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Rodlike localized structure in isotropic pattern-forming systems
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Stationary two-dimensional localized structures have been observed in a wide variety of dissipative systems.
The existence, stability properties, dynamical evolution, and bifurcation diagram of an azimuthal symmetry
breaking, rodlike localized structure in the isotropic prototype model of pattern formation, the Swift-Hohenberg
model, is studied. These rodlike structures persist under the presence of nongradient perturbations. Interaction
properties of the rodlike structures are studied. This allows us to envisage the possibility of different crystal-like
configurations.
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I. INTRODUCTION

Macroscopic systems under the influence of injection
and dissipation of energy, momenta, and matter often lead
to the formation of spatial structures [1–3]. These patterns
can be extended, involving the whole physical system, or
localized, which are patterns that exist only on a portion
of the system [4–6]. From the dynamical systems point of
view, one-dimensional localized structures are homoclinic
connections of the stationary dynamical system involving a
stable and an unstable manifold of a given equilibrium [7,8].
The possibility of coexistence between different equilibria
enriches the variety of possible homoclinic structures. For
example, in the case of coexistence between a uniform and
a pattern state, the heteroclinic entanglement generates the
nucleation of a family of localized structures [8,9], which
are organized by a snaking bifurcation diagram [10,11]. In
recent decades, localized structures have been observed in
different fields, such as magnetic materials [12], chemical
reactions [13], vertically driven Newtonian fluid [14,15],
granular media [16,17], liquid crystals [18], liquid crystal light
valve [19–21], colloidal fluids [22], electrical discharges [23],
thermal convection [24,25], and nonlinear optics [26,27], to
mention a few. In most of these observations the localized
states are two-dimensional objects with circular symmetry.
Localized structures are particle-type solutions for nonlinear
equations, as they exhibit a series of characteristics often
attributed to particles such as a size, a position, and a
velocity defined by the parameters of the system, and an
interaction law between them. Localized structures have
attracted the interest of the scientific community because of
their potential applications in optical information storage and
processing [28].

Homogeneous and isotropic systems—with translational
and rotational invariance—usually exhibit localized patterns
which are azimuthally symmetric, that is, the localized states
have circular symmetry. Spatial breaking of symmetry tends
to deform the localized structures and can even induce
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propagation of them; this is the case of the worm structures
observed in binary liquids [24,29] and electroconvection
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FIG. 1. (Color online) Stationary rod localized structure for
(a) 2D Swift-Hohenberg model, Eq. (1), with ν = 2.0, η = −0.355,
and ε = 1.2. The inset is a color map of the rod localized structure.
(b) 3D Swift-Hohenberg model; image shows the isosurface for
u = 0.2 with ν = 2.0, η = −0.37, and ε = 1.5. Simulations in two
and three dimensions were made using pseudospectral and adaptive
triangular finite element methods, respectively. Both with Neumann
boundary conditions for the field u(�r,t).
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cells [30]. Theoretically, localized stripes [31], rolls, square,
and worms have been observed in the two-dimensional
Swift-Hohenberg equation [32]. In the liquid crystal light
valve experiment triangular localized structures have been
observed by controlling the optical feedback [20]. Numerical
simulations of the model describing this system also exhibit
this type of intriguing triangular localized state. Moreover,
triangular localized structures are inherently two-dimensional
due to the rotational symmetry breaking. There is no global
geometric theory to explain the origin of these structures,
and no characterization of the different possible localized
structures without rotational symmetry has been done.

In this paper, we show the existence, stability properties,
dynamical evolution, and bifurcation diagram of an elongated
localized structure, nonazimuthally symmetric, in a prototype
isotropic two-dimensional (2D) model, the Swift-Hohenberg
equation. We call this object a rod localized structure. Figure 1
illustrates the typical observed rod structure in 2D and 3D
systems. For 2D structures, we show the complex interaction
scenario of rod structures, which have a complex network of
equilibria. This allows the existence of different crystal-like
configurations.

The paper is organized as follows: In Sec. II, the generalized
Swift-Hohenberg model and its dynamical evolution features
are introduced. In particular, the phase space of the model
used is described. In Sec. III, the rodlike localized structure
is analyzed as a composition of one-dimensional structures.
The different instabilities and bifurcation diagrams of rod
structures are analyzed in Sec. IV. Interaction properties
of rod structures are shown in Sec. V. The persistence of
the structure under nonvariational perturbations is studied in
Sec. VI. Our conclusions and remarks are left to the final
section.

II. GENERALIZED SWIFT-HOHENBERG EQUATION

Let us consider a prototype model which exhibits both
localized and extended patterns. This is a natural variant of
the Swift-Hohenberg equation [33], which is an isotropic,
reflection symmetry, and real order parameter nonlinear
equation deduced originally to describe the pattern formation
on Rayleigh-Bénard convection [33]. This generalization
includes an extra term which breaks the field reflection sym-
metry. It has been deduced in various field on nonlinear science
such as chemistry [34], plant ecology [35], and nonlinear
optics [36,37]. This equation applies to a wide range of systems
that undergo a symmetry breaking instability—often called
Turing instability [2,4]—close to a second-order critical point
marking the onset of a hysteresis loop, which corresponds to
a Lifshitz point [4,38,39]. The generalized Swift-Hohenberg
equation reads

∂u

∂t
= η + εu − u3 − ν∇2u − ∇4u, (1)

where u = u(x,y,t) is a real scalar field, x and y are spatial
coordinates, and t is time. Depending on the context in which
this equation has been derived, the physical meaning of the

field variable u(x,y,t) could be the electric field, deviation of
molecular orientations, phytomass density, or chemical con-
centration. The control or the bifurcation parameter ε measures
the input field amplitude, the aridity parameter, or chemical
concentration. The η parameter breaks the reflection sym-
metry u → −u, thus it accounts for the asymmetry between
homogeneous states. When this parameter vanishes (η = 0),
one recovers the original Swift-Hohenberg equation [33]. The
parameter ν stands for the diffusion coefficient; when this
parameter is negative (ν > 0), it induces an antidiffusion
process. The 2D Laplacian operator ∇2 = ∂2

xx + ∂2
yy and the

2D bilaplacian operator ∇4 act on the plane (x,y). Thus the
first three terms on the right hand side of Eq. (1) account
for homogeneous or local nonlinear dynamics, the fourth and
the fifth terms stand for the transport mechanisms or spatial
coupling via diffusion and hyperdiffusion, respectively. In the
3D case [see Fig. 1(b)] the Laplacian and bilaplacian operators
act on the whole (x,y,z) space.

It should be noted that by a displacement of the field
u → u + u0, where u0 is a constant, Eq. (1) can be rewritten
by removing the parameter η and including an extra term
proportional to u2. The equation including the quadratic
term has been widely studied in various contexts (see the
textbook [3], and references therein). An important property
of Eq. (1) is that it possess a gradient form, i.e.,

∂u

∂t
= −δF [u,∇u,∇2u]

δu
, (2)

with the functional

F ≡
∫∫

R2

(
−ηu − ε

u2

2
+ u4

4
− ν

(∇u)2

2
+ (∇2u)2

2

)
dxdy.

(3)

Note that using the solutions of Eq. (1), this functional satisfies

dF

dt
= −

∫∫
R2

dxdy(∂tu)2 � 0. (4)

Hence, F is a Lyapunov functional that can only decrease in
the course of time. This property guarantees that with temporal
evolution functional proceeds toward the state for which it
has the smallest possible value which is compatible with the
system’s boundary conditions. Any initial distribution u(x,y,t)
[or u(x,y,z,t) in the 3D case] evolves towards a homogeneous
or inhomogeneous (periodic or localized) stationary state
corresponding to a local or global minimum of F . The analysis
of the functional F is provided in Ref. [40].

The generalized Swift-Hohenberg equation exhibits co-
existence between homogeneous and pattern states [41,42],
thus allowing the stability of localized structures. These are
localized structures in the sense of integral boundedness,∫∫

R2
|uls(x,y)|2dxdy < +∞, (5)

where uls ≡ u(x,y) − u0 is the relative field of the localized
structure with respect to the homogeneous state u0, which
sustains the localized structure. This homogeneous state is a
stable solution to the cubic equation η + εu0 − u3

0 = 0. For a
certain range of parameters {η,ε} two different localized struc-
tures are stable; the first is the well known circular (azimuthally
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FIG. 2. (Color online) Bifurcation diagram of the 2D generalized
Swift-Hohenberg Eq. (1) in (ε,η) space for ν = 2.0. The light and
dark curve �1 and �2 account for the nascent bistability cycle and the
spatial bifurcation of the uniform state, respectively. The shaded
areas account for the zones where localized peaks (LS zone) and
localized holes (hole LS zone) are observed. The painted areas stand
for the region where rod structures have been observed. The insets
correspond to the typical monitored rod structures.

symmetric) localized structure [43]. Notwithstanding, we have
found a second type of localized structure that corresponds to
a different class of localized structures at least in two- and
three-dimensional isotropic systems. This object is a stable
rodlike localized structure; it breaks the azimuthal symmetry,
remaining invariant only with respect to a rotation of π around
any axis on the (x,y) plane which contains the center of
the localized structure. Figure 1 shows the typical rodlike
stable localized structures exhibited by both the 2D and 3D
Swift-Hohenberg Eq. (1).

In order to figure out the conditions under which the rod
structure emerges, the analysis of the bifurcation diagram
must be constructed for the model under study. For a fixed
value of the diffusion coefficient ν = 2.0, a typical bifurcation
diagram of the model Eq. (1) in the parameter space (ε, η)
is described by curves �1 and �2 in Fig. 2. The curves �1

and �2 represent the pitchfork bifurcation and the threshold
associated with a modulation (or pattern-forming or Turing)
instability of the homogeneous state, respectively [41,42]. For
negative ε, the system has only one homogeneous steady state,
the monostable region. For positive ε the system undergoes
a bistable behavior between homogeneous steady states as
result of the saddle-node bifurcation (cf. Fig. 2). Moreover
as a result of the spatial instability of the uniform state (cf.
Fig. 2), the system also exhibits coexistence between patterns
and homogeneous states. Near this type of bistability region
one expects to observe stable localized structures. The shaded
zones in Fig. 2 account for the areas where stable 2D circular
localized peaks and holes are observed. When one decreases
the value of |η| (approaching zero), localized structures
become unstable giving rise to labyrinthine patterns [44]. This
transition occurs via fingering instability. Unexpectedly, rod
structures coexist with isotropic localized structures. By direct
simulation of Eq. (1) we have uncovered the region where the
rod structures are observed, see Fig. 2.

Even though the Swift-Hohenberg model has been ex-
tensively studied since its deduction, no analytic expression
is know for the localized solution. This is because these

structures are homoclinic solutions of the stationary dynamical
system (∂tu = 0), which is chaotic when replacing time for the
radial coordinate [45]. Under this consideration, the study of
the rodlike structure will not lead to an analytic expression
nor to a full characterization of its characteristic properties,
bifurcations, and interaction. Thus, numerical and geometrical
methods are the most suitable tools for characterizing the
localized structures.

Simulations in the 2D case were implemented using a
pseudospectral code, with a 512 × 512 points grid. Figure 1(a)
shows a subregion of 240 × 240 points, with spacing dx =
0.1. The structures do not align with the simulation axes, and
can be positioned in any direction. In 2D simulations using the
finite differences code with Runge-Kutta order-4 algorithm,
rod structures are also observed, however the discretization
of the square grid can induce the alignment of the rod
structure with the simulation axes. For the 3D case, a triangular
finite element code with adaptive spatial and temporal steps
was used, and a simulation box of dimensions 40 × 40 × 40
was considered. Figure 1(b) shows a zoomed region of size
16 × 8 × 8. Here, rod localized structures also can be oriented
in any direction.

III. ONE-DIMENSIONAL INTERPRETATION

No definitive theory for two-dimensional localized struc-
tures has yet been formulated, therefore, the required physical
and mathematical conditions for their existence and stabil-
ity are not known. However, for one-dimensional systems,
localized structures emerge as a family of stable fronts
connecting a homogeneous with a pattern state in a bistable
regime [46]. It is now known that coexistence (instead of
bistability) is sufficient for the appearance of one-dimensional
localized structures [47]. In this sense, the generation of
two-dimensional localized structures can be regarded as an
extension of one-dimensional localized structure, which is
rotated over its axis thus generating an azimuthally symmetric
localized structure. Nevertheless, the rodlike structure has no
azimuthal symmetry. We can project the 2D rod structure over
two orthogonal planes (γ1 and γ2). These projections generate
the equivalent to one-dimensional localized structures. The
projection over the γ1 plane [Fig. 3(a)] generates a one
wavelength wide localized structure while the projection
over the γ1 plane [Fig. 3(b)] generates a two wavelength
wide localized structure [8]. Hence, the two-dimensional
rod structure can be considered as the composition of two
one-dimensional localized structures with different lengths.

As in one-dimensional localized structures of the general-
ized Swift-Hohenberg equation, the two-dimensional struc-
tures possess spatially oscillating tails of the field, which
propagate radially from the bulk of the structure; these
oscillations, that decay exponentially, stabilize the structure
and allow the interaction between two or more of them by
field interference [48,49].

IV. INSTABILITIES AND BIFURCATIONS

The characterization of the phase space of the generalized
Swift-Hohenberg Eq. (1), Fig. 2, shows the existence of the rod
structure for a narrow region of parameters which extends from
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FIG. 3. (Color online) One-dimensional projections of the 2D
rod structure over the (a) (x,u) plane and (b) (y,u) plane. Obtained
by numerical simulation of Eq. (1) with ν = 2.0, η = −0.355, and
ε = 1.2.

zones before the bistability �1 curve up to values of ε ≈ 4.3.
In the whole region of stability the rod structure coexists with
stable localized spots. For η = 0 only circular localized struc-
tures are observed. It has been shown that circular localized
structures suffer from a curvature instability when leaving
their stability zone thus generating an extended labyrinthine
structure [44]. In this section is shown how labyrinths can
emerge—in zones where circular localized structures are
stable—by the destabilization of the rod structure. It is also
shown how the rod structure elongates into an infinite roll
structure, decays into the simpler localized spot, or even
splits into a bound state of two circular localized structures,
depending on the varied parameters. Bifurcations suffered by
the rod structure can be studied through monitoring the energy
(Lyapunov functional) while modifying one parameter and
fixing the others.

By variations of the parameters η or ε the rod structure
is affected by saddle-node bifurcations characterized by a
change on the energy which follows a square-root law near
the threshold (see dotted lines in Figs. 5 and 7), and by a decay
rate of the structure proportional to (α − αc)−1/2, where α

is the varied parameter and αc indicates the critical parameter
value for which the bifurcation occurs [50]. Figure 4 illustrates
this type of dynamical behavior. Rod structures that exist at the
right side of the �2 curve (cf. Fig. 2) exhibit only two different
bifurcations. The first occur when leaving the stability zone of
the rod structure by decreasing ε (or decreasing |η|), causing
an increment in the rod structure’s size and consequently
an increment on its energy. Once the bifurcation takes place
through the saddle-node mechanism, the system falls into the
basin of attraction of a labyrinthine pattern. Figure 5 depicts
the transition from rod to labyrinth by changing the different
control parameters. As labyrinths are extended patterns, their
energy diverges. The second bifurcation suffered by the rod
structure in this zone takes place when increasing the value of ε

(or increasing |η|); here, the rod structure shrinks, reducing its
energy. By a saddle-node bifurcation, the rod structures decay
into single localized spots, which are energetically more stable
in the Lyapunov sense. Figure 5 shows the transition from rod
to localized spots. This rod to circular structure bifurcation
continues existing for values of η and ε to the left of �2
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FIG. 4. (Color online) Decay rate as function of η from a rod
structure into a circular localized structure for the 2D generalized
Swift-Hohenberg Eq. (1) with ε = 1.6 and ν = 2.0. The circles
account for decay time obtained numerically. The solid curve is ob-
tained using the expression τ = τ0/

√
η − ηc with fitting parameters

ηc = −0.3444 and τ0 = 11.61.

curve. The decay rate from rod to localized spot is shown in
Fig. 4, where ε = 1.6. The numeric decay rate law corresponds
to the expected theoretical rate from saddle-node bifurcation
theory [50].

Another scenario emerges for values of η and ε to the
left side of the �2 curve. Another two bifurcations are
observed when overstepping the boundaries of the stability
zone of the rod structure. For fixed values of ε, decreasing
|η| (see the transition ζ4 curve in Fig. 6), the rod structure
exhibits a continuous elongation similar to the case of the rod
to labyrinth bifurcation, though in this case the elongation
is permanent generating an infinitely long stripe structure
without transversal oscillations [see the inset in Fig. 5(b)].
A fourth bifurcation appears when leaving the stability zone
of the rod structure by the interior of the horseshoelike arc.
Figure 6 shows a zoomed phase diagram for the rod structure.
By following the ζ5 curve, the rod structure becomes unstable;
surface tension is unable to keep the structure together leading
to its splitting. Figure 7 depicts the bifurcation observed in
the horseshoelike zone. Through this bifurcation two circular
localized structures are generated by the collapse of the central
part of the rod structure.

It is important to note that there is no transition from
circular to rod structure, as the circular structure always has
a lower energy. However, transitions from labyrinthine to rod
structures are observed when entering with a labyrinth to the
stability zone of the rod structure.

V. INTERACTION PROPERTIES

It has been shown that the generalized Swift-Hohenberg
Eq. (1), allows the existence of multiple stable localized
structures [43]. These (one-, two-, or three-dimensional)
structures possess no compact support, thus the frontier
between the homogeneous state u0 and the localized structure
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FIG. 5. (Color online) Bifurcation diagrams of rod structures as
function of ε and η parameters obtained by direct simulation of
Eq. (1). Bifurcations observed: rod to circular localized structure,
rod to labyrinth, and rod to infinite roll. For (a) η = −0.320 and
(b) ε = 1.6, with ν = 2.0. The dotted red lines represent the
square-root change rate of the energy, characteristic of saddle-node
bifurcations.

is not defined. Instead, the field oscillates decaying exponen-
tially with the distance from the localized structure, these
oscillations fluctuate around the homogeneous state with the
characteristic wavelength of the system. The exponential tail
will be addressed as the interaction field [15,49,51,52].

As mentioned before, no analytical expression is know for
the localized structures in the generalized Swift-Hohenberg
model. Nevertheless, for interaction properties, only the
asymptotic approximation of the decaying field is relevant.
Based on the linear perturbation theory, it has been shown [49]
that a circular localized structure possesses an interaction field
that projects radially from the structure, with an oscillatory
behavior describing the existence attracting and repelling
forces.

A system with two (or more) localized structures positioned
randomly within the system, will evolve towards a stationary
equilibrium by changes in the relative positions between the
structures. The interaction fields corresponding to each particle
interfere, exerting forces, which in turn induce movement of
the particlelike solutions.
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FIG. 6. (Color online) Zoomed region of the phase diagram,
which shows the different outcomes possible from the destabilization
of a rod structure. ζ1 curve indicates the transition from rod to
labyrinth bifurcation, ζ2 and ζ3 curves account for the transition
between rod and circular localized structure, ζ4 curve stands for the
transition from rod to infinite roll, and ζ5 curve accounts for the
transition between rod and binary state, for ν = 2.0.

Rod LS interaction characterization

The analytical study of the interaction field of rod structures
requires the derivation of the asymptotic field for the rod
structure, which must include an azimuthal dependency given
by the shape of the structure; not having this information makes
the calculations nonviable.

Through direct simulations of Eq. (1), we were able
to evaluate the several stationary equilibrium points of the
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FIG. 7. (Color online) Bifurcations for the splitting of a rod
structure into a binary structure, obtained by direct simulation of
the generalized Swift-Hohenberg Eq. (1) for ν = 2.0, η = −0.350.
The inset corresponds to a zoom of the bifurcation point, the dotted
line represents the square-root fit, characteristic of the saddle-node
bifurcation.
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FIG. 8. Several stationary equilibrium positions for (a) rod-LS
interaction, and (b) rod-rod interaction. Numerically obtained by
simulations of the Swift-Hohenberg model, Eq. (1), with ν = 2.0,
η = −0.355, ε = 1.2, and specular boundary condition, considering
only two structures at a time; central rod structure is considered static.

rod-circular and rod-rod structure interaction. Considering
a central rod structure (see Fig. 8, gray structure), and a
circular LS with a random position away from the rod,
the systems evolves towards a stationary equilibrium given
by the stationary relative position between particles. These
equilibriums are shown in Fig. 8(a).

More complex is the rod-rod interaction, for their azimuthal
asymmetry reflected on its axial elongation. This adds an
angular degree of freedom for the positioning of a rod structure
at each equilibrium point [see Fig. 8(b)]. The variety of
equilibriums exhibited by this type of structures allows the
existence of diverse complex arrangements when multiple rod
structures are considered. The interaction of a large number
of rods (i.e., covering all the available space) increases the
number of possible equilibrium configurations. The multiple
interactions may drive the system towards equilibriums which
were unstable in the rod-rod interaction scenario; in Figs. 9(a)–
9(c), dashed lines indicate rod-rod equilibriums which are
unstable in an isolated environment and stabilize under the
presence of multiple structures; the use of periodic boundary
conditions is important for the stabilization of these lattices.

(b)(a)

(d)

x

y

(c)

FIG. 9. Tailored crystal-like configurations generated by the
collocation of rod structures for the Swift-Hohenberg model, Eq. (1),
with ν = 2.0, η = −0.355, ε = 1.2 and periodic boundary condi-
tions. Simulation grid of 256 × 256 points, and spacing dx = 0.25
for (a), (b), and (c), and dx = 0.2 for (d).

The crystal-like structure shown in Fig. 9(d) is constructed
based on the T-like equilibrium position, orthogonal rod
structures, exhibited by the rod-rod interaction. These lattices
persist under noise perturbations.

VI. NONVARIATIONAL PERTURBATIONS

The generalized Swift-Hohenberg model, Eq. (1), has a
nonvariational extension deduced in the context of liquid
crystals for bouncing localized states [19] and deduced from
chemical, biological, and optical models [53]. This equation
(Lifshitz normal form) reads

∂u

∂t
= η + εu − u3 − ν∇2u − ∇4u + bu(∇2u) + c(∇u)2,

(6)

which (excluding the case where b = 2c) is nonvariational,
thus it cannot be derived from a Lyapunov functional. This
allows the model to exhibit complex and permanent behaviors
such as oscillations, chaos, and other spatiotemporal dynamics.
In one spatial dimension a detailed study of localized states
of this nonvariational Swift-Hohenberg equation is presented
in Ref. [54]. The last two terms of Eq. (6) correspond,
respectively, to nonlinear diffusion, b being the nonlinear
diffusion coefficient, and nonlinear advection.

Numerically, we have observed that for small ranges of
values of the parameters b and c, the rod structure remains
stable only by changes on its dimensions. For constant values
of ε and η, increasing b or decreasing c affects the structure, by
making it shorter, while decreasing b or increasing c enlarges
the structure. For parameters b and c where the rod structures
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are larger, the evolution of the system is faster; for instance,
the formation of labyrinthine patterns takes less time.

For fixed values of the parameters, ε = 1.2, η = −0.355,
and ν = 2.0 the range of b and c for which the rod
structure is stable is approximately b = [−0.017, 0.015] and
c = [−0.007, 0.008]. Despite the small range of b and c for
which the rod is stable, the possibility of existence of rod
structures in nonvariational systems opens the possibility for
searching this structure in a wider variety of experiments.

VII. CONCLUSIONS

An asymmetric localized solution for the isotropic gen-
eralized Swift-Hohenberg model in two and three spacial
dimensions has been found. This solution called rod or
rodlike localized structure breaks the azimuthal symmetry,
remaining invariant only with respect to a rotation of π around
any axis on the (x,y) plane which contains the center of
the localized structure. The existence, bifurcation diagram,

stability properties, and interaction have been addressed. The
questions of whether this type of solution can be observed
experimentally or if it exists in other isotropic systems remain
open.

For a simple nonvariational generalization of the Swift-
Hohenberg equation, the Lifshitz normal form, we have
shown that the rodlike localized structures persist. Likewise,
generalizations of the Swift-Hohenberg model, which may
include other types of nonlinearity or nonvariational or other
isotropic terms, it is expected that the rodlike structure must
persist in a given range of parameters. Indeed, this is a
consequence of the robust nature of the localized states.
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