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Chimera-type states induced by local coupling
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Coupled oscillators can exhibit complex self-organization behavior such as phase turbulence, spatiotemporal
intermittency, and chimera states. The latter corresponds to a coexistence of coherent and incoherent states
apparently promoted by nonlocal or global coupling. Here we investigate the existence, stability properties, and
bifurcation diagram of chimera-type states in a system with local coupling without different time scales. Based
on a model of a chain of nonlinear oscillators coupled to adjacent neighbors, we identify the required attributes
to observe these states: local coupling and bistability between a stationary and an oscillatory state close to a
homoclinic bifurcation. The local coupling prevents the incoherent state from invading the coherent one, allowing
concurrently the existence of a family of chimera states, which are organized by a homoclinic snaking bifurcation

diagram.
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Coupled oscillators under the influence of injection and
dissipation of energy exhibit a rich spatiotemporal dynam-
ics [1-3], such as phase turbulence [1], synchronization [2],
defects turbulence [4], random occurrence of coherence
events [5], defect mediated turbulence [6], spatiotemporal
intermittency [7], and quasiperiodicity in extended system [8].
In the past decade, a phenomenon that has received a great deal
of attention are spatiotemporal patterns of coexisting coherent
and incoherent behavior, known as chimera states [9]. The
first observation of chimera state was made by Kuramoto and
Battogtokh in the complex Ginzburg-Landau equation with
a weak nonlocal coupling [10]. Subsequently, it has been
investigated in a variety of models like phase oscillators [9—
11], chemical oscillators [12], and planar oscillators [13]. It
was shown that they are not limited to phase oscillators but
can be found in a large variety of different systems, including
time-discrete maps [14], neuron models [15], time-continuous
chaotic models [16], and networks [17,18]. Recently, the
chimera states have been reported experimentally in a chemical
system [19], an optoelectronic setup [20], and a mechanical
oscillator network [21]. Therefore, coupled discrete sys-
tems showing coexistence of incoherent and coherent states,
chimera-type states, are ubiquitous in nature. The chimera
states are apparently peculiar to the intermediate case of
nonlocal coupling [9-11]; however, recently it was shown
that it is possible to find in systems with strong nonlocal
limit [22] and global coupling [18]. Turbulent chimera states
in extended systems with long range or mean field coupling
have been reported [18,23] and intermittent chaotic chimeras
in oscillators with inertia have been recently reported for two
populations of oscillators [24]. The establishment of chimera-
type states in purely local coupling—systems that only
consider interaction between adjacent neighbors—previously
is not expected because nonlocal interaction was considered
essential. Recently, in reaction diffusion coupled systems with
more than one variable and different dynamical temporal scales
(fast and slow) chimera states have been observed in one [25]
and two dimensions [26].
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The aim of this paper is to investigate the formation
of chimera-type states in locally coupled systems without
different time scales. Based on a simple model of coupled
nonlinear oscillators, an extended version of the Bogdanov-
Takens normal form [27], we have identified the necessary re-
quirements for chimera states formation. Close to a homoclinic
bifurcation, this model exhibits a coexistence of an incoherent
extended oscillatory state and a steady uniform one. As a result
of the weak local coupling, a locking phenomenon takes place,
inhibiting the propagation of fronts connecting the two states,
forming a motionless chimera state (cf. Fig. 1). Depending
on initial conditions, a family of chimera states can appear
and disappear, following a homoclinic snaking bifurcation
diagram [28]. In the continuum limit, the chimera-type states
are not a robust solution.

Let us introduce a simple model of locally coupled os-
cillators with nonlinear damping (extended Bogdanov-Takens
normal form [27])

iy (1) = —ui — auf —u + (= 8u?)ii;
+ Auipr — 2u; +ui—y) + k(@igr — 20 + thi—1),
1

with i ={0,1,...,N}, and Neumann-type boundary condi-
tions, i.e., u_| =uy, U_| =uUy, Un+] = UyN—1, and Uy =
uy—1. u;(t) is the position of i oscillator. The first term on
the right side stands for Hooke’s law, while the second and
third are the nonlinear response of the oscillator. The fourth
term accounts for the nonlinear damping. The last two terms
describe the dispersive and the diffusive coupling, respectively,
where A and k account for coupling strength. For A =« = 0,
model (1) reduces to the Bogdanov-Takens normal form for an
elementary oscillator [29]. Using the Hilbert transform [30],
one can obtain the phase (¢;) and amplitude of the oscillators.
Figure 1 shows one of the typical chimera-type states observed
in model (1). The observed state is obtained for large enough
time compared with the inverse of the largest Lyapunov
exponent. The coherent state corresponds to a steady state of

©2016 American Physical Society



M. G. CLERC et al.

I @ ®) ]

0.0
-0.503
i
l 24
-1.30 Tk e

u 4 L

200

FIG. 1. Spatiotemporal evolution of chimera-type state obtained
from model (1) with A = 0.04, © = 0.05, a = 2.07, k = 0.04, and
& = 1. (a) Spatiotemporal evolution of u; oscillators. (b) Spatiotem-
poral evolution of respective phase ¢; obtained using the Hilbert
transform. The insets show position and phase profiles of the
oscillators in a given time.

the oscillators, conversely, the incoherent state is a permanent
spatiotemporal chaotic state, as we will show later. Note that
the phase incoherence region is larger in comparison to that of
the incoherence oscillator positions.

Considering different initial conditions the system exhibits
a family of chimera-type states that coexist in the same
range of parameters (cf. Fig. 2). All numerical simulations
were conducted using Runge-Kutta fourth-order algorithm.
The initial amount of oscillators in the incoherent state will
determine which of the possible solutions will appear. Thus
each chimera-type mainly has a different width. To provide
a parameter that characterizes each solution of the family,
we introduce the mean relative area of the oscillators, ||u||=

(fOT dty;ui(t) —ut)/NT for a large time T, where ut =

12 -] | — [

FIG. 2. Spatiotemporal evolution of different chimera-type states
obtained from Eq. (1) with A =0.04, u =0.05,a =2.05, «k =
0.04, and § = 1. The bottom panel shows the profile of the position
of the oscillators in a given time.
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FIG. 3. Numerical homoclinic snaking bifurcation diagram of
chimera states with respect to the nonlinearity parameter a of Eq. (1)
with A = 0.06, u = 0.05, x = 0.06, and § = 1. Numerical simula-
tions consider 200 coupled oscillators. The painted area accounts for
coexistence region of chimera states, {a~,a™} = {2.06,2.36}. Points
represent the time mean area under the curve by oscillator. The curves
inside painted area correspond to changes in the mean relative area of
chimera states as function of nonlinearity parameter a. These states
appear and disappear by a sequence of saddle-node bifurcations. The
insets depict some different chimera and the extended states in a given
time.

—(a + +/a? —4)/2 is the coherence steady state. Figure 3
displays the bifurcation diagram of chimera-type states with
respect to the nonlinearity parameter a. The vertical axis
accounts for the parameter ||u||. The chimera-type states
exhibit a homoclinic snaking bifurcation diagram [28], that is,
these states appear and disappear by a sequence of saddle-node
bifurcations [31], which occur all around a given value of the
nonlinearity parameter in both extremes of the coexistence
region. This region and values are depicted by {a—,a*} in
Fig. 3. Increasing (decreasing) coupling parameter A the
coexistence region of different chimeralike states shrinks
(expands). This type of bifurcation diagram is typically found
for forming patterns systems. This diagram was predicted
theoretically in Ref. [28], numerically studied in Refs. [31,32],
and subsequently observed experimentally in an optical sys-
tem [33].

To understand chimera-type state formation in model (1),
let us first study the dynamics of an uncoupled oscillator. As
we mentioned before, for A = k = 0, the model describes
the dynamics of an elementary oscillator. This oscillator has
three fixed points u° = 0, and u* = —(a £ v/a? — 4)/2. The
fixed points u™ and u~ are stable and unstable, respectively.
These points emerge from a saddle-node bifurcation at a> =
a’, = 4. Figure 4(a) illustrates the bifurcation diagram of
the elementary oscillator as a function of the nonlinearity
parameter a. The fixed point " is stable when the coefficient
of the linear damping term is negative (u < 0). This fixed
point, as well as in the van der Pol oscillator, undergoes
an oscillatory instability—Andronov-Hopf bifurcation—when
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FIG. 4. Properties of elementary oscillators model (1) with A =
k =0. (a) Schematic bifurcation diagram of oscillator u;(¢) as
function of nonlinearity parameter a; the vertical axis accounts for
the value of equilibria states, u,,. (b) Phase portrait for a = T > 2.
The equilibrium points and limit cycle are represented by {u*,u~,u°}
and y, respectively.

the damping coefficient is zero (u. = 0). Increasing u, the
oscillator exhibits the emergence of a limit cycle. In Fig. 4(a)
we have represented the limit cycles by solid closed curves
(y curves). The phase portrait of the elementary oscillator for
a® > 4 is depicted in Fig. 4(b).

When the oscillators are spatially coupled, the coher-
ent state—related to stable fixed points of the elementary
oscillators—is stable and corresponds to a homogeneous
steady state. Conversely, when the coupled oscillators are
near the homoclinic bifurcation of an elementary oscillator,
the synchronization becomes unstable [27]. Given that each
oscillator becomes chaotic in this region, an incoherent state
is created. To shed light on this mechanism, let us consider the
strong local coupling limit of Eq. (1),

2 u— I/l3 + (H’ - suz)atu + Aax)cu + ’zaxxtuv

2

where the diffusion and dispersion coefficients are, respec-
tively, A = Adx?> and & =« dx?, with dx denoting an
arbitrary infinitesimal quantity. In this limit, the position of
the oscillators, u;(¢), is promoted to a scalar field u(x,z). The
above model have been already used to explain the emergence
of spatiotemporal intermittency [27].

Considering the asymptotic change of variable u(x,t) =
A e ™ + Ae' — 2a|A]* + a(A%eH! + A0y /3 4 ...
with u < 1 (close to the Andronov-Hopf bifurcation), the
envelope of the oscillation A(x,t) satisfies the complex
Ginzburg-Landau equation

oa="2_12 _ialiapa+ (B L P 3)
t_2 2 1 2 2 XX 4xs

0t = —au

where Q = 3/2 — 5a?/3. Hence the above amplitude equation
describes the dynamics of the oscillators around the equi-
librium position u(x,t) = 0 [1]. The solution describing the
synchronized oscillations is A(t) = /j1/8e #$¥/%_ Alinear sta-
bility analysis of this solution leads to the following instability
condition: a®> > a. = 3(3 4+ 8/ A)/10, which corresponds to
the Benjamin-Feir criteria [1]. In this region of the parameter
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FIG. 5. Front propagation between a spatiotemporal intermittent
and a homogeneous state of Eq. (1) with A =4, © =0.25, a =
2.08, k =4, and § = 1. The inset shows the front velocity as a
function of nonlinearity parameter a. a) accounts for the Maxwell
point.

space this instability leads to the emergence of spatiotemporal
intermittency [7]. The expression &/ A stands for the relation
between the strength of dispersion, diffusion, and nonlinear
damping. For coupling strength of order one (§ =1, A =2,
and « = 1), the critical nonlinearity parameter takes the value
a. = +/3/2. Hence synchronized oscillations become unstable
before entering in a region of bistability with the uniform u*
state (|as,| > |a.|). Thus, in bistability region one expects to
observe complex fronts between an intermittent and a uniform
state. Figure 5 shows the front propagation, using model (1), in
the limit of strongly coupled oscillators. For large nonlinearity
parameter, the homogeneous state invades the intermittent one.
As illustrated in the inset of Fig. 5, front speed can change
continuously as a function of parameter a. There is only one
point in the parameter space where the front speed is zero—the
Maxwell point. In Fig. 5, we have noted it with the symbol
ay - This point stands for that both states are “energetically”
equivalent and, therefore, none of the states invade the other
one. However, this state is unstable. Therefore, in the strong
local coupling limit of model (1), chimera states are not a
robust solution.

In Refs. [34,35], they have shown that weak local coupling
(A ~k <« 1) in dissipative systems causes a propagation
failure or pinning of fronts, in a large region of parameters
known as pinning range. That is, the fronts connecting different
states become motionless. The above phenomenon can be
understood by considering a strong local coupling limit with a
phenomenological periodic potential forcing, Peierls-Nabarro
force, which accounts for the discreteness of the system under
study. This potential was introduced in the framework of
continuous theory of solid-state physics to understand the dy-
namics of dislocations in an underlying atomic lattice [36-38].
Therefore, discrete systems from the viewpoint of continuous
systems are characterized by having a dynamical evolution
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FIG. 6. Properties of chimera states of Eq. (1) with A =
0.06, u = 0.04, a = 2.05, k = 0.06, and § = 1. (a) The Lyapunov
spectrum of chimera state. In the inset are represented a magnification
of Lyapunov spectrum and chimera states under consideration.
(b) The Kaplan-Yorke dimensions as a function of their area
with respect to coherent state. (c) Pinning range as a function of
nonlinearity parameter and level of intensity coupling; ay = 3+/2/2
accounts for the Maxwell point.

amended by a periodic force that accounts for the effect of
discreteness [35]. Hence, considering local weak coupling of
nonlinear oscillators in Eq. (1), fronts connecting a uniform
and an intermittent state should be locked in a long region of
parameters as a result of the discreteness. Thus the system will
exhibit chimera-type states. Indeed, the chimera-type states
are formed by two pinning fronts (cf. Figs. 1-3). As a result of
fronts interaction and local coupling, one expects to observe
a family of chimera-type states, which are organized by a
homoclinic snaking bifurcation diagram (see Fig. 3) [35]. The
distance between fronts—chimera width—characterizes the
family of chimera-type states by means of the relative mean
area ||ul|.

Figure 6(c) shows the pinning region as a function of the
level of coupling and nonlinearity parameter a. From this
graph one concludes that, as the coupling gets stronger, the
pinning region decreases and it converges asymptotically to
the Maxwell point. Conversely, when one decreases the cou-
pling strength, the pinning region increases. To characterize
dynamically, in the limit of weak coupling, we have calculated
the Lyapunov spectrum of the chimera-type and their respec-
tive Yorke-Kaplan dimension [39]. The Lyapunov spectrum
characterizes the exponential separation of trajectories with
nearly identical initial conditions in the phase space. Hence a
continuous number of positive Lyapunov exponents indicate
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that the dynamical behavior have a spatiotemporal chaotic
nature. The Yorke-Kaplan dimension corresponds to the min-
imum number of active degrees of freedom that contribute to
the chaotic dynamics [39]. Figure 6(a) displays the Lyapunov
spectrum for chimera-type states with different mean relative
area ||u||. The Lyapunov spectra were computed using the
strategy proposed in Ref. [40]. This spectrum clearly shows a
separation between unstable and stable modes. Increasing the
size of the chimera-type state this separation mode remains.
Figure 6(b) shows the Yorke-Kaplan dimension as a function
of ||ul||, which is a signature of spatiotemporal chaos [4,41].
From these outcomes, we infer that the observed chimera-type
are composed of a uniform steady state (coherent) and a
spatiotemporal chaotic state (incoherent).

The effect of local coupling is responsible for the pinning
of fronts between coherent and incoherent state. In the strong
local coupling limit, chimera-type states are not a robust
solution. In this limit the spatiotemporal chaos or uniform
state always invades the other state, except for a = ay. Thus
one requires a front locking mechanism. For spatiotemporal
chaotic patterns coexisting with uniform state, this mechanism
can be achieved through the coupling between the envelope
and the underlying pattern [42,43], which induces on the
front dynamics a periodic forcing. In this context it has
been observed experimentally and numerically the spatiotem-
poral chaotic localized state [44], called chaoticons, which
correspond to the continuous counterpart of chimera-type
states.

In conclusion, we have investigated the formation require-
ments for chimera-type states in locally coupled systems
without different time scales. They took place in systems that
present limit cycles near a homoclinic bifurcation and bista-
bility with a uniform steady state. The homoclinic bifurcation
is responsible for the emergence of incoherent oscillations,
spatiotemporal chaos. As a result of the local coupling, the
incoherent oscillatory state cannot invade the coherent one.
Likewise, this allows the system to display a family of chimera-
type states, which are organized by a snaking bifurcation
diagram. The previous analysis is not a peculiar behavior of the
model under study. Incoherent oscillations, as a consequence
of a homoclinic bifurcation, coexisting with homogeneous
states are observed in several physical systems as lasers
with saturable absorber [45], reaction-diffusion systems [27],
seashells [46], catalytic reactions [47], and model of evolution
of species [48]. Therefore, we expect that effects of local
coupling in such frameworks can also generate chimera-type
states.

It is important to note that coupling of oscillators with
self-oscillation can exhibit the emergence of complex spa-
tiotemporal behaviors such as phase turbulence without the
need to be close to homoclinic bifurcation. If the system under
study also coexists with a uniform state, then one would expect
to observe chimera-type states.
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