn

’zðtÞ ¼ f0ðC; yn; zÞ þ dðD; *yþ yn; zÞ*y
ð16Þ

where dðD; *yþ yn; zÞ 2 Rðn�mÞ�m: Similar to the robust minimum-phase definition given in [7] we
introduce the following definition.

Definition 3.1
System (16) is said to be locally bounded reference weakly minimum phase, if there exists a
positive definite Cr-function W0ðzÞ; defined near z ¼ 0; with r52 and W0ð0Þ ¼ 0; satisfying

Lf0ðC;yn;zÞW0ðzÞ ¼
@W0ðzÞ
@z

f0ðC; yn; zÞ40 ð17Þ

for all z in the neighbourhood of z ¼ 0; all bounded reference signals ynðtÞ; and all values of
parameters C:

Now we will assume that system (16) satisfies the following assumptions.

Assumption 3.1
Let us assume that system reference signal ynðtÞ is bounded and its time derivative exists and it is
also bounded and known.

Assumption 3.2
Let us assume that system (16) is locally bounded reference weakly minimum phase, in the sense of
Definition 3.1.

For systems of the form (16) under the Assumptions 3.1, 3.2 and 2.3 (or 2.4) the following
general PBC scheme shown in Figure 2 is proposed. It is valid for the non-adaptive and the
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adaptive cases by suitably choosing the state feedback. This scheme is a generalization of the
schemes proposed earlier in [5, 14–17] and presented in Figure 1.

3.1. Non-adaptive PBC scheme

If we assume that the parameters A;B;C and D are completely known, then we can state the
following theorem regarding the tracking problem for systems that can be represented as in (16).

Theorem 3.1
Let us consider the system defined in (16) and suppose that Assumptions 3.1, 3.2 and 2.3 are
satisfied, where aðA; y; zÞ 2 Rm; bðB; y; zÞ 2 Rm�m; dðD; y; zÞ 2 Rðn�mÞ�m and f0ðC; y; zÞ 2 Rn�m:
A;B;C and D represent the system parameters, which are assumed to be known. The following
non-adaptive state feedback

uðtÞ ¼ bðB; y; zÞ�1yoðtÞ ð18Þ

with y ¼ ½�Im Im� 2 Rm�2m and oðtÞ ¼ ½aðA; y; zÞT ðupðtÞ � LdðD;*yþyn;zÞW0ðzÞ þ ’ynðtÞÞT�T 2 R2m

makes system (16) equivalent to a passive system with a C2-storage function. Furthermore, if we
suppose that the system is locally zero-state observable, then applying the controller

upðtÞ ¼ �K *yðtÞ ð19Þ

with K 2 Rm�m any positive definite matrix and *yðtÞ ¼ yðtÞ � yðtÞn 2 Rm; the resulting overall
system has bounded trajectories and limt!1 *yðtÞ ¼ yðtÞ � yðtÞn ¼ 0:

Proof
After applying the state feedback (18) to system (16), it is as follows:

’*yðtÞ ¼ aðA; *yþ yn; zÞ þ yoðtÞ � ’ynðtÞ

’zðtÞ ¼ f0ðC; yn; zÞ þ dðD; *yþ yn; zÞ*y

     Controlled system ( *( ) ( )y t y t→ )

           

                                 Passive  system from up (t) to y (t)

   + 
+

)(~ ty

State
Feedback

( )y t

)(ty)(tu

)(tz)(ty

-

+

*( )y t

)(tu p
dt

d

)(tz

SystemController

∼

~

Figure 2. General PBC scheme for tracking purposes. Non-adaptive and adaptive cases.
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and considering the definition of y and oðtÞ given in (18) it can be written as

’*yðtÞ ¼ upðtÞ � LdðD;*yþyn ;zÞW0ðzÞ

’zðtÞ ¼ f0ðC; yn; zÞ þ dðD; *yþ yn; zÞ*y

ð20Þ

Let us consider the positive definite storage function defined as Vð*y; zÞ ¼ 1
2
*yðtÞT *yðtÞ þW0ðzÞ:

The first time derivative is

’Vð*y; zÞ ¼ *yTðtÞ’*yðtÞ þ ’W0ðzÞ ð21Þ

Substituting ’*yðtÞ from Equation (20) in the previous expression we obtain

’Vð*y; zÞ ¼ *yTðtÞupðtÞ � *yTðtÞLdðD;*yþyn ;zÞW0ðzÞ þ
@W0ðzÞ
@z

� �T

’zðtÞ ð22Þ

Replacing ’zðtÞ from Equation (20) in the previous expression and using Assumption 3.1 we get

’Vð*y; zÞ ¼ *yTðtÞupðtÞ � *yTðtÞLdðD;*yþyn;zÞW0ðzÞ

þ
@W0ðzÞ
@z

� �T

f0ðC; yn; zÞ þ
@W0ðzÞ
@z

� �T

dðD; *yþ yn; zÞ*y

¼ *yðtÞTupðtÞ þ Lf0ðC;yn ;zÞW0ðzÞ

4 *yðtÞTupðtÞ ð23Þ

In the previous expression we have used Assumption 3.1. Therefore, from Definition 2.5, we can
conclude that the resultant system is passive from upðtÞ to *yðtÞ with a C2 storage function Vð*y; zÞ:

Replacing the controller upðtÞ ¼ �K *yðtÞ in Equation (23) we get

’Vð*y; zÞ4� *yTðtÞK *yðtÞ ð24Þ

which is negative semi-definite, assuring global boundedness of all trajectories of the adaptive
system.

In particular, we can conclude that *y; z 2 l1 and since yn 2 l1 by hypothesis, then y 2 l1:
Integrating both sides of Equation (24) we obtain the following:Z 1

0

’V dt4�
Z 1
0

*yðtÞTK *yðtÞ dt

or equivalently

Vð1Þ � Vð0Þ4�
Z 1
0

*yðtÞTK *yðtÞ dt

Therefore, we can conclude that *yðtÞ 2 l2: From Equation (19) upðtÞ 2 l1; and from (20) we can
write ’*y 2 l1: Using the Barbalat Lemma [18], since *yðtÞ 2 l2 and ’*yðtÞ 2 l1 then limt!1 *yðtÞ ¼ 0;
which means that yðtÞ ! yðtÞn: &

To illustrate the previous result, we will consider the following example.
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Example 3.1
Let us consider the second-order system of form (1) defined as

’xðtÞ ¼
�3x21ðtÞ � x2ðtÞ

x1ðtÞ � 5x32ðtÞ

" #
þ

1

0

" #
uðtÞ

yðtÞ ¼ x1ðtÞ

ð25Þ

where we can identify

f ðxÞ ¼
�3x21 � x2

x1 � 5x32

" #
; gðxÞ ¼

1

0

" #
; hðxÞ ¼ x1 ð26Þ

with x ¼ ½x1 x2�T 2 R2 and y; u 2 R are scalar functions.

We can readily check that the system has an equilibrium point at ð0; 0Þ; relative degree
LghðxÞ ¼ ð@hðxÞ=@xÞgðxÞ ¼ 1=0 and the distribution spanned by gðxÞ ¼ ½1 0�T is involutive.
Since Assumption 2.1 is satisfied, then the system can be represented in form (16) by choosing

yðtÞ ¼ x1 2 R; zðtÞ ¼ x2 2 R; *yðtÞ ¼ yðtÞ � ynðtÞ 2 R

aðA; y; zÞ ¼ �3y2 � z 2 R; bðB; y; zÞ ¼ 1 2 R

f0ðC; yn; zÞ ¼ �5z3 þ yn 2 R; dðD; y; zÞ ¼ 1 2 R

ð27Þ

It can also be checked that system (25) is locally bounded reference weakly minimum phase
according to Definition 3.1. It has associated a positive definite storage function W0 ¼ 1

2
z2; with

W0ð0Þ ¼ 0; such that Lf0ðC;yn ;zÞW0ðzÞ ¼ ð@W0ðzÞ=@zÞf0ðC; yn; zÞ40 [20].
Since all the assumptions of Theorem 3.1 are satisfied, then there exists a state feedback of the

form (18) with

oðtÞ ¼ ½�ð3y2 þ zÞ ðupðtÞ � zþ ’ynðtÞÞ�T 2 R2

y ¼ ½�1 1�T 2 R2
ð28Þ

which applied to system (25) makes it locally feedback equivalent to a passive system of the form

’*yðtÞ ¼ upðtÞ � zðtÞ

’zðtÞ ¼ � 5z3ðtÞ þ ynðtÞ þ *yðtÞ
ð29Þ

with storage function Vð*y; zÞ ¼ 1
2
*yðtÞ2 þW0ðzÞ; with W0ðzÞ ¼ 1

2
zðtÞ2: Since the system is locally

zero-state observable, applying a controller of the form (19) it is guaranteed that limt!1 *yðtÞ ¼ 0
for any desired bounded trajectory ynðtÞ 2 R whose first time derivative is also known. The
block diagram of the control scheme for Example 3.1 is shown in Figure 3.

3.2. Adaptive PBC scheme

We will consider now the same problem as in Section 3.1 but for the nonlinear system defined as

’*yðtÞ ¼Aa0ð*yþ yn; zÞ þ Bb0ð*yþ yn; zÞuðtÞ � ’yn

’zðtÞ ¼ cðC0; *yþ yn; zÞ ¼ f0ðC; yn; zÞ þ dðD; *yþ yn; zÞ*y
ð30Þ
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which can be written as

’*yðtÞ ¼Aa0ð*yþ yn; zÞ þ Bb0ð*yþ yn; zÞuðtÞ � ’yn

’zðtÞ ¼ f0ðC; yn; zÞ þ d 0ð*yþ yn; zÞDT *y
ð31Þ

Here, we have assumed that system parameters have a linear explicit dependence for aðA; y; zÞ;
bðB; y; zÞ and dðD; y; zÞ; and they are unknown. In this case the following theorem can be stated
for asymptotic tracking, for the simple case when B is a diagonal matrix. For more general cases
see Remark 3.3.

Theorem 3.2
Let us consider the system defined in (31) and that Assumptions 3.1, 3.2 and 2.4 are satisfied,
where a0ðy; zÞ 2 Rp; b0ðy; zÞ 2 Rm�m; f0ðC; yn; zÞ 2 Rn�m and d 0ðy; zÞ 2 Rðn�mÞ�m: A 2 Rm�p;B 2
Rm�m;C 2 Rq and D 2 Rm�m are the unknown system parameters and matrix B is assumed
to be diagonal. Then, the following adaptive state feedback

uðtÞ ¼ b0ðy; zÞ�1yðtÞoðtÞ

yðtÞ ¼ ½y1ðtÞ y2ðtÞ y3ðtÞ� 2 Rm�ðpþ2mÞ with y1ðtÞ 2 Rm�p; y2ðtÞ 2 Rm�m; y3ðtÞ 2 Rm�m

oðtÞ ¼ ½a0ðy; zÞT ðLd 0ð*yþyn ;zÞW0ðzÞÞ
T ðupðtÞ þ ’ynðtÞÞT�T 2 Rðpþ2mÞ

ð32Þ

with the adaptive law

’yðtÞ ¼ �signðBÞ*yðtÞoTðtÞ ð33Þ

makes system (31) equivalent to a passive one with a C2 storage function. signðBÞ represents a
diagonal matrix in whose diagonal are located the sign of the elements of the diagonal matrix B;
which are assumed to be known. Furthermore, if we suppose that the system is locally

Figure 3. Control scheme for Example 3.1.
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zero- state observable, then applying the controller

upðtÞ ¼ �K *yðtÞ ð34Þ

with K 2 Rm�m any positive definite matrix and *yðtÞ ¼ yðtÞ � yðtÞn 2 Rm; the resulting overall
system has bounded trajectories and limt!1 *yðtÞ ¼ yðtÞ � yðtÞn ¼ 0:

Proof
After applying the state feedback (32) to system (31) we can obtain the following:

’*yðtÞ ¼ Aa0ð*yþ yn; zÞ þ ByðtÞoðtÞ

’zðtÞ ¼ f0ðC; *yþ yn; zÞ þ d 0ð*yþ yn; zÞDT *y

which considering the definition of yðtÞ and oðtÞ given in (32) is equal to

’*yðtÞ ¼Aa0ð*yþ yn; zÞ þ By1a0ð*yþ yn; zÞ þ By2Ld 0ð*yþyn ;zÞW0ðzÞ þ By3up þ By3 ’yn � ’yn

’zðtÞ ¼ f0ðC; yn; zÞ þ d 0ð*yþ yn; zÞDT *y
ð35Þ

Adding and subtracting the term upðtÞ; the previous expression can be written as

’*yðtÞ ¼ ðAþ By1Þa0ð*yþ yn; zÞ þ By2Ld 0ð*yþyn;zÞW0ðzÞ þ ðBy3 � IÞup þ ðBy3 � IÞ’yn þ up

’zðtÞ ¼ f0ðC; yn; zÞ þ d 0ð*yþ yn; zÞDT *y
ð36Þ

We define the ideal passivator parameters as

Aþ Byn1 ¼ I ) yn1 ¼ �B
�1A with yn1 2 Rm�p

Dþ Byn2 ¼ I ) yn2 ¼ �B
�1D with yn2 2 Rm�m

Byn3 � I ¼ 0 ) yn3 ¼ B�1 with yn3 2 Rm�m

ð37Þ

Then we can define the parameter error matrix as

FðtÞ ¼ yðtÞ � yn ¼ ½F1ðtÞ F2ðtÞ F3ðtÞ� 2 Rm�ðpþ2mÞ

with

yðtÞ ¼ ½y1ðtÞ y2ðtÞ y3ðtÞ� 2 Rm�ðpþ2mÞ

yn ¼ ½yn1 yn2 yn3 � 2 Rm�ðpþ2mÞ
ð38Þ

Let us consider the following storage function:

Vð*y; z;FÞ ¼ 1
2
*yTðtÞ*yðtÞ þW0ðzÞ þ 1

2
TraceðjBjFðtÞTFðtÞÞ ð39Þ

where jBj represents a diagonal matrix in whose diagonal are located the absolute values of the
diagonal elements of matrix B; which are assumed to be unknown. The first time derivative of V
is equal to

’Vð*y; z;FÞ ¼ *yðtÞT ’*yðtÞ þ ’W0 þ TraceðjBj ’FðtÞTFðtÞÞ

Substituting ’*yðtÞ from Equation (36) in the previous expression and regrouping we obtain

’Vð*y; z;FÞ ¼ *yTðtÞðAþ By1Þa0ð*yþ yn; zÞ þ *yTðtÞBy2Ld 0ð*yþyn ;zÞW0ðzÞ þ *yTðtÞðBy3 � IÞup

þ *yTðtÞðBy3 � IÞ’yn þ *yTðtÞup þ
@W0ðzÞ
@z

’zðtÞ þ TraceðjBj ’FðtÞTFðtÞÞ
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Replacing ’zðtÞ from (36) and using definitions (37) we get

’Vð*y; z;FÞ ¼ *yTðtÞupðtÞ þ *yTðtÞðBy1 � Byn1Þa
0ð*yþ yn; zÞ þ *yTðtÞBy2Ld 0ð*yþyn;zÞW0ðzÞ

þ *yTðtÞðBy3 � Byn3Þu
pðtÞ þ ðBy3 � Byn3Þ’y

nðtÞ þ
@W0ðzÞ
@z

� �T

f0ðC; yn; zÞ

þ
@W0ðzÞ
@z

� �T

dð*yþ yn; zÞDT *yðtÞ þ TraceðjBj ’FðtÞTFðtÞÞ

or equivalently

’Vð*y; z;FÞ ¼ *yTðtÞupðtÞ þ Lf0ðC;yn ;zÞW0ðzÞ þ *yTðtÞBðy1 � yn1Þa
0ð*yþ yn; zÞ

þ *yTðtÞBy2Ld 0ð*yþyn;zÞW0ðzÞ þ *yTðtÞBðy3 � yn3Þu
p þ Bðy3 � yn3Þ’y

nðtÞ

þ ðLd 0ð*yþyn ;zÞW0ðzÞÞ
TDT *yðtÞ þ TraceðjBj ’FðtÞTFðtÞÞ

Regrouping terms we obtain

’Vð*y; z;FÞ ¼ *yTðtÞupðtÞ þ Lf0ðC;yn ;zÞW0ðzÞ þ *yTðtÞBF1a
0ð*yþ yn; zÞ þ *yTðtÞðDþ By2ÞLd 0ð*yþyn ;zÞW0ðzÞ

þ *yTðtÞBF3ðupðtÞ þ ’ynðtÞÞ þ TraceðjBj ’FðtÞTFðtÞÞ

Using the definition of yn2 given by (37) we have the following:

’Vð*y; z;FÞ ¼ *yTðtÞupðtÞ þ Lf0ðC;yn;zÞW0ðzÞ þ *yTðtÞBF1a
0ð*yþ yn; zÞ

þ *yTðtÞðBy2 � Byn2ÞLd 0ð*yþyn ;zÞW0ðzÞ

þ *yTðtÞBF3ðupðtÞ þ ’ynðtÞÞ þ TraceðjBj ’FðtÞTFðtÞÞ

In a more compact form we write

’Vð*y; z;FÞ ¼ *yTðtÞupðtÞ þ Lf0ðC;yn;zÞW0ðzÞ þ *yTðtÞBFðtÞoðtÞ þ TraceðjBj ’FðtÞTFðtÞÞ

Using the property of two vectors that aTb ¼ bTa ¼ TraceðbaTÞ ¼ TraceðabTÞ and regrouping
terms we get

’Vð*y; z;FÞ ¼ *yTðtÞupðtÞ þ Lf0ðC;yn ;zÞW0ðzÞ þ Tracef½BT *yðtÞoðtÞT þ jBj ’FðtÞT�gFðtÞ

Substituting now the adaptive law defined in Equation (33), expressed as ’FðtÞ ¼ ’yðtÞ ¼
�signðBÞ*yðtÞoTðtÞ and considering BT ¼ B ¼ jBjsignðBÞ; we finally obtain the following:

’Vð*y; z;FÞ ¼ *yTðtÞupðtÞ þ Lf0ðC;yn;zÞW0ðzÞ

Using Assumption 3.2 we can finally write

’Vð*y; z;FÞ4*yTðtÞupðtÞ ð40Þ

Thus, from Definition 2.1, the resultant system is passive from upðtÞ to *yðtÞ: Following the same
reasoning as in Theorem 3.1 and considering again the controller upðtÞ ¼ �K *yðtÞ; together with
Assumptions 3.1 and 3.2, we can assure that trajectories of the adaptive system are bounded
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and also we can guarantee that limt!1 *yðtÞ ¼ 0; provided the system is locally zero-state
observable. &

Remark 3.1
In the previous development, unity adaptive gains were used. It can be shown [14–17] that the
same results hold if, positive scalar, positive definite constant matrix and positive definite time-
varying matrix adaptive gains are introduced.

Remark 3.2
In the proposed scheme, parametric convergence to the ideal controller parameters is not
guaranteed. This is only achieved if persistently exciting conditions of some signal vectors are
satisfied [14–17].

Remark 3.3
For easy exposition the results of Theorem 3.2 were derived assuming that B is a diagonal
matrix. However, it is possible to show that the same results can be achieved for the cases when
B is a positive definite matrix and when B is a general matrix [14–17].

To illustrate the previous result we will apply the results of Theorem 3.2 to the same system
used in Example 3.1.

Example 3.2
Let us control the same system of Example 3.1 but this time we will assume that the parameters
are unknown. Since system (25) satisfies Assumption 2.1 it can be expressed in form (31) as
follows:

’*yðtÞ ¼ ½�3 � 1�
y2ðtÞ

zðtÞ

" #
þ uðtÞ � ’ynðtÞ

’zðtÞ ¼ � 5z3ðtÞ þ ynðtÞ þ *yðtÞ

ð41Þ

by choosing

yðtÞ ¼ x1 2 R; zðtÞ ¼ x2 2 R; *yðtÞ ¼ yðtÞ � ynðtÞ 2 R

A ¼ ½�3 � 1� 2 R2; a0ðy; zÞ ¼
y2

z

" #
2 R2

B ¼ 1 2 R; b0ðy; zÞ ¼ 1 2 R

f0ðC; yn; zÞ ¼ �5z3 þ yn 2 R; d 0ðy; zÞ ¼ 1 2 R; D ¼ 1 2 R

Parameters A ¼ ½�3 � 1� 2 R2; B ¼ 1 2 R and D ¼ 1 2 R are assumed to be unknown. The
state feedback (27) is now defined as

uðtÞ ¼ b0ðy; zÞ�1yTðtÞoðtÞ ð42Þ

with yðtÞ ¼ ½yT1 ðtÞ y2ðtÞ y3ðtÞ�
T 2 R4; y1ðtÞ ¼ ½y

1
1ðtÞ y

2
1ðtÞ�

T 2 R2; y2ðtÞ 2 R; y3ðtÞ 2 R and oðtÞ ¼
½y2 z z ðupðtÞ þ ’ynðtÞÞ�T 2 R4:
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The ideal controller parameters are defined as y1
n

1 ¼ 3; y2
n

1 ¼ 1; yn2 ¼ �1 and yn3 ¼ 1 . If we
apply the state feedback (42) to system (41) we will have the following:

’*yðtÞ ¼ � *yTðtÞupðtÞ þ BfðtÞoðtÞ

’zðtÞ ¼ � 5z3 þ yn þ *y
ð43Þ

where fðtÞ ¼ yðtÞ � yn ¼ ½y11ðtÞ y
2
1ðtÞ y2ðtÞ y3ðtÞ�

T � ½y1n1 y2n1 yn2 yn3 �
T 2 R4: The adaptive law to

adjust the state feedback parameter is given by (33) and has the form

’yðtÞ ¼ �*yðtÞ½y2 z z ðupðtÞ þ ’ynðtÞÞ�T ð44Þ

This guarantees that system (43) is passive from upðtÞ to *yðtÞ; with storage function
Vð*y; z;fÞ ¼ 1

2
*y2ðtÞ þW0ðzÞ þ 1

2
jBjfðtÞTfðtÞ and W0ðzÞ ¼ 1

2
z2ðtÞ: Furthermore, if we choose

upðtÞ as in (34), then limt!1 *yðtÞ ¼ 0 for all bounded desired trajectory ynðtÞ 2 R with bounded
continuous first time derivative, while all the signals remain bounded. The block diagram of the
control scheme is shown in Figure 4.

4. SIMULATION RESULTS AND TRANSIENT BEHAVIOUR

In this section we present the simulation results corresponding to Examples 3.1 and 3.2. All the
simulations were done in Matlab 6.5 using variable-step, ode45 (Dorman–Prince) method for
solving the differential equations with relative and absolute tolerance of 10�6:

We first consider the system of Example 3.1 with uðtÞ ¼ 0; to study its natural behaviour for
further comparison purposes. Figure 5 shows the evolution of the state of the system when no
control is applied and initial conditions yð0Þ ¼ 0 and zð0Þ ¼ �0:25 are selected.

It can be seen that the system exhibits oscillations and a stable internal dynamic zðtÞ:
Two different reference signals will be applied to this system, as shown in Figures 6(a) and (b).

The first reference signal is used to study the behaviour of the system under tracking control,

Figure 4. Adaptive control scheme for Example 3.2.
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and the second one is for regulation purposes. In Section 4.1, the simulation results of the
control schemes applied to the system of Example 3.1 are presented and in Section 4.2 the
corresponding results for the system of Example 3.2 are discussed.
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Figure 5. Natural behaviour of the system of Example 3.1.
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Figure 6. Reference signals applied to the system of Example 3.1 and Example 3.2: (a) sine wave of
amplitude 1 and frequency 0:03 rad=s; and (b) step signal of amplitude 0.1 applied at t ¼ 100:
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Figure 7. Simulation results for tracking control scheme of Example 3.1. Non-adaptive case.
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4.1. Simulation results for Example 3.1

The evolution of the state, as well as the control input applied to the plant of Example 3.1 and
the tracking error, are shown in Figure 7 when a feedback gain K ¼ �40 is chosen and a
sinusoidal reference signal like the one shown in Figure 6(a) is considered. The initial conditions
were chosen as yð0Þ ¼ 0 and zð0Þ ¼ �0:25:

It is observed from Figure 7(d) that the tracking error is zero for all t: This is due to the exact
cancellation, and the zero initial condition of the output yðtÞ: The same results are presented in
Figure 8 but for the case when the reference signal is the constant shown in Figure 6(b).
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Figure 8. Simulation results for the regulation control scheme of Example 3.1. Non-adaptive case.
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Figure 9. Simulation results for the tracking adaptive control scheme of Example 3.2.
Evolution of the main variables.
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A similar behaviour to that exhibited in the previous case is observed here under regulation.
The tracking error is zero except at t ¼ 100: It is important to note that when applying a step
reference signal at t ¼ 100; its derivative is undefined at the moment the step is applied. So in
this case a practical solution could be implemented using a saturation block.

4.2. Simulation results for Example 3.2

We now consider the system defined in Example 3.2, with the assumption that the parameters
are unknown. In Figure 9 the evolution of the state, the control input and the tracking error, is
shown when the sinusoidal reference signal depicted in Figure 6(a) is applied, and a feedback
gain K ¼ �40 was selected. The initial conditions were chosen again as yð0Þ ¼ 0 and
zð0Þ ¼ �0:25:

As expected, the tracking error shown in Figure 9(d) goes to zero as t goes to infinity so the
output of the plant asymptotically tracks the reference signal. This adaptive control scheme is a
bit slower than the non-adaptive scheme. In Figure 10 the evolution of the state feedback
parameters yðtÞ can be seen when the following initial conditions were chosen y11ð0Þ ¼ 0;
y21ð0Þ ¼ 0:5; y2ð0Þ ¼ 0 and y3ð0Þ ¼ 0:
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Figure 10. Simulation results for the tracking adaptive control scheme of Example 3.2.
Evolution of the state feedback parameter.
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Figure 11. Simulation results for the adaptive regulation control scheme of Example 3.2.
Evolution of the main variables.
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As it is shown in [19] the state feedback parameter yðtÞ is adjusted in such a way that zero
control error is guaranteed, minimizing at the same time an energy function. For this adaptive
case, the transient behaviour depends on the adaptive law used and on the adaptive gains that
one introduces. Different adaptive laws can be used, depending on the control purpose [19].

The same study as in the previous case was done using a feedback gain K ¼ �40; when the
constant reference signal depicted in Figure 6(b) is applied. In Figure 11 it is shown the
evolution of the state, the control input and the tracking error, observing from Figure 11(d)
that the tracking error is driven to zero, with a jump at the instant when the step is applied. The
parameters’ evolution is shown in Figure 12.

5. CONCLUSIONS

In this paper, a new passivity-based control (PBC) scheme, which considers a controller and a
state feedback, is proposed in order to solve tracking, regulation and stabilization problems for
a class of nonlinear system. Besides, two different state feedbacks are proposed which work
properly with a simple proportional controller. A non-adaptive state feedback is presented when
all system parameters are known, while the adaptive state feedback is for the case when system
parameters are unknown. The class of nonlinear systems studied corresponds to time-invariant
MIMO systems with relative degree 1 and locally bounded reference weakly minimum phase.
The resultant scheme guarantees that the overall system is stable (all the signals remain
bounded) and limt!1 *yðtÞ ¼ yðtÞ � yðtÞn ¼ 0; where yðtÞn is a bounded arbitrary trajectory. Two
examples were studied under simulations to verify the theoretical results, considering first the
case when all parameters are known, and then the case of unknown parameters. All the
simulation results are in complete agreement with the theoretical results presented in Sections
3 and 4.
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