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a b s t r a c t

The stability of a circular localized spot with respect to azimuthal perturbations is studied in a

prototype variational model, namely, a Swift–Hohenberg type equation. The conditions under

which the circular shape of the spot undergoes an elliptical deformation which transforms it

into a rod-shaped structure are analyzed. As it elongates, the rod structure exhibits a transver-

sal instability, generating an invaginated labyrinthine structure which invades all the space

available.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Several spatially extended systems that undergo a symmetry breaking instability close to a second-order critical point can be
described by real order parameter equations in the form of Swift–Hohenberg type of models. These models, have been derived in
various fields of nonlinear science such as hydrodynamics [1], chemistry [2], plant ecology [3], nonlinear optics [4–6], and elastic
materials [7].

A complex Swift–Hohenberg equation was deduced in the context of lasers [8–10] and optical parametric oscillators [11].
Moreover, to describe the nascent optical bistability with transversal effect in nonlinear optical cavities a real approximation
has been deduced [12] from laser equations. This approximation allowed the prediction of stable, single and clustered localized
structures [12]. A detailed derivation of this equation from first principles can be found in Ref. [8]. In the present work, we show
that this real modified Swift–Hohenberg equation (SHE) of the form

∂t u = η + ϵu − u3 − ν∇2u − ∇4u (1)

supports a curvature instability over localized structures that lead to an elliptical deformation, producing a rod-like structure.
With the temporal evolution, the rod-like structure exhibits a transverse undulation, leading to the formation of invaginated
structures. Such a structure is a labyrinthine pattern, characterized by its interconnected structure where the field value is high.
The outer region or complement to the invaginated structure corresponds to low field value. This behavior occurs far from any
pattern forming instability and requires a bistable behavior between homogeneous steady states. In Eq. (1), u = u(x, y, t) is a real
scalar field, x and y are spatial coordinates and t is time.

The parameter η represents the external forcing field which brakes the reflection symmetry u → −u. The bifurcation param-
eter is ϵ. The coefficient ν may change the sign of the diffusive term ∇2, and allows the pattern forming to take place [4,13–17].
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Fig. 1. Temporal evolution for; (1) t = 0; (2) t = 125; (3) t = 175; (4) t = 225; (5) t = 275; (6) t = 340; (7) t = 350; (8) t = 360; (9) t = 400, of a localized spot

through an elliptical deformation into a rod-like structure for Eq. (1) with: η = −0.065; ϵ = 2.45; ν = 2.0. Minima are plain white. The image corresponds to a

zoom of 16 × 16 points of a 512 × 512 points finite-difference simulation, with Neumann boundary conditions.

Depending on the context in which this equation is derived, the physical meaning of the field variable and parameters adopt par-
ticular meanings, for instance, in cavity nonlinear optics u(x, y, t) corresponds to light field intensity, while parameters {η, ϵ,ν}
are associated with the injection field, the deviations of the cavity field, and cooperativity, respectively [12].

For certain ranges of parameter values, Eq. (1) exhibits stable circular localized structures. General properties such as exis-
tence, stability and dynamical evolution of these structures have been well studied (see Refs. [18–27]). Recent review on local-
ized structures can be found in [28]. For η < 0 localized structures emerge as isolated peaks of the field u(x, y, t), instead, for
η > 0 localized structures appear as holes in the field. These localized structures have a fixed stable radius for each parameter
value. Curvature instability of localized spot has been experimentally studied or theoretically predicted in magnetic fluids [29],
liquid crystals [30,31], reaction–diffusion systems [32–40,40–43], plant ecology [44], material science [45,46], granular fluid sys-
tems and frictional fluids [47,48], and nonlinear optics [49]. The fingering instability of planar fronts leading to the formation of
labyrinth structures has been reported by Hagberg et al. [50]. In this manuscript we shall focus on circular localized states.

2. Stability of localized spots

Considering fixed parameter values, starting with an azimuthally symmetric stationary localized structure. The structure is
then perturbed, this perturbation grows radially as shown in Fig. 2(1). The circular shape becomes unstable at some critical
radius. The elliptical shape elongate into a rod-like structures as shown in Fig. 1. This elongation proceeds until a critical size
is reached beyond which a transversal instability onset the appearance of fingers near the midsection of the structure (see Fig.
2(3)). The finger continues their elongation, and the amplitude of oscillation increases (Fig. 2(4) and (5)). The dynamic of the
system does not saturate and for a long time evolution, the rod-like structure invades the whole space available in (x, y)-plane
as shown in Fig. 2(6). This invaginated structure is stationary solutions of the SHE. The dynamic described previously has been
observed in cholesteric liquid crystals under the presence of an external electric field [30,31], where an initially circular structure
of cholesteric phase suffers from a curvature instability, transversal oscillations and develops into an extended labyrinthine
structure. The characterization of this dynamic is an open problem.

For ν = 2, the bifurcation diagram of the model Eq. (1) in the parameter space (ϵ, η) is shown in Fig. 3. For ϵ > 0 the system
undergoes a bistable regime between homogeneous steady states. For ϵ < 0, the system possesses only one homogeneous steady
state. The curve %1 represents the pitchfork bifurcation, where the coordinates of the limit points of the bistable curve are given
by η± = ±2(ϵ/3)3/2. The threshold associated with a symmetry breaking or Turing instability is provided by the curve %2. The

coordinates of the symmetry breaking instabilities thresholds are η± = ±
√

(ν2 + 4ϵ)/3(ν2 − 8ϵ)/24. The %1 and %2 curves are
well known in the literature [51,52]. We have built numerically the curve %3, which separates the zone of bistability where
localized structures are stable, zone II, from the zone where they are unstable, zone I. The transition from localized structures
to labyrinthine patterns take place when crossing from the I-zone to the II-zone, through the %3-curves indicated in Fig. 3. This
transition occurs via fingering instability at the %3-curves delimiting the parameter domain I and II. In the limit of the classical
Swift–Hohenberg equation, η = 0, there is no observation of fingering instability, instead, at the transition from II-zone to I-zone,
localized structures only grow radially. The destabilization of these structures into labyrinthine structures may be observed, as a
result of size effect phenomenon due to boundary conditions. In contrast, for η ̸= 0 the transition from the II-zone to the I-zone
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Fig. 2. Transition from a single localized spot to invaginated pattern. Temporal evolution with Neumann boundary conditions and with the same parameters as

in Fig. 1. (1) t = 0, localized spot, (2) t = 600, rod-like structure, (3) t = 1900, transverse undulation of the rod-like structure, (4) t = 2800, (5) t = 3700, localized

transient patterns, and (6) t > 15,000, stationary invaginated labyrinth pattern. Minima are plain white and the mesh integration is 512 × 512 points. Simulation

done with finite-difference method.

Fig. 3. Bifurcation diagram of Eq. (1) in (ϵ, η) space for ν = 2.0. In II-zone (dashed black), stable circular localized structures are observed. In I-zone (gray crosses)

generation of labyrinthine structures are observed from localized structures. The transition curve %3 was constructed numerically.

of a localized spot induces a curvature instability, giving rise to an unstable rod structure which exhibits transversal oscillations
and develops into an extended labyrinthine structure.

In what follows, we first study the stability of a circular localized spot with respect to azimuthal perturbations. This linear
analysis allows us to evaluate the threshold above which the transition from localized spot to a rod-like structure takes place.
Then, a linear stability analysis of the rod-like structure is performed, to determine the conditions under which the transversal
oscillations occur for the SH equation.

Starting from a stationary solution with rotational symmetry (i.e. circular localized structure) u = us(r) where r is the radial
coordinate. Then, the solution is perturbed u(r, θ , t) = us(r) + δu(r)eλmt cos(mθ ), where θ is the angular coordinate, and δu(r)
≪ 1. It should be noted that the perturbation mode m = 2 represents an elongation of the circular structure into an elliptical
shape. Using polar representation of Eq. (1), considering the above perturbation and parameters in Eq. (1) at linear order in W
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Fig. 4. Dots show the growth rate λm of the most unstable perturbation mode obtained numerically for different values of ϵ. Dashed line separates zones of

stable and unstable localized structures (see Fig. 3). Parameters: ν = 2; dx = 0.5; dt = 0.03. Periodic boundary conditions were used.

one obtains

∂W

∂t
= LW (2)

where the linear operator L ≡ ϵ + 3u2
s (r) − ν∇2 − ∇4 is explicitly dependent on the radial coordinate. Analytical calculations

are not accessible when the operator is inhomogeneous.
However, by direct simulation of Eq. (1) with an initially stationary localized structure one can find the growth rate of the

most unstable mode. First for fixed values of the parameters {η, ϵ,ν} a stationary localized spot is considered as initial condition.
Note that the radius of localized spot is determined by a balance between the interface energy and the energy difference between
the homogeneous states which are proportional to ν and η, respectively. The radius of the localized structures rs is proportional
to ν/η [53]. Afterwards, the system is perturbed by homogeneous noise, this type of perturbation can be regarded as a linear
combination of all the angular modes m. However, the most unstable mode (the one with largest eigenvalue λm) dominates
the temporal dynamics and is the only one observable. By considering the stability of the localized spot for different values of
the parameter η under homogeneous noise perturbations we can determine that the most unstable mode (λ2 > 0) is m = 2 as
observed in Fig. 4. This mode deforms the circular localized spot into an elliptically shaped structure as shown in Fig 2(2).

3. Transversal instability of rod structures and emergence of labyrinthine patterns

The SHE Eq. (1) admits a single stripe-like solution [21,54]. In order to evaluate the threshold over which transversal os-
cillations appear, we perform the stability analysis of a rod-like structure, by a method similar to the one performed in Ref.
[50]. For this purpose we perturb the single stripe solution as u = u f (ξ) + W (x, X0) where uf is the single stripe solution and
ξ = x − X0(y, t) the relative position, X0 is the field that accounts for the shape and evolution of the rod, and W(x, X0) ≪ 1 is a
non-linear correction of a single stripe. Applying this ansatz in Eq. (1) at first order in W and applying the solvability condition
[16], the following equation is obtained for the dynamic of X0

∂t X0 = −)′∂yyX0 + 6β ′∂2
y X0(∂yX0)

2 − ∂4
y X0, (3)

where

β ′ =
⟨∂ξξ u f |∂ξξ u f ⟩
⟨∂ξ u f |∂ξ u f ⟩

, and )′ = (ν − 2β ′). (4)

Thus X0 satisfies a nonlinear diffusion equation. This equation describes the dynamics of an interface between two symmetric
states [55,56]. This model is well known for exhibiting a zigzag instability. Analogously, to the previous section, when ) < 0
the single stripe solution is stable, and for ) > 0, the solution is unstable as result of the curvature instability. From Eq. (3) one
expects to observe the single stripe becomes unstable by the emergence of undulations. Fig. 5 illustrates the manifestation of this
undulations under the consideration of an infinitely long rod-like structure, to avoid border effects. Note that similar dynamical
behavior is observed in the propagation of cholesteric finger in liquid crystals [30,31]. Later, this undulated stripe is replaced
by the emergence of facets that form a zigzag structure. However the higher nonlinear terms control the evolution of the single
stripe, then the dynamics of initial zigzag is replaced by the growth of undulations without saturation as it is depicted in Fig. 2(4).
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Fig. 5. Transversal instability of a single infinite stripe of Eq. (1). Image shows a section of a 256 × 256 points simulation with boundary conditions using a

pseudo-spectral code. Parameters: η = −0.065, ϵ = 2.45, ν = 2, dx = 0.5, and dt = 0.03.

Therefore, the system displays the emergence of a roll-like transverse pattern which is formed in the midsection of the structure
and invades the system generating invaginated structure (see Fig. 2(5)).

4. Conclusions

In this paper we have described the stability of localized spot in a modified Swift–Hohenberg equation. First, the bifurcation
diagram was constructed, showing the possible solutions that appear in different parameter regimes. Afterwards, it was shown
that the angular index m = 2 becomes unstable as consequence of curvature instability. Such instability leads to an elliptical
deformation of the localized spot.

When angular index m = 2 becomes unstable, the curvature instability of localized spot produces an elliptical deformation
leading to the generation of a rod-like structure. Subsequently, it causes undulations in the rod-like structure. The spatiotemporal
evolution leads to the formation of invaginated labyrinthine structures. To understand this dynamics, we have performed the
analytical stability analysis of a single stripe localized structure.

It should be noted that by an offset transformation, u → u + u0, where u0 is a constant, Eq. (1) can be rewritten in such a way
that the constant parameter η is removed and a quadratic nonlinearity appears. This quadratic model is equivalent to Eq. (1). The
model with a quadratic nonlinearity has been well studied (see the textbook [16] and the references therein). This equivalence
implies that the results of the present work are also valid for physical systems described by the quadratic model.
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