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a b s t r a c t

Far from equilibrium systems show different states and domain walls between them. These

walls, depending on the type of connected equilibria, exhibit a rich spatiotemporal dynamics.

Here, we investigate the asymmetrical counter propagation of domain walls in an in-plane-

switching cell filled with a nematic liquid crystal. Experimentally, we characterize the shape

and speed of the domain walls. Based on the molecular orientation, we infer that the counter

propagative walls have different elastic deformations. These deformations are responsible of

the asymmetric counter propagating fronts. Theoretically, based on symmetry arguments, we

propose a simple bistable model under the influence of a nonlinear gradient, which qualita-

tively describes the observed dynamics.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Macroscopic systems influenced by injection and dissipation of energy and/or matter typically exhibit coexistence of different
stable states– - this feature is usually denominated multistability [1–4]. Inhomogeneous initial conditions caused by inherent
fluctuations generate spatial domains, which are separated by interfacial domain walls. These interfaces are known as front
interfaces or domain walls [3,4]. Interfaces between these metastable states appear in the form of propagating fronts and give
rise to a rich spatiotemporal dynamic [5–8]. Front dynamics have been observed in several contexts such as walls separating
magnetic domains [9,10], directed solidification processes [11], nematic liquid crystals [12], oscillating chemical reactions [13],
and fluidized granular media [14], among others. According to the dynamical system theory, in one spatial dimension, a front is a
nonlinear solution that is identified in the co-moving frame system as a heteroclinic orbit linking two spatially extended uniform
states [15]. The front type solutions can be regarded as a particle-type one, i.e., they can be characterized by a set of continuous
parameters such as position, core width and so forth. The front propagation depends on the nature of the states that are being
connected. For example, in the case of a front connecting a stable and an unstable state, its speed is not unique but determined
by the initial conditions [16]. This scenario changes for a front connecting two stable uniform states. For variational or gradient
systems, the most stable state invades the other one, in order to minimize its nonequilibrium energy or Lyapunov functional, in
this sense, the front is always propagating towards the higher energy state [8]. There is only one point in the parameter space
for which the front is motionless. Commonly called as Maxwell’s point, it is the point for which both connected states have
exactly the same energy [17]; close to this point, based on variational methods, one can analytically determine the front speed.
Furthermore, far from the Maxwell’s point, implicit expressions for the front speed can be obtained for variational systems [8],
through the solution of the corresponding nonlinear eigenvalue problem.

∗ Corresponding author. Tel.: +56 988281459.

E-mail address: iandrade@ing.uchile.cl (I. Andrade-Silva).

http://dx.doi.org/10.1016/j.cnsns.2015.11.025

1007-5704/© 2015 Elsevier B.V. All rights reserved.



I. Andrade-Silva et al. / Commun Nonlinear Sci Numer Simulat 36 (2016) 192–203 193

In a bistable isotropic system, one expects that two counter-propagating fronts with the same speed can be created through
a finite perturbation over the less favorable state, thus, making the most stable state to emerge. However, recently we have
observed that perturbations of an Ising type walls in nematic liquid crystals with reflection symmetry generate two asymmetric
counter-propagating fronts, each with a different speed and shape [18] [See Supplemental material for a movie that shows an
example of asymmetric counter-propagating of domain walls in an inplane-switching cell filled with a nematic liquid crystal]. The
perturbations are generated by the presence of glass spheres inside the liquid crystal sample. The dynamical behavior observed
is common in systems under the influence of an external flow, i.e. drifting or convective systems [19]. In such case, the front
that propagates in the drag force direction spreads faster than the one which propagates in the opposite direction. Likewise, the
speed difference between the fronts accounts for the drag force. In addition, anisotropic propagation of point defect solutions
with opposite topological charges has been reported in liquid crystals [20–22]. In this case the asymmetry of the propagation is
due to the backflow around moving defects.

In this paper, we investigate in more detail the counter-propagation of asymmetrical domain walls connecting different
molecular-orientation configurations in an in-plane-switching cell filled with a nematic liquid crystal without a flow, which we
have recently observed [18]. These domain walls are triggered by the presence of glass bead within the sample. Experimentally,
we characterize the profile and the speed of these fronts with respect to the amplitude and the frequency of the applied voltage
to the liquid crystal cell. Based on the liquid crystal molecular orientation induced by the glass bead, we elucidate that the fronts
generated by these spheres have different elastic deformations at the core of the fronts. These deformations are responsible for
the asymmetry in the shape and speed of the fronts. Based on symmetry arguments, we propose a simple phenomenological
equation – a bistable model under the influence of a nonlinear gradient – to describe the asymmetric counter-propagating fronts
without flow. Analytically, we characterize the shape and the speed of the asymmetric counter-propagating fronts which qualita-
tively describes the observed dynamics. We evidence experimentally the kink formation due to the collision of two asymmetrical
fronts and explain this phenomenon with a generalization of our simple phenomenological model.

2. Experimental front propagation

2.1. Experimental setup

To investigate the propagation of domain walls, we have considered an in-plane-switching cell filled with a nematic liquid
crystal. The experimental setup under study is depicted on Fig. 1. A layer of E7 nematic liquid crystal is inserted between two
glass plates, thickness g = 1 mm, with a cell gap d = 8.8 ± 0.2 µ m. The elastic constants of the liquid crystal under considera-
tion are, respectively, K1 = 11.2, K2 = 6.8, and K3 = 18.6 (×10−12N). The parallel and the perpendicular dielectric constants are
ε∥ = 18.96 and ε⊥ = 5.16 [23–26]. We consider an in-plane-switching cell, with a homogeneous planar alignment (following
y-axis, cf. Fig. 1) and a perpendicular rubbing to the electric field (Instec, IPS02A88uX00). The indium tin oxide (ITO) electrode
width and the gap width are the same, e = 15 µ m. The height of the electrodes is negligible (∼25 nm) compared to the cell
thickness (d = 8.8 µ m). The active zone is a square of side l = 1 cm. Under these settings, we can consider the cell in a good
approximation as an infinite thin film medium. The electrodes are aligned in the direction of y-axis, that is, the molecules are
anchored parallel to the electrodes (see Fig. 1). The electrodes are connected to a function generator, applying an alternating
current voltage with frequencies ∼1 Hz–10 MHz and an amplitude ∼0 Vpp–20 Vpp (Volt peak-to-peak). The cell is illuminated
with a white light placed between a polarizer P and an analyzer A. In order to have a better information about the molecular ori-
entation the polarizers can be placed parallel (//) or perpendicular (⊥) related to each other. The microscope magnification used
is 20 × or 50 × . The liquid crystal dynamics is measured and recorded through a charge couple device camera (CCD) connected
to an optical microscope.

2.2. Experimental observation of asymmetrical counter propagative fronts

We consider the system under study as an infinite liquid crystal medium. A good approximation of this, is to observe in the
middle of the sample a small portion of the cell. This midplane is schematically depicted in Fig. 3d. By direct observation, without
applying a voltage to the sample, only the electrode bands can be detected. Fig. 3a and top panel in Fig. 2a show these electrode
bands characterized by dark zones. Note that there is a black bead between two consecutive electrodes. This bead is a glass sphere
used to fix the thickness between the two glass plates, with diameter of 8.8 µ m. The glass sphere creates a 3D local perturbation
in the molecules orientation around it. Applying a voltage with an amplitude of 20 Vpp and a frequency of f = 1 kHz, the system
exhibits two asymmetric domain walls propagating towards both sides from the glass sphere, following y-axis (cf. Fig. 2). These
fronts connect two different molecular orientations, which correspond to black bands observed over the electrodes and between
them. Figs. 2 and 4 illustrate the front profiles. To demonstrate the constancy of front velocity, we represent on Fig. 2 dotted lines,
blue for the left front and green for the right one, which match with the front positions for every snapshot. We note that each
front propagates with constant speed, however, different between each other.

The black curves are the consequence of the molecular orientations in the sample which modify the light polarization and do
not allow the light to cross the analyzer. As a result of the electrode shapes, the states that connect the fronts are not uniforms in
the vertical direction. Between the gap and the middle electrode, the system exhibits three equilibria, represented by α, β and
γ in Fig. 4a, and observed thanks to the use of crossed polarizers. The fronts only connect two particular molecular orientations.
One is positioned in the center of the gap region (α-state, see Figs. 3c and 4 a) and the other one close to the center of the electrode
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Fig. 1. Sketch of the experimental setup, which represents an in-plane-switching cell connected to a generator and observed by a microscope (top), with a 40X

magnification, in white light (down). Thickness between the two glass plates, d = 8.8 ± 0.2 µ m. Thickness of a glass plate, g = 1 mm. Active zone, l × l = 1 cm2.

Gap between two electrodes, e = 15 µ m. Perpendicular polarizer to the molecules anchoring, P⊥ (following x-axis). Parallel polarizer to the molecules anchoring,

P∥ (following y-axis). The inset shows a snapshot of the experimental system under study. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

Fig. 2. Asymmetric counter propagating domain walls in an in-plane-switching cell filled with an E7 nematic liquid crystal, applying a tension of T = 20 V and

f = 1 kHz. (a) Experimental snapshots at different times. The black disk in the center is a glass sphere and the dashed lines emphasize the speed with which

fronts propagate. (b) Amplified snapshots of the right front. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

(β-state). Notice that at the center of the electrodes, the system presents a peculiar molecular orientation γ -state. These states
account for molecules orientation with a certain preferential vertical and horizontal direction, as illustrate in Fig. 3d. The most
stable molecular orientation (β-state) invades the least favorable one (α-state, cf. Fig. 4). Indeed, the states over the electrodes
are more stable than those between them.

As we have mentioned, in a bistable isotropic system, one expects a finite disturbance on a less favorable state can gener-
ates two counter propagative fronts with the same speed, giving appearance of the most stable one. Notwithstanding, we have
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Fig. 3. Schematic representation of the liquid crystal layer. Experimental image on the top of the sample, (a) without voltage and parallel linear polarizers and

(b) with voltage, observed between crossed polarizers. Schematic molecules orientation in the liquid crystal sample (c) without voltage. (d) Schematic molecular

representation in the middle plane of the sample, %, with voltage. Glass ball causing a local perturbation and {α, β , γ } stand for different domain walls. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Front profiles. (a) Experimental counter propagative fronts connecting two different molecular orientation, from Fig. 1, at t = 10 s with cross linear

polarizers. (b) Experimental counter propagative fronts under parallel linear polarizers. (c) Left front with a core size e1. (d) Right front with a core size e2. (d)

Stationary solution of bistable model Eq. (1) for η = 0 and ν > 0. (e) Spatiotemporal diagram of counter propagative fronts of the model Eq. (8) for η = 0.3 and

ν = 0.6. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Experimental characterization of front velocities. (a) Velocities versus voltage amplitude with a fix frequency value, f = 1 kHz, and (b) velocities versus

frequency with a fix amplitude value V0 = 20 Vpp. The black and the grey curves are, respectively, the speed of right and left front. The black and gray curves

account for the right and the left front speed, respectively, using Fig. 2 as a reference orientation.

observed that perturbations of an Ising type walls in nematic liquid crystals with reflection symmetry generate two asymmetric
counter propagative fronts (see Fig. 2). Indeed, the speed and the shape of each front are different. It is worthy to note that the
perturbations are generated by the presence of glass spheres inside the liquid crystal sample. In the other hand, asymmetric
front propagation is typically observed in drifting or convective systems , that are systems under the influence of a flow. The
presence of the drift force causes the reflection symmetry breaking, where the front that propagates in the direction of the drag
force spreads faster than the one which propagates in the opposite direction. Likewise, the speed difference between the fronts
accounts for the drag force.

The origin of the observed asymmetry between the front is: each core separates different molecular orientations, whereby
in the left front the directors rotate clockwise and in the right front they rotate counterclockwise [cf. Fig. 3d]. Therefore, as
a result of the anisotropic properties of the nematic liquid crystal (i.e., elastic constants [23–26]), the unlike front cores have
molecular configurations with different twisting energy. Moreover, it is also expected that the director rotation is coupled with
the velocity field to generate an asymmetric backflow [23–26]. These effects are responsible for the dissimilar propagation
speeds.

2.3. Velocity evolution

The two fronts present constant velocities during their propagation in the sample. It is possible to change the front velocity
values by modifying the voltage parameters. Fig. 5 shows the front speeds versus the voltage amplitude for a fix value of the
frequency, f = 1 kHz, on the left panel and the frequency for a fix value of the voltage amplitude voltage, V0 = 20 Vpp, on the right
panel. The black and gray curves account for the right and the front speed, using Fig. 2 as a reference orientation. Concerning
the voltage amplitude, we observed qualitatively four different regimes. In the region of low voltage, corresponding at V0 !
7.5 Vpp, the tension is not enough to induce the molecular reorientations, i.e. the system does not exhibit other orientations
than those induced by the anchoring conditions. Hence, in this region we do not observe fronts. For V0 " 7.5 Vpp (region II),
we have observed the emergence of domain walls. Therefore, this voltage corresponds to the critical value which accounts for
the Freederickz transition [23–26]. Each front separates different molecular orientation states. The counter-propagative fronts
spread with almost the same speed (v f ront ∼ 5 µm/s). The left front is slightly faster than the right one. In region III, between V0

" 9 Vpp and V0 " 12.5 Vpp, we observe a significant increment of the front speed values. The right front propagates faster than
the left one. In the region IV, for V0 # 12.5Vpp, the system exhibits a stationary behavior for counter-propagative fronts. The right
and left front speed are constant v f ront (right) ≈ 13.5 µm/s and v f ront (left) ≈ 9.5 µm/s).

The situation looks a little bite more complex, when we modify the voltage frequency inside the cell. For lower frequency
than 3 Hz, the molecules oscillate with large amplitude, and then, there are no privileged stable molecular orientations. For
frequencies in the range [3, 200]Hz, the speed of domain walls exhibit a resonant phenomenon, that is, the speed of domain
walls has a maximum at a given frequency (cf. Fig. 5b). This maximum speed is reached at around 30Hz. In this range, the right
front propagates faster than the left one. At frequency f = 210Hz, the two counter propagating fronts have the same speed. Above
this value the two speeds do not present substantive modification until 1 MHz. From f = 1 MHz, the two front velocities present
a strong and fast modification (in log-scale). The right front speed decrease until v f ront (right) ≈ 3.5 µ m/s for f = 3.8 MHz. The
left front speed also decreases. At f = 1.8 MHz, the left front propagates in the same direction of the right one and changes
consequently its velocity sign. At f = 3.9 MHz the two fronts disappear.

From the above description, we can conclude that it exists an optimal parameter range to observe a constant dynamics of
asymmetrical counter propagative fronts for voltages V0 ϵ [14; 20]Vpp and frequencies f ϵ [1; 100]kHz.
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Fig. 6. (a) Electric field representation inside the liquid crystal sample using formulas (2) and (3). (b) The molecular orientation in the liquid crystal sample. The

electric potential is represented by the gradient colors. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)

3. Theoretical description of the asymmetrical counter propagative fronts

3.1. Voltage and electric field inside the nematic liquid crystal cell

The in-plane-switching technology, as presented in Section 2.1, is composed by two electrode combs nested all in all and
deposed on a glass layer inside the liquid crystal cell, as depicted on the experimental setup on Fig. 1. This electrode configuration
generates an inhomogeneous periodic electric field [28]. To characterize this type of cells, we develop a model of the electric
field inside the sample. The nematic liquid crystal is an anisotropic medium, so the voltage V(x, y, z) inside the cell satisfies an
anisotropic Laplace equation, which has the form

∂xxV +
ϵ∥
ϵ⊥

∂yyV + ∂zzV = 0,

where ϵ⊥ and ϵ∥ are, respectively, the perpendicular and the parallel dielectric constants to the nematic director. The dielectric
anisotropy is defined as ϵa ≡ ϵ∥ − ϵ⊥ and it is positive for the liquid crystal used in our experiment, ϵa > 0. At the bottom glass,
the voltage satisfies the boundary condition V (x, y,−d/2) = f (x), with f(x) a periodical function which follows the electrodes
periodicity, i.e. f (x + 4e) = f (x) where e is the electrode size and 4e is the wavelength. Assuming that the liquid crystal and
the glass have similar dielectric constants, then no boundary effects are considered at the top layer and we use the condition
V (x, y, z = + ∞) = ˜0. Alternatively, one can consider that the voltage is constant in the top glass, V (x, y, z = d/2) = V ′, qualita-
tively similar results as been obtained into an in-plane-switching liquid crystal cell, for instance see Ref. [27].

Using the Fourier transform in x-coordinate, neglecting the dependence on the y-coordinate and solving the anisotropic
Laplace equation with the corresponding boundary conditions, after straightforward calculations one obtains

V (x, z) = 1

2π

∫
dkdx′ f

(
x′) exp

[
−ik

(
x′ − x

)
− k

(
z + d

2

)]
. (1)

For the sake of simplicity, we consider f (x) = V0 cos (k0x), with k0 ≡ π /2e. Thus the voltage inside the cell takes the form

V (x, z) = V0 cos (k0x)e−k0(z+d/2), (2)

then the voltage is a periodical function in the transverse direction and a decreasing function in the vertical direction. The electric
field E = −∇V inside the sample has the explicit form

E = V0k0 sin (k0x)e−k0(z+d/2)x̂ + V0k0 cos (k0x)e−k0(z+d/2)ẑ. (3)

Fig. 6a depicts the electric potential and the electric field in the liquid crystal sample from formulas (2) and (3). Since the
liquid crystal has positive anisotropic constant ϵa, the molecules align with the electric field. Fig. 6b shows the expected equilib-
rium structure for a director within the liquid crystal sample. Then the electric field induces naturally nematic Ising walls along
the electrodes. This electric field configuration also induces domain walls between the electrodes. Under the microscope, we
observed that the edges of the electrodes also induce domain wall. Notice that these domain walls are complicated because they
are inhomogeneous, then, a description from first principles is a complex task. Our strategy to describe the dynamics of domain
walls was based on symmetry arguments.

3.2. Nematic asymmetrical fronts

The interface between two states in a thin film layer corresponds to a curve. Hence, it can be treated as a one-dimensional
system describing the temporal evolution of the local wall position u(y, t), where y parameterizes the interface. We observe that
the wall position has two equilibria (states α and β in Fig. 3) corresponding to different molecular configurations states and the
system exhibits fronts connecting these two states. A simple bistable model which exhibits fronts reads

∂t u = η + u − u3 + ∂yyu, (4)

where η is a parameter that measures the relative stability among both equilibria. These equilibria are energetically equivalent for
η = 0. This bistable model has reflection symmetry (y → −y) and is variational, or gradient, which means that can be rewritten
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as follows

∂t u = −δF

δu
, (5)

where

F =
∫

dy

{
−ηu − u2

2
+ u4

4
+ (∂yu)2

2

}
(6)

is the Lyapunov functional. Hence, the system evolves by the minimization of the Lyapunov functional. Likewise, this system has
an unstable homogeneous state and two stable ones provided for |η| < 2/(3

√
3). For small η the unstable and stable equilibria

are u " 0 and u± " ±1, respectively. In bifurcation theory, the model Eq. (4) describes an extended imperfect Pitchfork bifurcation
[3,4]. At the Maxwell Point, η = 0, both equilibria are energetically equivalent and the system has motionless front type solutions
of the form

u!(y) ≡ ± tanh

[
(y − y0)√

2

]
, (7)

which connect asymptotically the states u = 1 and u = −1. The parameter y0 denotes the front position and parameterizes the
family of front solutions as result of translation symmetry. When η ̸= 0, there is an energy difference between the states and the
system exhibits propagating fronts, which move at a constant speed invading the less stable state. Indeed, one observes that two
counter-propagating fronts with the same speed can be created through a finite perturbation over the less favorable state, thus,
making the most stable state to emerge. Therefore, the model Eq. (4) does not account for the observed dynamics in the liquid
crystal cell with in-plane-switching.

To model asymmetric counter propagating one-dimensional fronts, let us introduce the following phenomenological bistable
model under the influence of a nonlinear gradient

∂t u = η + u − u3 + ∂yyu + νu∂yu, (8)

where u(y, t) is an order parameter that accounts for the position of the domain wall separating the different molecular con-
figurations and {η, ν} are parameters that respectively control the relative stability of the equilibria and the asymmetry of the
system. The last term is a non-variational type and corresponds to a Burgers drift that breaks the symmetry y → −y. This term
accounts for the asymmetric elastic deformations induced to connect the different molecular configurations (see Fig. 3). For
ν = 0, we recover the previous model Eq. (4) with symmetric front type solutions. Solutions to this model for η = 0 were studied
[29] and used after to describe fixed-flux convection in a tilted slot [30]. Note that changing the sign of ν is equivalent to doing
the transformation y → −y, so we set ν > 0 without loss of generality. For η = 0, this model has an unstable homogeneous state
u = 0 and two stable homogeneous ones, u± = ±1. Moreover, this model has motionless fronts of the form

u!(y) ≡ ± tanh

[
(y − y0)

c!

]
, with c! > 0. (9)

The solution u←(y, y0) [u→(y, y0)] represents a front connecting the states u− [u+] with u+ [u−] when the y-coordinate is incre-
mented. We name these solutions as left front and right front, respectively. The parameter y0 denotes the front position. Note that
the core sizes are c!. In order to take into account the effect of the Burgers drift, using the motionless front as ansatz (9) in Eq.
(8) after straightforward calculations we obtain

c! = ∓ν
2

+

√(
ν
2

)2

+ 2.

When ν = 0, we recover the motionless front formula (7). Notice that c← < c→. Hence, the left front core is thinner than
the right front one. Figs. 4d and e show these fronts, which present a qualitative agreement with the experimentally observed
fronts. Fig. 7 shows a profile comparison between the observed fronts and formula (9). Indeed, these figures show that there is a
good agreement between the experimental and the analytical profile fronts using the bistable model. All numerical simulations
presented in this work were conducted using Runge–Kutta order 4 algorithm and finite elements method.

When one considers that the asymptotic equilibria have different energies, η > 0 (η < 0), the asymmetric fronts move at
different constant asymptotic speeds, such that the most favorable state, u+ (u−), invades the less favorable one u− (u+). To
get analytically the front speed, we consider that {η, ν} are small enough and use the ansatz u(x, t) = u![y − y!0 (t)] + w(y, t),

where the front position y!0 (t) is promoted to a temporal function and w(y, t) stands for a small correction of order {η, ν}.
Introducing the above ansatz in Eq. (8), linearizing in w and neglecting the terms ẇ, νu!∂yw, and ν(∂yu! )w, we obtain

(
1 − 3(u! )2 + ∂yy

)
w = −∂yu!

dy!
0

dt
− η (10)

In the left hand side of Eq. (10) we can use the following approximation

u! ≈ u(0)
! ≡ u! |ν=0 = ± tanh

(
(y − y0)√

2

)
.
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So, Eq. (10) has the form Lw = b with

b = −η − ∂yu(0)
!

dy!
0

dt
,

and

L =
(
1 − 3(u(0)

! )2 + ∂yy

)
.

L is an Hermitian operator in respect to the inner product ⟨ f |g⟩ ≡
∫ +∞
−∞ f g dy and has a Goldstone mode as consequence of the

translation invariant given by L
(
∂yu(0)

←

)
= 0. To solve the linear equation Lw = b, we impose Fredholm alternative, that is, the

right-hand side orthogonal to the kernel of L† [3,31]. This alternative leads to the following equation ⟨∂yu(0)
← |b⟩ = 0. Thus, the left

and right front speeds are given by

dy!
0

dt
= −η

〈
∂yu(0)

← |1
〉

〈
∂yu(0)

← |∂yu!

〉 . (11)

The integral in the numerator gives
〈
∂yu(0)

← |1
〉

= 2. To perform the integral in the denominator we need to expand the term

∂yu! ≃ ∂yu(0)
! + ν∂v

(
∂yu!

)∣∣
ν=0

,

where

∂v
(
∂yu!

)∣∣
ν=0

= ±∂ν

(
1

c!
sech2

(
y − y0

c!

))∣∣∣∣
ν=0

= 1

4
sech2

(
y − y0√

2

)
− 1

2
sech2

(
y − y0√

2

)
tanh

(
y − y0√

2

)(
y − y0√

2

)
.

Performing the integrals and after straightforward calculations, we obtain at dominate order

〈
∂yu(0)

← |∂yu!

〉
≈ ±2

√
2

3
+ 1

6
ν. (12)

From Eq. (11), the left and the right front speeds are given by

dy!
0

dt
≃ ∓ 3√

2
η + 3

8
ην. (13)

The first term on the right hand side accounts for the energy difference between both equilibria. The last term accounts for the
effect of Burgers drift, which clearly follows that the right front (left front) is faster than the left front (right front) for η > 0 (η
< 0). Hence, the front with wider core is always fastest. In order to validate the above analytical expressions in comparison with
numerical simulations of Eq. (8), we introduce the following parameters

Vvar ≡

(
ẏ→

0 − ẏ←
0

)

2
≃ 3√

2
η, (14)
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Fig. 8. Numerical measurements of the parameters Vvar and Vnonvar for different values of η and ν . The points are obtained from directed numerical simulation of

model Eq. (8) and the continuous lines are obtained used the analytical formulas (14) and (15), respectively. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

Fig. 9. Numerical and experimental observations of front propagation between different molecular reorientations and kink formation between two symmetrical

molecular orientation. (a) Temporal sequence of numerical profiles of model Eq. (16) with η = 0.2, ν = 0.5 and t1 < t2 < t3 < t4 < t5. b) Sequence of snapshots of

asymmetric counter propagating domain walls in an in-plane-switching cell filled with an E7 nematic liquid crystal under parallel polarizers, applying a tension

of T = 20Vpp and f = 1 kHz. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

and

Vnonvar ≡

(
ẏ→

0 + ẏ←
0

)

2
≃ 3

8
ην. (15)

The parameter Vvar stands for the front speed due to the difference in energy between both states, i.e., this is the speed of
variational origin. Additionally, the parameter Vnonvar accounts for the front speed originated by the non-variational drift. Note
that

dy!
0

dt
= ±Vvar + Vnonvar.

Numerical measurements of Vvar and Vnonvar are depicted in Fig. 8 showing a quite good agreement with our analytical findings.
It is important to note that the formulas for the speed (14) and (15) are only valid for {ν , η} small.

4. Kink formation

Because of the periodicity of the electrodes, one expects that the system exhibits many domain walls and has the possibility
to connect states from different electrodes (see Fig. 9).
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4.1. Theoretical explanation of kink formation

To take into account the periodicity of the wall lattice, we propose a generalization of the bistable model (8) (periodic multi-
stable model)

∂t u = sin (πu) − η cos
(
πu

2

)
+ ∂yyu + ν sin(πu)∂yu, (16)

which can be rewritten in the following form

∂t u = −∂V

∂u
+ ∂yyu + ν sin(πu)∂yu, (17)

where

V (u) = cos(πu)

π
+ 2η

π
sin

(
πu

2

)
. (18)

For η = 0, the stable equilibria are given by un = 2n + 1 with n = {±1, ±2, . . .}. The Burgers drift term has been modified to
be consistent with the periodicity of u(y, t). This model can exhibit fronts connecting the state un = 2n + 1 with the top state
(un+1 = 2n + 3) or the bottom state (un−1 = 2n − 1). The front connecting a middle state with a top one and propagate to the
right (left) is denoted by ftr (ftl). Analogously, if the front connects a bottom state, we use the notation {fbl, fbr}. The parameter
η controls the relative stability between the even states and the odd states. Between two consecutive equilibrium states, this
model has qualitatively the same dynamic behavior exhibited by bistable model Eq. (8). However, as a result of multiple stability,
this system can have a richer domain walls dynamic. In particular, this model exhibits kink formation when two opposite fronts
connecting different states collide. A kink wall corresponds in general to a motionless front connecting two symmetric states.
Two counter propagative fronts connecting monotonously a bottom-middle-top state have equal speeds in opposite direction
giving result to a stationary kink. Fig. 9 illustrates the experimental and numerical kink formation showing a similar behavior.

4.2. Experimental kink formation

We expect to observe experimentally the kink formation in our sample, as predicted by our theoretical model (Section 4),
between two identical molecular deformations. We search in our sample, a place where there are two or more glass beads
located on two electrodes, separated by only one gap, as presented in Fig. 9b at t < 0 s. We need to have a front between the top
electrode and the central gap, created by the top glass bead and another front between the bottom electrode and the central gap,
generated by the bottom glass bead (Fig. 9a at t = 4s). When we apply a voltage, we observe on the top two counter propagating
fronts ftl and ftr, whereas on the bottom only one propagating front to the right fbr. [See Supplemental material for a movie that
shows kink formation]. This configuration is enough to observe the kink formation. During 11 s, ftl and fbr propagate towards
each other. At t = 11 s, The two fronts collide each other to form a kink wall, which connects the two electrodes. We observe a

Fig. 10. Experimental observation of asymmetrical front propagation without local perturbation (glass sphere). Temporal sequence of snapshots with a tension

of the for V = T0 + T sin( f t), T = 16Vpp, T0 = 2V, and f = 1kHz. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)
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steepness changing between t = 11 s and t > 12 s. This effect comes from the velocity difference between the fronts and the kink.
At t = 11 s, the two front have just collapsed and the smooth steepness is due to the front velocity. Contrary to t > 12 s, where
the kink is established and motionless, in this case the steepness is more important.

5. Front formation without local perturbation

Experimentally, it is possible to observe counter propagative fronts without glass sphere to generate the local perturbation.
By adding an input offset to the alternative component of the voltage Eq. (2), as V (x, y, z) + V1, with V1 < V(x, y, z), we observe the
destabilization of the molecular orientation between two electrodes (see Fig. 10). We explain this phenomenon by the presence
of some inhomogeneities in the media, which, combined with the offset, change locally the molecular stability and generate the
front propagation. If, we increase more V1, only the β state (cf. Fig. 3) exists and the black line of the α state disappears. In other
words, we change globally and not locally, the molecular orientation stability.

6. Conclusion

In conclusion, we have studied counterpropagation of asymmetrical fronts connecting different molecular orientations in
an in-plane switching cell filled with nematic liquid crystal without flow. These fronts connect two equilibrium positions of
the walls generated over the electrodes of the cell. Experimentally, we have characterized the profile and the speed of theses
fronts. Two counterpropagating fronts had different elastic deformation at their cores. These deformation are responsible for the
asymmetry in the shape and the speed of the fronts. Theoretically, we have proposed a phenomenological equation, a bistable
model under the influence of a nonlinear gradient, to describe asymmetric counterpropagating fronts without flow. Analytically,
we have derived the shape and speed of the fronts exhibited by the model in the limit of small asymmetry between equilibria. We
have quite good agreement with numerical simulations. We have generalized this model to emphasizes the periodicity of the cell
and predicted stationary kink formed when fronts from two electrodes collide. The analytical results from the models describe
qualitatively the observed dynamics in a large range of parameters. It is worthy to note that, the system exhibits qualitative
changes in the behavior of front propagation for large and small frequencies. For low frequencies fronts exhibits a resonance
phenomenon for speed and for high frequency the system displays inversion of propagation of one of the fronts. The study and
understanding of these phenomena is in progress.
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