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Extreme events such as rogue waves in optics and fluids are often associated with the merging dynamics
of coherent structures. We present experimental and numerical results on the physics of extreme event
appearance in a spatially extended semiconductor microcavity laser with an intracavity saturable absorber.
This system can display deterministic irregular dynamics only, thanks to spatial coupling through
diffraction of light. We have identified parameter regions where extreme events are encountered and
established the origin of this dynamics in the emergence of deterministic spatiotemporal chaos, through the
correspondence between the proportion of extreme events and the dimension of the strange attractor.
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A record spawned by a natural system may consist of
periods where a relevant variable undergoes small varia-
tions around a well-defined level provided by its long-time
average, with the occasional occurrence of abrupt excur-
sions to values that differ significantly from the average
level, called extreme events [1]. Extreme and rare events
are ubiquitous in nature. In optics, an extreme event is
characterized by a rare, intense optical pulse in a given
intensity probability density distribution. The study of
extreme events and extreme waves [2] has been motivated
by the analogy with rogue waves in hydrodynamics [3]
that are giant waves recently observed in the ocean and
whose formation mechanism is still not well understood.
Physically, it is based on the fact that some conservative
systems in optics and deep water waves in the ocean can be
described by the nonlinear Schrödinger equation [4]. Most
of the studies in this context have taken place in optical
fibers where the interplay of nonlinearity, dispersion and
noise generates extreme events [5–8]. Extreme events such
as rogue waves in optics and fluids are often associated
with the merging dynamics of coherent structures [9–11],
with a stochastically induced transition in multistable
systems [12] or with chaotic dynamics in low dimensional
systems [13]. Extreme events have been observed in optical
cavity systems, such as an injected nonlinear optical cavity
[14], fiber lasers [9,15], solid-state lasers [16] and semi-
conductor lasers [13,17]. The role of spatial coupling has
not been studied until recently in a pattern-forming optical
system composed of a photorefractive crystal subjected to
optical feedback [18,19] or a low Fresnel number solid-
state laser [20], while most of the characterizations of
extreme events were done from a statistical point of view,
without establishing their origin from the dynamical system
point of view.
In this Letter, we report on experimental and numerical

results on the physics of extreme event appearance in a

spatially extended nonlinear dissipative system and estab-
lish the origin of this dynamics in the emergence of
spatiotemporal chaos. Our system is a planar microcavity
laser with an integrated saturable absorber [21,22] pumped
along a rectangular aperture, implementing a quasi-1D
spatially extended nonlinear dissipative system (cf. Fig. 1).
Besides the very different dynamical regimes that can be
observed in it (e.g., laser cavity solitons [22,23] or excitable
regimes [24,25]), a particularity of this system is that in the
absence of spatial coupling it does not display irregular or
aperiodic dynamics or extreme events [26]. However,
spatial coupling through diffraction and nonlinear effects
can make the dynamics become more irregular, especially
if the system has a large aspect ratio (or Fresnel number) as

(a) (b) (c)

FIG. 1. Top panels: Images of the surface of the extended
microcavity laser with an integrated saturable absorber below
(left) and above (right) the laser threshold. The dark (yellow)
zone is the gold mask delimiting the pumping region. Bottom
panels: (a) Temporal cross-correlation XC;Mðtk; xmÞ (see text)
between the detector responses in points C (xm ¼ 0) and M at
delays tk ¼ kΔt. (b) Same as (a) restricted to extreme events at
point C. (c) Average of the responses at point M and at times
where an abnormal event has occurred in the center of the
laser in C.
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is the case here. Above the laser threshold, self-pulsing
takes place, and we study experimentally the impact of the
pumping intensity on the intensity statistics and on the
occurrence of extreme events. By recording the dynamics
simultaneously in two different spatial points, we are able
to study whether the extreme events occur through a
mechanism of coherent structure collision. Indeed, sta-
tionary and propagative laser coherent structures were
predicted [27–32] in this system, and stationary structures
were observed [22,23] in some parameter regions. With the
help of a mathematical model, linear stability and numeri-
cal analysis of the dynamics, we unveil the dynamical
origin of the extreme events found.
The microcavity structure used in this experiment is

described in Refs. [22,23]. A gold mask is deposited onto
the sample surface to define the pump geometry. We
concentrate on an elongated pump profile with a gold
opening having 80 μm length and 10 μm width. The linear
microcavity is pumped above threshold, and the intensity in
a point close to its center is recorded with a fast avalanche
photodiode (5-GHz bandwidth). The temporal signal is
amplified thanks to a low noise, high bandwidth amplifier
and acquired with a 6-GHz oscilloscope at 20 GS=s
(Δt ¼ 50 ps). Up to 50 × 106 points can be acquired in
a single trace. Figure 1 shows the near field of the laser
below and above threshold, respectively.
Time traces once acquired are treated to display the

histogram of the intensity heights. Figure 2 displays
histograms versus the pump parameter. At normalized
pump power P=Pth ¼ 1.02, where Pth is the pump at laser
threshold, they are characterized by a quadratic decay in the
tails, and the probability density function (PDF) looks like
a Rayleigh distribution for a positive-valued Gaussian
process. As the pump is increased, the statistics develops
long tails with an initial exponential decay (P=Pth ¼ 1.17).
For still higher pump values, the PDF becomes exponential
(P=Pth ¼ 1.20) and then redisplays Gaussian tails
(P=Pth ¼ 1.25). The global evolution of the mean ampli-
tude versus pump intensity is reminiscent of the dynamics
expected for a zero-dimensional laser with a saturable
absorber [33]: Close to threshold, a quite regular amplitude
pulse train sets in [see Fig. 2(c)]. For higher pump
intensities, the mean pulse period increases and, because
of the spatial coupling, the amplitude becomes very
irregular and displays a complex dynamics [Figs. 2(d),
2(g), and 2(h)]. We have computed the threshold amplitude
for extreme events, adopting the traditional hydrodynam-
ical criterion. We consider as extreme events those events
having a height H twice the significant height Hs (mean of
the highest tertile of the PDF), i.e., with an abnormality
index AI ≡H=Hs > 2 [2]. The heightH is extracted as the
maximum of the left and right intensity heights
H ¼ maxðHl;HrÞ. Note that the results do not change
significantly by considering either H, Hl, or Hr. To get
rid of the large number of small peaks of noise at the

left of the PDF, we compute the significant height Hs only
by considering events whose height is larger than the
observed maximum peak dark noise amplitude, which is
about 5 mV (note that the rms noise is only 0.9 mV).
This threshold introduces a more stringent criterion for
extreme event detection. Extreme events are depicted in
red under the histograms presented in Fig. 2. We observe
that the maximum number of extreme events is obtained in
the PDF with a non-Gaussian tail, i.e., with a normalized
pump of 1.17.
The statistics of times between two spikes with AI > 2

displays a Kramers statistics with exponential behavior
such that spike appearance obeys a Poisson, memoryless
process. We now study the spatiotemporal structure of the
statistics of emitted pulses. We record the dynamics in two
points: one at a fixed position at the center of the laser
(represented by point C) and the other moving along the
long line laser (point M). This is made by enlarging
the laser surface image by optical magnification and
placing the detectors in that plane. On the bottom panels
in Fig. 1, we plot the normalized cross-correlation Xc;mðkÞ
of the N ¼ 105 first recorded points (5 μs) between the
signal recorded at the central detector yc at point C and the
one at the moving detector ym at location M, 1 ≤ m ≤ 20
such that

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 2. (a,b,e,f) Logarithm of the PDF of the intensity height H
at position C for different normalized pump values. Extreme
events (AI > 2) are shown in red. (c,d,g,h) Excerpts of the time
evolution for the corresponding pumps. (d) A 20-ns zoom on the
central extreme event.
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Xc;mðkÞ ¼
1

Nσycσym

X

i

½ycðiÞ − ȳc�½ymðiþ kÞ − ȳm�

where the bar symbol and σ indicate the mean value and
the standard deviation. In the central part there is a zone
with high positive (green) cross-correlation followed and
preceded by two bands of negative cross-correlation. The
temporal band in which the cross-correlation is nonzero
extends about 2 ns from around zero delay. Therefore, we
can infer the existence of a finite correlation length in the
system, which is smaller than the lasing system size (about
30 μm). However, since the correlation bands are vertical
at these time scales, we do not have clear evidence of
propagation effects (at least with the temporal resolution
of our setup), though there is a slight bending of the
correlated band (in green). In Fig. 1(b) we restrict the
cross-correlation around the points where AI > 2; i.e., we
consider only extreme events. Notice that there are no
major differences between the two cross-correlations;
hence, there does not seem to be any statistical marker
of the appearance of an extreme event in this regime and,
in particular, no clear sign of propagation of a coherent
structure either. These results indicate that extreme height
intensity peaks appear in a spatial correlation zone and
disappear almost immediately everywhere in this zone.
Correlation is therefore maximum at zero delay for almost
all positions detected. Figure 1(c) depicts the average of
the responses at position M and at times where an
abnormal event has occurred in the center of the laser
in C. The average shows a clear time asymmetry around
the correlated structure; every selected event begins with a
large amplitude dip followed by a large positive peak. On
the wings of the correlated zone, we can see another dip.
In this system extreme events thus appear and disappear
almost simultaneously everywhere in a correlation win-
dow. There is no evidence, at least up to our temporal
resolution, of a clear collision of coherent structures
leading to the observed behavior. Instead, we consider
the complexity in the spatiotemporal dynamics itself as the
dynamical origin of extreme events.
To this aim, we compare our findings with numerical

simulations of an envelope equation of a one-dimensional
spatially extended laser with a saturable absorber [34]. The
model consists of three coupled nonlinear partial differ-
ential equations,

∂E
∂t ¼ ½ð1 − iαÞGþ ð1 − iβÞQ − 1�Eþ i

∂2E
∂x2 ;

∂G
∂t ¼ γg½μ − Gð1þ jEj2Þ�;
∂Q
∂t ¼ γq½−γ −Qð1þ sjEj2Þ�; ð1Þ

for the intracavity electric-field envelope Eðx; tÞ and the
carrier density in the gain (resp. saturable absorber) section

Gðx; tÞ [resp. Qðx; tÞ]. The nonradiative carrier recombi-
nation rates are γg and γq with pumping μ and linear
absorption γ. The Henry enhancement factors in both
sections are α and β, respectively. Diffraction is included
through the complex Laplacian term. Time has been
rescaled to the field lifetime in the cavity, which is
calculated as 8.0 ps, given the cavity design parameters.
Space is rescaled to the diffraction length wd, which is
7.4 μm. We take parameters compatible with our semi-
conductor system: α ¼ 2, β ¼ 0, s ¼ 10, γg ¼ γq ¼ 0.005
and γ ¼ 0.5. The equations are simulated using the Xmds2

package [35] with a split operator method and an adaptive,
fourth-order Runge-Kutta method for time integration. The
width of the integration region w is w=wd ¼ 24 with a top-
hat pumping of width wp=wd ¼ 12. Based on the results
developed in Ref. [34], we can describe the main properties
of the plane-wave stationary solutions and of the linear
stability analysis. The results are shown in Fig. 4 for the
latter set of parameters. The plane-wave characteristic
curve of the laser has a C shape with a subcritical
bifurcation at threshold for μth ¼ 1þ γ, provided
s > 1þ 1=γ. In a certain range of parameters, the system
also exhibits an Andronov-Hopf bifurcation giving rise to
self-pulsation (for μ < μH ∼ 3.08). When including the
spatial degree of freedom, a linear stability analysis reveals
that the upper branch is usually Turing unstable everywhere
(gray region), giving rise to a complex spatiotemporal
dynamics. An Andronov-Hopf instability can also occur for
small harmonic perturbations in space with a band of
unstable wave vectors k (blue region disconnected from the
vertical axis).
The logarithm of the PDF for the theoretical height

distribution for Eq. (1) is shown in Fig. 3. For low pumping
it displays a subexponential tail with a small number of
extreme events. Then the tail of the PDF progressively
becomes more and more exponential at the start of the
distribution, with a large deviation for large events giving
rise to a maximum number of extreme events for μ ¼ 2.9.
The tail of the distribution then becomes quasiexponential
at μ ¼ 3.1 and then subexponential again at μ ¼ 3.4, with a
decrease in the number of extreme events. These observa-
tions reproduce qualitatively well what is found in the
experiment. Moreover, the shape of the distribution seems
to be strongly correlated to the presence or not of an
Andronov-Hopf bifurcation: Only when it is present
can we observe a heavy-tailed distribution. At the transi-
tion between the Hopf-Turing and Turing-only regions,
we observe the maximum number of extreme events
(for μ ¼ 2.9).
A characterization of chaos and spatiotemporal chaos

can be achieved by means of Lyapunov exponents [36].
These exponents measure the growth rate of generic small
perturbations around a given trajectory in a finite dimen-
sional dynamical systems. There are as many exponents as
the dimension of the system under study. Additional
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information about the complexity of the system can be
obtained from the exponents, for instance, the dimension of
the strange attractor (spectral dimensionality) or measures
of the dynamic disorder (entropy) [37] or characterization
of the bifurcations diagram [38]. The analytical study of
Lyapunov exponents is a thorny endeavor and, in practice,
inaccessible. Hence, a reasonable strategy is to derive the
exponents numerically by discretizing the set of partial
differential equations (1). Let N be the number of discre-
tization points; then the system has N Lyapunov exponents
λi. If the Lyapunov exponents are sorted in decreasing order
and in the thermodynamic limit (N → ∞), these exponents
converge to a continuous spectrum as Ruelle conjectured
[39]. Therefore, if the system has spatiotemporal chaos in
this limit, there exists an infinite number of positive
Lyapunov exponents. The set of Lyapunov exponents
provides an upper limit for the strange attractor dimension
through the Kaplan-Yorke dimension [37], DKY ¼
pþPp

i−1 λi=λpþ1, where p is the largest integer that
satisfies

Pp
i−1 λi > 0. In the thermodynamic limit the

Yorke-Kaplan dimension diverges with the size of the
system as a consequence of the Lyapunov density [40]. We
have calculated the Lyapunov spectrum (cf. Fig. 4) corre-
sponding to the total intensity integrated over x in the
model (1). This figure clearly shows that when the system
exhibits extreme events, it is in a regime of spatiotemporal
chaos with several nonzero Lyapunov exponents in the
Lyapunov spectrum and an absence of structure in the delay
embedding.
Moreover, we have computed the proportion of extreme

events pEE, the normed kurtosis γ2 ¼ E½ððX − μÞ=σÞ4� − 3
and the Kaplan-Yorke dimension DKY versus the pump in
Fig. 5. Both pEE and γ2 display a maximum versus pump of
around μ≃ 3 with some correlated oscillations. DKY
increases steadily from zero at μ ¼ 1.525 and then saturates

after μ ¼ 2. From these findings we infer that there is a
smooth or supercritical transition of the system into
spatiotemporal chaos, and this behavior is concomitant
with the increase of the number of extreme events. Note,
however, that there is no reason why there should be a strict
correlation between DKY and pEE since the latter is related
to the structure of the attractor itself and not only to its
dimension [41].
In conclusion, we have shown experimental results of

extreme event appearance in a quasi-1D broad area laser
with a saturable absorber. We have analyzed the physical
origin of extreme events that occur because of the onset of
deterministic spatiotemporal chaos in the system. Irregular
dynamics is obviously a prerequisite for the observation of
extreme events, but we show in our work that the
proportion of extreme events is not directly linked to the
evolution of the Kaplan-Yorke dimension. A higher dimen-
sional dynamics does not necessarily lead to a higher
number of extreme events. The origin of extreme events in
that case is thus to be found in the nature of the
spatiotemporal complexity that takes place, and thus, it
could offer interesting prospects for control by changing
the system geometry or the nature of the coupling.

FIG. 4. Phase portrait of the LSA model. The left panel shows
the characteristic curve μðIÞ (red) along with the unstable wave-
vector regions of the linear stability analysis (Turing instability,
grey; Andronov-Hopf instability, blue). The right axis is μ and the
left axis is the modulus jkj of the unstable wave vectors. The
plane-wave Hopf curve is shown as a dashed blue line. The right
panel shows the computed Lyapunov spectrum for different pump
parameters and corresponding two-dimensional delay embedding
for the total intensity ItotðtÞ.

FIG. 5. Left panel: Proportion of extreme events (pEE, blue
circles) and normed kurtosis (γ2, red squares) versus pump μ.
Right panel: Kaplan-Yorke dimension (DKY, blue diamonds)
versus pump μ.

FIG. 3. Logarithm of the PDF of the theoretical height distri-
bution for the 1D laser with a saturable absorber, Eq. (1), versus
pump parameter μ. Extreme events (AI > 2) are shown in red.
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