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Internal noise and system size effects induce nondiffusive kink dynamics
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We investigate the effects of inherent fluctuations and system size in the dynamics of domain between uniform
symmetric states. In the case of monotonous kinks, this dynamics is characterized by exhibiting nonsymmetric
random walks, being attracted to the system borders. For nonmonotonous interface, the dynamics is replaced by
a hopping dynamic. Based on bistable universal models, we characterize the origin of these unexpected dynamics
through use of the stochastic kinematic laws for the interface position and the survival probability. Numerical
simulations show a quite good agreement with the theoretical predictions.
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I. INTRODUCTION

Macroscopic systems under the influence of injection and
dissipation of quantities such as energy and momenta usually
exhibit coexistence of different states—this feature is usually
denominated multistability [1]. This is clearly a manifes-
tation that far from equilibrium systems are of nonlinear
nature. Heterogeneous initial conditions usually caused by
the inherent fluctuations generate spatial domains, which are
separated by their respective interfaces. These interfaces are
known as front solutions or interfaces, or domain walls [2–4].
Interfaces between these metastable states appear in the form
of propagating fronts and give rise to rich spatiotemporal
dynamics [5–7]. Front dynamics occurs in systems as different
as walls separating magnetic domains [8], directed solidifica-
tion processes [9], nonlinear optical systems [10,11,13,33],
oscillating chemical reactions [14], fluidized granular me-
dia [15–21], and population dynamics [22–24], to mention
a few. From the point of view of dynamical systems theory,
in one spatial dimension a front is a nonlinear solution that
is identified in the comoving frame system as a heteroclinic
orbit linking two spatially extended uniform states [25,26]. The
evolution of front solutions can be regarded as a particle-type
one, i.e., they can be characterized by a set of continuous
parameters such as position, core width, and so forth.

The interface dynamics depends on the nature of the
states that are connected. In the case of a front connecting
a stable and an unstable state, it is usually called a Fisher-
Kolmogorov-Petrosvky-Piskunov (FKPP) front [22,27,28].
One of the characteristic features of these fronts is that their
speed is not unique, but determined by the initial conditions.
When the initial condition is bounded, after a transient, two
counterpropagative fronts with the minimum asymptotic speed
emerge [22,28]. FKPP fronts have been observed in Taylor-
Couette [29], Rayleigh-Benard experiments [30], pearling and
pinching on the propagating Rayleigh instability [31], spinodal
decomposition in polymer mixtures [32], and liquid crystal
light valves [33], to mention a few.

The former scenario changes drastically for a front con-
necting two stable uniform states. In this case, a variational
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system tends to develop the most stable state, in order to
minimize its energy or Lyapunov function, so that the front
always propagates towards the most energetically unfavorable
state. There is only one point in the parameter space for which
the front is motionless, which is commonly called the Maxwell
point and is the point for which the two states have exactly
the same energy [34]. Close to the Maxwell point, based
on the parameters variation method, one can analytically
determine the front speed [5]. For variational systems away
from the Maxwell point one can have implicit expressions for
the front speed [5], which correspond to nonlinear eigenvalue
problems. In the nonvariational case, the analytical expression
of the front speed is a problem still unresolved.

Systems with discrete reflection symmetries can possess
two equivalent uniform states with interfaces, or domain walls,
which are generically at rest. Indeed, the two connected states
are energetically equivalent. These front solutions are termed
kinks. However, under spontaneous breaking of the parity
symmetry, these fronts can acquire a nonzero asymptotic
speed. This phenomenon is denominated the nonvariational
Ising-Bloch transition [35]. Variational systems do not exhibit
this phenomenon, because the front speed is proportional to
the energy difference between the two equivalent states.

On the other hand, a characteristic property of macro-
scopic systems is to present incoherent and uncontrollable
fluctuations, as a result of their microscopic constituents.
When macroscopic fluctuations are not dependent on the
macroscopic variables describing the system is called internal
or additive noise, in the opposite case, it is called external
or multiplicative noise. Usually, the effects of these fluc-
tuations were either considered as a nuisance (degradation
of the signal-to-noise ratio) or ignored because it was not
known how to handle them. In recent decades, a wealth
of theoretical and experimental research has shown that
fluctuations can have rather surprisingly constructive and
counterintuitive effects in many physical systems, and that
they can be figured out with the help of different analysis
tools. These situations occur when there are mechanisms of
noise amplification, or when noise interacts with nonlinearities
or driving forces on the system. The most well-know examples
in zero-dimensional systems are noise-induced transition [36]
and stochastic resonance [37]. More recently, examples in
spatially extended system are noise-induced phase transition,
noise-induced patterns (see Ref. [38] and references therein),
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FIG. 1. (Color online) Temporal evolution of a granular kink
position, x0, in a shallow one-dimensional fluidized granular layer
subjected to a periodic air flow [45]. The inset snapshot corresponds
to a granular kink observed at a given moment.

noise-sustained structures in convective instability [39],
stochastic spatiotemporal intermittency [40], precursor of pat-
terns [41], noise-induced traveling waves [42], noise-induced
ordering transition [43], and front propagation [44]. A natural
question that arises is what is the effect of internal fluctuations
on kink dynamics. As we have mentioned before, these
extended solutions can be described as particle-type solutions.
Hence, one expects that the effect of the inherent fluctuations
induces a Brownian particle for the kink position (see Ref. [38]
and references therein). Recently in Refs. [20,21], observations
of kinks in a shallow one-dimensional fluidized granular layer
subjected to a periodic air flow were reported each domain
varied periodically with half of the forcing period. Figure 1
shows a granular kink observed at a given moment and the
respective dynamic evolution of the kink position. Due to
the internal fluctuations of the granular bed, the kink profile
exhibits an effective wavelength, a precursor, which modulates
spatially the homogeneous states and drastically modifies the
kink dynamic. Indeed, it is shown that the temporal evolution
of these kinks is dominated by a hopping dynamics, related
directly to the underlying spatial structure (cf. Fig. 1).

The aim of this paper is to characterize the nondiffusive
dynamics of a kink state under the influence of internal noise.
The temporal evolution of the kinks is characterized by a
hopping dynamic. This dynamic is a result of the combinations
of the effects of system size and inherent fluctuations. Figure 1
illustrates this type of dynamic. When the kinks are spatially
monotonous the system borders attract exponentially the inter-
faces. Based on bistable universal models, we characterize the
origin of these unexpected dynamics, through determination
of the kinematic laws and the survival probability of the kink
position. In the case of nonmonotonous kinks, as a result
of fluctuations and the system size, the interface exhibits
a hopping dynamic. The bistable universal models allow
us to characterize the origin of these unexpected dynamics.
Numerical simulations show quite good agreement with the
theoretical predictions.

The paper is organized as follows. In Sec. II, a prototype
model for dissipative bistability systems is considered—the
real Ginzburg-Landau equation. The stochastic dynamics
exhibited by an interface between two symmetric states is
characterized by finding its kinematics law and the survival

probability. Interfaces with damped spatial oscillations are
analyzed in Sec. III. As a result of fluctuations and the system
size, an interface between two symmetric states exhibits a
hopping dynamic. Analogously, by obtaining the kinematic
law and the survival probability of of the kink position,
the hopping dynamic is characterized. Our conclusions and
remarks are left to the final section.

II. REAL GINZBURG-LANDAU EQUATION UNDER
THE INFLUENCE OF INTERNAL NOISE

The simplest model that describes bistable systems is
the supercritical real Ginzburg-Landau equation [38]. This
model accounts for the dynamics of a scalar order parameter
u(x,t), where {x,t} stand for the spatial coordinate and time,
respectively. The scalar order parameter satisfies

∂t u = µu − u3 + ∂xxu, (1)

where µ is the control parameter and the last term on the
right-hand side accounts for the coupling process between
the different local domains, which is of diffusive type.
Depending on the context in which this equation has been
derived, the physical meaning of the field u(x,t) could be
the dominant magnetization, electric field, phytomass density,
average molecular orientation, or chemical concentration, to
mention a few. For negative µ, the above model is characterized
by exhibiting a single equilibrium, u = 0. This scenario
is modified when the control parameter changes sign. For
µ > 0, u = 0 is always unstable, while the homogenous states
u = ±√

µ are stable. Hence, this model exhibits bistability.
The above model is variational type, that is,

∂t u = −δF[u]
δu

,

with the Lyapunov function

F[u] =
∫ (

1
2

(∂xu)2 − µ

2
u2 + 1

4
u4

)
dx. (2)

Therefore, the dynamical behavior of this system consists in
the minimization of the functional F , the free energy. Since
the homogenous states u = √

µ and u = −√
µ have the same

free energy, we expect that an arbitrary initial condition can
generate the appearance of domains. That is, solutions that
connect regions with different equilibria. One solution that
accounts for a single domain is (the Ising wall or kink solution)

u±
k (x; #) = ±√

µ tanh
[√

µ

2
(x − #)

]
(3)

where # stands for the position separating the different
domains, that is, u±

k (x = #) = 0 and the core of the kink
is l =

√
2/µ. The positive (negative) sign describes the kink

(antikink) solution. Figure 2 illustrates the kink solution, its
position, and core, respectively.

A. Stochastic real Ginzburg-Landau equation
and kink dynamics

To describe the internal inherent fluctuations of the macro-
scopic system under study, let us consider an additive noise
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FIG. 2. (Color online) Domain solution between two symmetric
states, kink solution (top), {#,l} account for the position and the
core of the kink. Bottom shows a kink and an antikink solution as
consequence of the specular boundary condition.

term in the Ginzburg-Landau equation [38]

∂t u = µu − u3 + ∂xxu + √
ηζ (x,t), (4)

where η is the noise intensity level, for equilibrium systems
this parameter is proportional to the temperature. ζ (x,t) is a
Gaussian white noise with zero mean value, ⟨ζ (x,t)⟩ = 0, and
correlation

⟨ζ (x,t)ζ (x ′,t ′)⟩ = δ(x − x ′)δ(t − t ′), (5)

where parentheses ⟨ ⟩ accounts for average over the noise
realizations. Then, the noise is spatially and temporally
independent.

To determine the effect of fluctuations on the kink solution
we consider the noise intensity level as small (η ≪ 1) and the
following ansatz

u(x,t) = u+
k (x − #(t)) + w(x,#), (6)

where the kink position, #(t), is promoted to a temporal
function of the order of η and w is a small corrective function.
Introducing the above ansatz in Eq. (4) and linearizing in w,
one obtains

Lw = #̇∂xu
+
k + √

ηζ (x,t), (7)

where the linear operator L ≡ −µ + 3(u+
k )2 − ∂xx is a

self-adjoint operator, when one introduces the inner prod-
uct (f |g) =

∫
f (x)g(x)dx. Besides, this operator satisfies

L∂xu
+
k = 0. Hence, to solve the above linear equation we

multiply it by ∂xu
+
k , integrating throughout all the space and

then we obtain the solvability condition

#̇ =
√

η̄ζ̄ (t), (8)

where η̄ ≡ η/(∂xu
+
k |∂xu

+
k ) and

ζ̄ (t) ≡
∫

ζ (x,t)∂xu
+
k dx

(∂xu
+
k |∂xu

+
k )

(9)

is a Gaussian white noise with zero mean value, ⟨ζ̄ (t)⟩ = 0,
and correlation

⟨ζ̄ (t)ζ̄ (t ′)⟩ = δ(t − t ′). (10)

Therefore, the kink position satisfies a simple Langevin
dynamic, Eq. (8), describing a Brownian particle [36,46,47].
The kink position Eq. (8) is derived rigorously in Ref. [48].
Associated with the above Langevin equation, one has

the following equation for the conditional probability
(Fokker-Planck equation [46,47])

∂tP (#,t |#0,t0) = η̄

2
∂##P (#,t |#0,t0), (11)

where P (#,t = t0|#0,t0) = δ(# − #0). Then, the conditional
probability satisfies a simple diffusion equation and its
evolution is characterized by the dispersion of a Gaussian.
Simulating the above equation in a finite system with ab-
sorbing boundary conditions [P (# = L,t |#0,t0) = P (# =
0,t |#0,t0) = 0, where L is the system size], the probability
does not conserve its norm and accounts for the survival
probability. Notwithstanding, numerical simulations of Eq. (4)
for a single kink solution in a finite system with specular
boundary conditions do not exhibit this behavior, where
the survival probability distribution spreads asymmetrically.
Figure 3(a) outlines the evolution of the kink position and its
conditional probability. It is important to note that when the
kink reaches the border of the system it disappears, because
the system minimizes its free energy [cf. Fig. 3(a)]. Then the
probability distribution for sufficiently small noise accounts
for the survival probability of the kink, i.e., this probability
does not preserve its norm. This probability corresponds to the
kink remaining within the system. Once it reaches the border
the survival probability is no longer considered. In addition,
we note that the expected value moves toward the center of the
system.

t1
t2
t3
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FIG. 3. (Color online) Stochastic dynamics of a kink state.
(a) Numerical simulations of a single kink of Eq. (4) in a finite
size system with specular boundary conditions, with µ = 1 and
η = 0.0018 and L = 25, starting at the position # = 0.3L. (b)
The profile link at an initial moment. (c) Evolution of survival
probability of a single kink for different instants of time, t1 = 0
(black), t2 = 20000 (blue), and t3 = 40000 (green).
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B. System size effects

To account for the dynamics described above, one must
consider the effects of system size. Thus, we consider the
Ginzburg-Landau equation, model (4), in a given domain L
with specular or Neumann boundary conditions, i.e., ∂xu(x =
0,t) = ∂xu(x = L,t) = 0. These boundary conditions are con-
sistent with having an Ising wall as a solution. The effect of
boundary conditions is to create mirror images of the kink,
so its dynamics is described by considering the system as
extended with a kink-antikink pair. Figure 2 illustrates the
system size effect. The dynamics of the kink-antikink pair can
be described by considering the following ansatz

u(x,t) = u+
k [x +#(t)] + u−

k [x − #] − √
µ + w(x,#), (12)

where the kink position, #(t), is promoted to a temporal
variable, the position of the left edge is set in the origin of the
coordinate system, and w(x,#) is a small corrective function.
Note that the above ansatz is valid when the kink and antikink
are sufficiently isolated, i.e., # is much larger than the core
of the kink (# ≫ l). Introducing the above ansatz in Eq. (4),
linearizing in w, and imposing the solvability condition, in
a similar manner to the previous calculation, we obtain the
following Langevin equation

N#̇ = f1(#) + f2(#) + f3(#) +
√

η̄ζ̄ (t)N, (13)

where

f1(#) ≡ 3
√

µ(∂xu
−
k |u−

k [u+
k − √

µ]), (14)

f2(#) ≡ 3(∂xu
−
k |(u−

k )2[u+
k − √

µ]), (15)

f3(#) ≡ 3(∂xu
−
k |u−

k [u+
k − √

µ]2), (16)

and the mobility N ≡ (∂xu
−
k |∂xu

−
k ) is a constant. The above

equation describes the kinematic law for the kink position as
result of size effect. The dynamics of the kink position has
three sources f (#) = f1 + f2 + f3. With the aim of to obtain
insight into the dynamics, we consider the limit of diluted kink,
that is, the domains are sufficiently separated (# ≫ 1/

√
µ).

Then, the third term on the right side is negligible, and
after straightforward calculations we obtains the following
expression

#̇ = −αe−2
√

2µ# +
√

η̄ζ̄ (t), (17)

where α is positive constant defined by

α ≡ −6
√

µ

∫
e−

√
2µx[u−

k + √
µ]u−

k ∂xu
−
k dx

(∂xu
−
k |∂xu

−
k )

. (18)

Therefore, the boundary condition produces an attractive force
on the kink, which is exponential with a characteristic length
1/2

√
2µ. To verify the above kinematic law, we follow

numerically the evolution of the position and the speed of
kink. Figure 4 shows the comparison between the numerical
and deterministic kinematic law predicted by the kink-antikink
interaction, formula (13) with η = 0. Here we observe a good
agreement between the numerical observations and theoretical
predictions. However, when the kinks are closer the interaction
intensifies and the exponential law is no longer valid. The

FIG. 4. (Color online) Kinematic law of the kink position as a
result of size effect. Points are obtained numerically by considering
a uniform distribution of initial conditions for a single kink, then
numerically the system evolves during a brief moment of time, and
finally the temporal variation of the kink position is calculated.
The solid line is the analytical expression (13) with η = 0, and
f (#) = f1 + f2 + f3.

analytical description of this dynamic becomes complex and
is only accessible numerically. Notice that the range of validity
of the kinematic law is # >

√
2/µ

To describe the effect of the two edges, one must consider
that the kink is under the influence of two antikinks, then the
dynamic of a kink in a finite system is described by

#̇ = h(#) +
√

η̄ζ̄ (t), (19)

with # ! L and h(#) ≈ −αe−2
√

2µ# + αe−2
√

2µ(L−#) for
large #, # ≫ √

µ and (L − #) ≫ √
µ. Thus, each border

attracts the kink with an intensity that decays asymptotically
in an exponential manner. Associated with this Langevin
equation, one has the following Fokker-Planck equation

∂tP (#,t |#0,t0) = −∂# [h(#)] P + η̄

2
∂##P, (20)

L
2x104

0

1time

P(
,t|

0,
t 0

)

FIG. 5. (Color online) Temporal evolution of Fokker-Plank
Eq. (20) with absorbing boundary conditions, using a drift force
h(#) = −C[#−a + (L − #)−a] with C=0.033, a=3.08, #0=0.3L,
and η = 2.69 × 10−3.
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with the absorbing boundary conditions P (# = 0,t |#0,t0) =
P (# = 0,t |#0,t0) = 0 and P (#,t |#0,t0) account for the
survival probability of the kink, which was initially at # = #0.
These boundary conditions take into consideration that when
the kink reaches the border it disappears. Figure 5 shows
the evolution of the survival probability, considering a fitting
drift force of the form h(#) = −C[#−a + (L − #)−a], where
{C,a} are fittings parameters. This simple drift force accounts
qualitatively for the kinematics law of kink position in whole
system, including the dynamic near the borders of the system.
The survival probability has qualitative good agreement with
the numerical simulations of Eq. (4), see the bottom panel of
Fig. 3(c). Therefore, the kink dynamics under the influence
of internal noise and system size effects exhibits nondiffusive
behavior.

III. NONMONOTONIC KINK SOLUTIONS

One of the main characteristics of the domains between
two symmetric states exhibited by the real Ginzburg-Landau
equation, model (1), is that the kinks are monotonously
increasing or decreasing spatially (see Fig. 2). Several bistable
physical systems with symmetric uniform states show inter-
faces between two states with spatially damped oscillations,
nonmonotonic kink solutions. Examples of these fronts are
observed in a shallow one-dimensional fluidized granular layer
subjected to a periodic air flow [20,21], population dynamics
models [24], predator-prey systems [22,49], parametrically
driven chain of pendula [50], to mention a few. Figure 6
shows the typical profile of a nonmonotonic kink solution.
Because of the spatial oscillations, the size of the kink core is
several times larger than in the case of monotonous kink states.
Therefore, one expects a more relevant role of interactions
between kinks and system border in the dynamics of these
interfaces. To understand the dynamics of these nonmonotonic
kink solutions, let us consider the simplest model that describes
a bistable system with nonmonotonic kink solutions, the
Swift-Hohenberg equation

∂t u = µu − u3 − (∂xx + q2)2u + √
ηζ (x,t), (21)

x

u(x,t)

x

u(x,t)

l

∆

(a)

(b)

FIG. 6. (Color online) Domain solution between two symmetric
states with damping spatial oscillations (top), {#,l} account for the
position and the core of the kink. Bottom: kink and an antikink
solution as consequence of the specular boundary condition.

u(x,t)

µ

µ0=0 µp=q4

µs=3q
4

2

Patterns
Uniform states u+

u-

FIG. 7. (Color online) Bifurcation diagram of Swift-Hohenberg
Eq. (21), where the darkened area accounts for the amplitude of
the patterns. The continuous and dashed lines account for stable
and unstable uniform states, respectively. {µ0,µp} correspond to the
spatial and the pitchfork bifurcations of the state u = 0, respectively.
µs stands for the spatial bifurcation of the states u± = ±

√
µ − q4.

where u(x,t) is a scalar field, µ is the bifurcation parameter, q
is the pattern wave-number parameter, η is the noise intensity
level, and ζ (x,t) is a Gaussian white noise with zero mean
value, ⟨ζ (x,t)⟩ = 0, and correlation ⟨ζ (x,t)ζ (x ′,t ′)⟩ = δ(x −
x ′)δ(t − t ′). The Swift-Hohenberg model was introduced to
describe the onset of Rayleigh-Benard convection, however,
recent generalizations have been used intensively to account
for pattern formation in several physical systems [3,4].

The deterministic Swift-Hohenberg Eq. (21), η = 0, de-
scribes a spatial supercritical bifurcation. For µ < 0, the
system presents a stable uniform state u(x,t) = 0. At µ ≡
µ0 = 0 the system bifurcates, the uniform solution becomes
unstable and giving rise to a pattern state. For µ > 0, the
pattern amplitude, at wave number kc = ±q, grows as the
square root of µ. Figure 7 illustrates the bifurcation diagram
of Swift-Hohenberg Eq. (21), where the shaded area stands
for the amplitude of the patterns. If one continues to increase
the bifurcation parameter µ, the unstable uniform state u =
0 has a secondary pitchfork bifurcation for µ ≡ µp = q4,
which generates new uniform unstable states u± = ±

√
µ − q4

(see Fig. 7). These states become stable through a spatial
bifurcation, when one increases the bifurcation parameter,
at µ ≡ µs = 3q4/2 [51]. Then for a bifurcation parameter
larger than µs , one expects to observe kinks between uniform
states. Figure 8 shows the typical kink observed in this model.
Although nonmonotonous kink solutions, uk are simple and
occur in many dynamical systems, there are not analytical
expressions of these solutions. This is due to fact that the kink
solutions are solutions of the deterministic stationary system,
∂t u = 0,

µuk − u3
k − (∂xx + q2)2uk = 0, (22)

which is a Lagrangian system with the following action

S =
∫ (

− (µ − q2)
2

u2
k + u4

k

4
− q2 (∂xuk)2 + (∂xxuk)2

2

)
dx.

(23)
This system has only one conserved quantity that corresponds
to the Hamiltonian function, which has the form

E = (µ − q2)
2

u2
k − u4

k

4
− q2 (∂xuk)2 + (∂xxuk)2

2
− ∂xuk∂xxxuk. (24)
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FIG. 8. (Color online) Kink solution of the Swift-Hohenberg
equation with the parameters µ = q = 1 and η = 0.0018. (a) kink
solution profile and (b) spatiotemporal evolution of the kink.

Then, the dynamical system is not integrable, and one can
show that the kink and localized structures displayed on this
stationary dynamical system (22) are the result of chaotic
behavior in this system [52].

One can characterize the asymptotic behavior of the kink
through linearizing Eq. (22) around uniform states

uk(x → ± ∞) → ±
√

µ − q4e−ax cos(bx) + u±,

where a ≡
√

2µ − 3q4/4
√

−q2 +
√

2(µ − q4) and b ≡√
−q2 +

√
2(µ − q4). Thus, one can analytically characterize

the spatial damped oscillations exhibiting nonmonotonic kink
solution. It is worth noting that, this type of asymptotic be-
havior is fundamental to characterize the interaction between
kinks.

A. Nondiffusive dynamics of nonmonotonic kink solution under
the influence of internal noise and system size effects

We consider the effects of the stochastic term in the
kink dynamics of the stochastic Swift-Hohenberg Eq. (21),
considering a size domain L with specular boundary con-
ditions. Numerical simulations of this model show that the
kink dynamics is not diffusive type. Figure 9 shows different
realization of trajectories of the kink position from the
same initial condition, the nonmonotonic kink solution at the
initial time and the spatiotemporal evolution of the survival
probability. Unexpectedly, we observe that the evolution of
the kink is characterized by a hopping dynamic. That is,
the position of the kink remains for long periods fluctuating
around defined positions and suddenly changes its position.
It is also important to note that the fluctuations near the
border are smaller. From the different trajectories of the kink
position, we can build up the survival probability of the kink
to remain inside the domain [cf. Fig. 9(c)]. We observe that
the distribution initially spreads asymmetrically, similar to the
evolution of the survival probability described in the previous
section. Subsequently, a local maximum begins to emerge of
the survival probability at a precise distance inward from the
border of the domain. Later, a local maximum begins to emerge
at a given distance to the border of the domain, as it is illustrated

(a)

(b)

(c) 0.06

t1
t2
t3

1x105

0.5

0

FIG. 9. (Color online) Stochastic dynamics of a kink state of the
stochastic Swift-Hohenberg Eq. (21). (a) Numerical simulations of
a single kink of the model (21) in a finite size system with specular
boundary conditions, with µ = 1, q = 1 and η = 0.0018 starting at
the position # = #0 ≈ 0.15L. (b) The kink at an initial moment.
(c) Evolution of survival probability of a single kink at different
instants of time, t1 = 0 (gray), t2 = 106 (green), and t3 = 2 × 106

(blue).

in the spatiotemporal evolution of the survival probability [see
Fig. 9(c)]. Likewise, as a result of fluctuations is that this
type of nonmonotone kink exhibits the appearance of a spatial
pattern on the homogeneous states. This phenomenon is due
to the fact that the noise is exciting equally all spatial modes,
however, the decay rate of the spatial modes are different and
the mode with slowest decay rate has a finite wavelength. Thus,
the balance between relaxation and fluctuations of the spatial
modes generates an incoherent pattern. This phenomenon is
known in the literature as precursor [41,53,54]. Notice that
the spatial damped oscillations observed on the deterministic
nonmonotone kink also result from the spacial slower decay
mode. Hence, one expects noise-induced precursors in these
kinks. For instance, this was experimentally observed in the
granular kinks in a shallow one-dimensional fluidized granular
layer subjected to a periodic air flow (cf. Fig. 1).

To understand the intriguing dynamics described above, we
will use a similar strategy to the one we have used to figure
out the dynamics of the monotonic kink under the influence
of internal noise and system size effects. That is, we will
consider the dynamics of a kink and an antikink generated by
the boundary conditions. Let us consider the ansatz

u(x,t) = uk [x + #(t)] + uak [x − #(t)]

−
√

µ − q4 + w(x,#), (25)

where uak stands for an antikink solution, #(t) is the kink
position, which has been promoted to a temporal variable, the
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position of the left edge is set to the origin of the coordinate
system, and w(x,#) is a small corrective function. The above
ansatz is valid when the kink and antikink are sufficiently
diluted, i.e., # is much larger than the kink core (# ≫ 1).
Figure 6(b) shows the solution generated by the above ansatz.
Introducing this ansatz in Eq. (21), linearizing in w, and
imposing the solvability condition, in a similar manner to
the precedent calculations, we obtain the following Langevin
equation

N#̇ = f ′
1(#) + f ′

2(#) + f ′
3(#) +

√
η′ζ̄ (t)N, (26)

where

f ′
1(#) ≡ 3

√
µ(∂xuak|uak[uk −

√
µ − q4]), (27)

f ′
2(#) ≡ 3(∂xuak|(uak)2[uk −

√
µ − q4]), (28)

f ′
3(#) ≡ 3(∂xuak|uak[uk −

√
µ − q4]2), (29)

and the mobility N ≡ (∂xuak|∂xuak) is a constant. In the limit
of diluted kinks, the above dynamics reads

#̇ = −∂U

∂#
+

√
η′ζ̄ (t),

= −α′e−2a# sin(2b#) +
√

η′ζ̄ (t), (30)

where the potential is

U (#) ≡ −e2a# b cos(2b#) + a sin(2a#)
2(a2 + b2)

,

α is a constant defined by

α′ ≡ −
√

µ − q4

∫
e−ax sin(bx)(uk)2∂xukdx

(∂xuk|∂xuk)
.

and η′ ≡ η/(∂xuk|∂xuk).
Therefore, the spatial damped oscillations and the boundary

condition produce a force that alternates between being
attractive and repulsive. To verify the above kinematic law of
the kink position, similarly to what we have presented in the
previous section, we have considered a uniform distribution of
initial conditions for a single kink, then we numerically evolve
the system for a brief moment of time, and finally we calculate
the temporal variation of the kink position. Figure 10 depicts
the comparison between the numerical and deterministic
kinematics law in a similar manner of the previous section.
The numerical and theoretical results shows an adequate
agreement. However, when the kinks are closer enough the
interaction intensifies and the kinematic law is no longer valid.
The analytical description of this dynamic becomes complex
and is only accessible numerically. Although, the analytical
calculation in this region is only valid qualitatively.

From the kinematic law of the kink position, Eq. (30), and its
respective potential, we can infer that the system has a family
of equilibria, which satisfies approximatively sin(2b#∗) = 0,
separated by a constant distance l = π/2b, i.e., #∗

n = πn/2b
with n = 1,2, . . . . Notice that the equilibria are more stable as
one approaches the system borders. Figure 10 shows the shape
of potential U (#) near the system border.

FIG. 10. (Color online) Kinematic law of the kink position as a
result of size effect. Points are obtained numerically by considering
a uniform distribution of initial conditions for a single kink, then
numerically the system evolves in a brief moment of time, and finally
the temporal variation of the kink position is calculated. The solid
curve is obtained by using the integral form of the kinematic law of the
kink position f (#) = f ′

1 + f ′
2 + f ′

3, using the expressions (27−29).
The lower panel shows the potential U (#).

The dynamics around a given equilibrium, #(t) = #∗ +
v(t), takes the form

v̇ = −α′2be−2a#∗
v +

√
η′ζ̄ (t). (31)

Then the dispersion around a given equilibrium take the form

⟨v2⟩ = η′

α′2be−2a#∗ .

Hence, the fluctuations around more stable equilibria are
smaller. That is, one expects the width around an equilibrium
of the survival probability to get smaller, when it is closer to
the border (cf. bottom panel of Fig. 9). It is important to note
that recent observations of the dynamics of granular kinks in
a shallow one-dimensional fluidized granular layer subjected
to a periodic air flow exhibit similar dynamic behavior that
the one described above, that is, these granular kinks show a
hopping dynamic [20,21].

From Langevin Eq. (30), one can derive the Fokker-Planck
equation for the survival probability of the kink

∂tP (#,t |#0,t0) = ∂#

[
∂U

∂#

]
P + η′

2
∂##P, (32)

with the absorbing boundary conditions P (# = 0,t |#0,t0) =
P (# = 0,t |#0,t0) = 0. Figure 11 shows the evolution of the
survival probability, which has good qualitative agreement
with the numerical simulations of the stochastic Swift-
Hohenberg Eq. (21). Hence, the kink dynamics under the
influence of internal noise and system size effects exhibits
nondiffusive behavior with a hopping dynamic.

Due to the boundary conditions, the survival probability
for large times converges asymptotically to a zero solution.
However, since the system is of potential type, one can easily
infer the qualitative behavior of the survival probability. For
example, one expects that initially the probability distribution
widens asymmetrically, as a result of the nucleation barrier, the
distribution grows into the system by exploring the attraction
basins of different equilibria, exhibiting new local maxima.
Later, the local maxima appearing are those towards the system
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FIG. 11. (Color online) Temporal evolution of Fokker-Plank

Eq. (32) with absorbing boundary conditions, using the potential (30)
with α′ = 1.157, a = 0.4940, and b = 1.026 as fitting parameters
and η′ = 2 × 10−3.

borders, which eventually will become the dominant peaks.
Finally, they began to decrease. The above description is
consistent with the numerical observations (cf. Fig. 9). It is
worthy to note that throughout the presented analysis, we have
assumed that the creation of a kink from a large fluctuation of
the uniform state is a highly improbable event. Such events are
easily observed for high noise levels.

B. Hopping dynamics sustained by inhomogeneities

Other kinks or fronts, which exhibit an interesting hopping
dynamic as a consequence of noise are the solutions connecting
two periodic states [44]. This phenomenon is evident because
pattern states generate a nucleation barrier opposing the
propagation of the wall. Therefore this phenomenon is not
related to border effects. An alternative way to generate a
hopping dynamic, which is not generated by the border effects,
is considering that the parameters are spatially modulated.
Note that this type of forcing breaks the translational invariance
of the system. Since one expects that any particle-type solution
will prefer some precise spatial positions, then the presence of
noise will generate a hopping dynamic. In order to illustrate
this dynamic, let us consider the following forcing real
Ginzburg-Landau equation

∂t u = a cos (kx) + µu − u3 + ∂xxu + √
ηζ (x,t), (33)

where a and k, respectively, are the amplitude and wave
number of the forcing. For small forcing, the homogeneous
states of the Ginzburg-Landau Eq. (12) become periodic
and they have the form u ≈ ±√

µ − a cos (kx) /2µ. Then,
the kink solution of the real Ginzburg-Landau equation [see
formula (3)], now connects two periodic states induced by
periodic forcing, which are positioned at precise positions of
the form 2πn/k, with n = 1,2,3, . . .. Performing an analysis
similar to that the one we have implemented in the previous
sections, we obtain the following kinematic law for the kink
position

#̇ = α′′ sin(k#) +
√

η̄ζ̄ (t), (34)

1x105

0.5tim
e

FIG. 12. (Color online) Stochastic dynamics of a kink state of the
forcing real Ginzburg-Landau Eq. (33) with k = π/3, a = 0.02, and
η = 0.02. Different colors represent different trajectories of the kink
solution. The bottom panel shows the profile of the kink at the initial
time.

where α′′ = a
∫ ∞
−∞ ∂xu

+
k (x) cos(kx)dx/(∂xu

+
k |∂xu

+
k ). Then,

the dynamic of the kink position is characterized by a Brownian
particle in a periodic potential. Reference [55] presents a
detailed analysis of this type of stochastic particle. Figure 12
shows the numerical trajectories of stochastic kink solutions of
the forcing real Ginzburg-Landau Eq. (33), where all solutions
begin at the same initial condition. Hence, this system clearly
exhibits hopping dynamics sustained by inhomogeneities. In
the trajectories illustrated in this figure, there are not border
effects, as they approach the border the above dynamics is
modified by the effects of the interaction with a virtual kink.
Note that for small forcing and large noise intensity level, the
u(x,t) profile field does not exhibit clear periodic oscillations.
However, the forcing effect is evident in the dynamics of the
kink.

IV. CONCLUSIONS AND REMARKS

Diverse macroscopic physical systems exhibit sponta-
neous breaking of symmetry generating extended bistable
systems. As a result of the inherent fluctuations, these
systems exhibit coexisting domains separated by interfaces
or domain walls. Moreover, fluctuations induce an erratic
dynamic of the interfaces, which is expected of diffusive
nature. However, we show that joint effect of the inherent
fluctuations and size effects induces unexpected nondif-
fusive dynamics of an interface between two symmetric
states.

Monotonous kink solutions under the influence of fluc-
tuations are characterized by exhibiting nonsymmetric ran-
dom walks. These trajectories are characterized by being
attracted to the system borders. Hence, the survival proba-
bility in a given domain is characterized by a nondiffusive
dynamic.

In the particular case of domains between two symmet-
rical states with damped spatial oscillations, the temporal
evolution of these nonmonotonous kinks is characterized by a
hopping dynamic. As the interface approaches the borders,
the fluctuations decrease and the interface remains longer
around well-defined positions. Such dynamic behavior has
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been recently observed qualitatively in an interface between
two symmetric states in a shallow one-dimensional fluidized
granular layer subjected to a periodic air flow, where each
domain varies periodically with half the period of the forcing
(cf. Fig. 1). A rigorous analysis in this direction a subject for
future research.
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[9] T. Börzsönyi, S. Akamatsu, and G. Faivre, Phys. Rev. E 80,
051601 (2009).

[10] M. G. Clerc, S. Residori, and C. S. Riera, Phys. Rev. E 63,
060701 (2001).

[11] D. Gomila, P. Colet, G. L. Oppo, and M. San Miguel, Phys. Rev.
Lett. 87, 194101 (2001).

[12] M. G. Clerc, T. Nagaya, A. Petrossian, S. Residori, and C. Riera,
Eur. Phys. J. D 28, 435 (2004).

[13] S. Residori, Phys. Rep. 416, 201 (2005).
[14] V. Petrov, Q. Ouyang, and H. L. Swinney, Nature (London) 388,

655 (1997).
[15] I. Aranson and L. Tsimring, Granular Patterns (Oxford

University Press, Oxford, 2008).
[16] F. Melo, P. B. Umbanhowar, and H. L. Swinney, Phys. Rev. Lett.

75, 3838 (1995).
[17] S. Douady, S. Fauve, and C. Laroche, Europhys. Lett. 8, 621

(1989).
[18] S. J. Moon, M. D. Shattuck, C. Bizon, D. I. Goldman, J. B.

Swift, and H. L. Swinney, Phys. Rev. E 65, 011301 (2001).
[19] S. J. Moon, D. I. Goldman, J. B. Swift, and H. L. Swinney,

Phys. Rev. Lett. 91, 134301 (2003).
[20] J. E. Macias, M. G. Clerc, C. Falcon, and M. A. Garcia-Nustes,

Phys. Rev. E 88, 020201 (2013).
[21] J. E. Macias and C. Falcon, New J. Phys. 16, 043032 (2014).
[22] J. D. Murray, Mathematical Biology (Springer, Berlin, 1989).
[23] R. A. Fisher, Ann. Eugen. 7, 355 (1937).
[24] M. G. Clerc, D. Escaff, and V. M. Kenkre, Phys. Rev. E 72,

056217 (2005); 82, 036210 (2010).
[25] W. van Saarloos and P. C. Hohenberg, Physica D 56, 303 (1992).
[26] P. Coullet, Int. J. Bifurcation Chaos 12, 2445 (2002).
[27] A. Kolmogorov, I. Petrovsky, and N. Piskunov, Bull. Univ.

Moskou Ser. Int. Se. 7, 1 (1937).
[28] W. van Saarloos, Phys. Rep. 386, 29 (2003).
[29] G. Ahlers and D. S. Cannell, Phys. Rev. Lett. 50, 1583 (1983).

[30] J. Fineberg and V. Steinberg, Phys. Rev. Lett. 58, 1332 (1987).
[31] T. R. Powers and R. E. Goldstein, Phys. Rev. Lett. 78, 2555

(1997).
[32] J. Langer, in Solids Far from Equilibrium, edited by C. Godrèche
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