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Localized vegetation patterns, fairy circles, and localized patches in arid landscapes
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We investigate the formation of localized structures with varying widths in one- and two-dimensional systems.
The mechanism of stabilization is attributed to strongly nonlocal coupling mediated by a Lorentzian type of
kernel. We show that, in addition to stable dips found recently [see, e.g. Fernandez-Oto et al., Phys. Rev. Lett.
110, 174101 (2013)], there are stable localized peaks which appear as a result of strongly nonlocal coupling. We
applied this mechanism to arid ecosystems by considering a prototype model of a Nagumo type. In one dimension,
we study the front connecting the stable uniformly vegetated state to the bare one under the effect of strongly
nonlocal coupling. We show that strongly nonlocal coupling stabilizes both—dip and peak—localized structures.
We show analytically and numerically that the width of a localized structure, which we interpret as a fairy circle,
increases strongly with the aridity parameter. This prediction is in agreement with published observations. In
addition, we predict that the width of localized patch decreases with the degree of aridity. Numerical results are
in close agreement with analytical predictions.
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I. INTRODUCTION

Localized structures (LSs) in dissipative media have been
observed in various fields of nonlinear science such as
fluid dynamics, optics, laser physics, chemistry, and plant
ecology (see recent overviews [1,2]). Localized structures
consist of isolated or randomly distributed spots surrounded
by regions in the uniform state. They may consist of dips
embedded in the homogeneous background. They are often
called spatial solitons, dissipative solitons, localized patterns,
cavity solitons, or autosolitons, depending on the physical
contexts in which their were observed. Localized structures
can occur either in the presence [3] or in the absence [4] of
a symmetry breaking instability. In the last case, bistability
between uniform solutions is a prerequisite condition for LS
formation. However, in the presence of a symmetry breaking
instability, the coexistence between a single uniform solution
and a patterned state allows for the stabilization of LSs [4].
In this case, bistability between uniform solutions is not a
necessary condition for generating LSs [5].

Spatial coupling in many spatially extended systems is
nonlocal. The kernel function that characterizes the nonlo-
cality can be either weak and strong. If the kernel function
decays asymptotically to infinity more slowly (faster) than
an exponential function, the nonlocal coupling is said to be
strong (weak) [6]. Self-organization phenomena leading to the
formation of either extended or localized patterns under a local
and nonlocal coupling occur in various systems such as fluid
dynamics [7], firing of cells [8,9], propagation of infectious
diseases [10], chemical reactions [11,12], population dynamics
[13–15], nonlinear optics [16–22], and granular [23] and
vegetation patterns [24–34].

We focus on the bistable regime far from any symmetry
breaking instability, i.e., far from any Turing instability. In
this case, the behavior of many systems is governed by
the dynamics of front connection between the homogeneous
states. When the nonlocal coupling is weak, the interaction

between two fronts is usually described by the behavior of
the tail of fronts. However, for strongly nonlocal coupling, the
interaction is controlled by the whole kernel function and not
by the asymptotic behavior of the front tails [6].

When a nonlocal coupling is weak, the asymptotic behavior
of front solutions is characterized by exponential decay or
damped oscillations. In the former case, front interaction is
always attractive and decays exponentially with the distance
between the fronts. In the case of damped oscillations, front
interactions alternate between attractive and repulsive with an
intensity that decays exponentially with the distance between
the two fronts [35]. For a fixed value of parameters, a family
of stable one-dimensional LSs with different sizes has been
reported in [13,36–38]. When considering a strongly nonlocal
coupling, the interaction between fronts can be repulsive
[39,40].

Strongly nonlocal coupling has been observed experimen-
tally in various systems. Indeed, several experimental mea-
surements of nonlocal response in the form of Lorentzian or a
generalized Lorentzian have been carried out in nematic liquid
crystals cells [41,42]. Experimental reconstruction of strongly
nonlocal coupling has also been performed in photorefractive
materials [43]. In this case, the strongly nonlocal coupling
is originating from the thermal medium effects. In population
dynamics such as vegetation, it has been shown experimentally
that seed dispersion may be described by a Lorentzian [44].

We consider a protomodel for population dynamics, namely
the strongly nonlocal Nagumo equation [39]. This model
possesses two relevant properties: strongly nonlocal coupling
and bistability between uniformly vegetated and bare states.
We focus on a regime far from any symmetry breaking or
Turing-type instabilities. In this regime LSs resulting from
strongly nonlocal coupling can be stabilized in a wide range
of parameters [39]. We investigate two types of localized
vegetation structures—(i) fairy circle (FC) and (ii) localized
vegetation patch (LVP)—which correspond, respectively, to
isolated or randomly distributed circular areas of barren
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FIG. 1. (Color online) Localized vegetation patterns: (a) An
aerial photo taken on 05 March 2010 shows fairy circles in the
Namibrand region, Namibia. Image courtesy of Professor Norbert
Juergens. (b) An aerial photograph showing LVPs, Zambia (taken
from the review [29]).

patches of vegetation and circular areas of vegetation, sur-
rounded by a bare region. An example of FCs is shown in an
areal photograph [see Fig. 1(a)]. They are observed in vast
territories in southern Angola, Namibia, and South Africa
[45–53]. The size of these circles can reach diameters of
up to 12 m. An in-depth investigation of several hypotheses
concerning their origin has been performed by van Rooyen
et al. [54]. In this study, these authors have been able to
excluded the possible existence radioactive areas inapt for
the development of plants, termite activity, and the release
of allelopathic compounds. We attribute two main ingredients
to their stabilization: the bistability between the bare state
and the uniformly vegetation state, and the Lorentzian-like
nonlocal coupling that models the competition between plants
[40]. We provide detailed analysis of the FC formation in
a simple population dynamics model. In addition, we show
that the above mechanism applies to another type of LSs that
consist of isolated or randomly distributed vegetation patches
surrounded by a bare state. An example of this behavior is
shown in Fig. 1(b). In this paper, we investigate analytically
and numerically the formation of both FCs and localized
patches and their existence ranges. Our theoretical analysis
shows that there is a Maxwell point above which localized
patches are stable, while below this point FCs appear. Finally,
we investigate how the degree of aridity affects the widths of
both types of localized vegetation structures.

This paper is organized as follows. After briefly introducing
the model describing the vegetation dynamics, namely the
Nagumo model with a strongly nonlocal coupling mediated by
a Lorentzian function (Sec. II), we describe the dynamics of
a single front in one dimension and its asymptotic behaviors
(Sec. III). The analytical and the numerical analysis of the
interaction between fronts connecting the uniformly vegetated
and the bare steady states are described in Sec. IV, where
we discuss the formation of both FCs and localized patches.
Close to the Maxwell point, we derive a formula for the widths
of both LSs as a function of the degree of the aridity in one
dimension. We conclude in Sec. V.

II. THE NAGUMO MODEL

Several models describing vegetation patterns and self-
organization in arid and semiarid landscapes have been
proposed during past two decades. They can be classified into
three types. The first approach is based on the relationship
between the structure of individual plants and the facilitation-
competition interactions existing within plant communities
[24–26,55,56]. The second is based on a reaction-diffusion
approach, which takes into account of the influence of water
transport by below ground diffusion and/or above ground
runoff [57–63]. The third approach focuses on the role of
environmental randomness as a source of noise induced
symmetry breaking transitions [29,64–66]. Recently, the re-
duction of a generic interaction-redistribution model, which
belong to the first class of ecological-type models [26], to
a Nagumo-type model has been established [40]. Here we
consider the variational nonlocal Nagumo-type equation,

∂t u = u(α − u)(u − 1) + ∇2u + ϵu

∫

$

u2(r + r′,t)K(r′)dr′,

(1)
where u (r,t) is a normalized scalar field that represents
the population density or biomass, α ∈ [0,1] is a parameter
describing the environment adversity or the degree of aridity,
t is time. We consider that population or plant community
established on a spatially uniform territory $. The vegetation
spatial propagation, via seed dispersion and/or other natural
mechanisms, is usually modeled by a nonlocal coupling with a
Gaussian-like kernel [24–26]. For simplicity, we consider only
the first term in the Taylor expansion of the dispersion. This
approximation leads to the Laplace operator, ∇2 = ∂xx + ∂yy

acting in the space r = (x,y). The last term in Eq. (1) describes
the competitive interaction between individual plants through
their roots. The nonlocal coupling intensity, denoted by ϵ,
should be positive to ensure a competitive interaction between
plants. The kernel function has the form K (r) = δ (r) − fσ (r),
where δ (r) is the Dirac δ function. The inclusion of the δ
function in the analysis allows us to avoid the variation of the
spatially uniform states as a function the nonlocal intensity ϵ,
and

fσ (r) = Nn

1 + (|r|/σ )n
, (2)

which has an effective range σ . For the sake of simplicity,
we consider that the length σ is a constant, independent of
the biomass. Hence, we assume that all plants have the same
root size; that is, we neglect allometric effect [55,67]. At large
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distance, the asymptotic behavior of the kernel is determined
by n, and Nn is normalization constant.

It is worth emphasizing that, since the strongly nonlocal
term in Eq. (1) models the interaction between individual
plants at the community level, we refer to it as strongly
nonlocal interaction or coupling. In contrast, nonlocalities de-
scribing transport processes, such as seed dispersion [24–26],
for sake of simplicity, we are modeling by the Laplace operator.

Equation (1) is variational and it is described by

∂t u = −δF
δu

⇒ dF
dt

! 0, (3)

where F is a Lyaponov functional that can only decrease in
the course of time. Accordingly, any initial distribution u (r⃗ ,t)
evolves towards a homogeneous or inhomogeneous (periodic
or localized) state corresponding to a local or global minimum
of F . The Lyaponov functional reads

F[u] =
∫

$

{
1
2

(|∇u|2 + V (u)
}

dr

+ ϵ

4

∫

$

∫

$

u2(r)u2(r′)K(r − r′)drdr ′

and

V (u) = u2

4
(u − 1)2 + u2

6
(α − 1/2) (3 − 2u) . (4)

Equation (1) admits three spatially uniform solutions:
u = 0, u = α, and u = 1. The bare state u = 0 is always stable
and represents the non-plant state. The uniform state u = α is
always unstable. For large values of α, the climate becomes
more and more arid. The uniformly vegetated state u = 1
may undergo a symmetry breaking type of instability (often
called Turing instability), which leads to pattern formation.
In a one-dimensional system, and for n = 2, the threshold for
that instability satisfies

β = ϵσ 2 exp(−β), (5)

with β =
√

1 + σ 2(2ϵ + α − 1) − 1. In what follows, we
focus on a regime far from any pattern forming instability.

III. FRONTS

We consider a bistable regime where u = 0 and u = 1 are
both linearly stable. From Eq. (4), V (0) = 0 and V (1) =
(α − 1/2) /6. Therefore, when α < 1/2, the most favorable
state is the uniformly vegetated one. When α > 1/2, the
bare state is more stable than the uniformly vegetated one.
There exists a particular point where both states are equally
stable. This point is usually called the Maxwell point [68] and
corresponds to α = 1/2.

Depending on the value of α, the front connecting both
states will propagate towards the most stable state. An
example of a single front is illustrated in Fig. 2(a). The
time-space diagram of Fig. 2(b) shows how the most stable
state, corresponding to the bare state (α > 1/2), invades
the uniformly vegetated state, with a constant speed. Fronts
propagate following the minimization of the potential (4) and
the front velocity is proportional to the energy difference
between equilibria V (1) − V (0). The front is motionless at

u(
x)

1.0

0.0 x50 150

x

t

(a)

(b)
1.1

0.0

u(
x,
t)

FIG. 2. (Color online) Front propagation obtained from numeri-
cal simulations of Eq. (1). (a) Biomass front profile. (b) Spatiotem-
poral diagram that shows the front movement with a constant speed.
The parameters are α = 0.51, σ = 0.7, n = 2, and ϵ = 1.0.

the Maxwell point for α = 1/2. At this point and in the absence
of nonlocal coupling, ϵ = 0, front solutions are written

u± (x − x0) = 1
2

[
1 ± tanh

(
x − x0

2
√

2

)]
, (6)

where x0 corresponds to the interphase position. The front u+
links the barren state from x = −∞ to the uniformly vegetated
state at x = ∞. The opposite connection corresponds to u−.

The asymptotic behavior of front solution u+ obeys an
exponential law of the form

u+ (x ≪ x0) ≈ e(x−x0)/
√

2,

u+ (x ≫ x0) ≈ 1 − e−(x−x0)/
√

2.

Around the barren state (u = 0), the inclusion of the
nonlocal interaction does not modify the asymptotic behavior
of the front, since the nonlocality in model (1) is nonlinear. Let
us examine the effect of the nonlocal term around the uniformly
vegetated state (u = 1). For this purpose, let us assume that
the asymptotic behavior of the front obeys an exponential law
of the form

u(x ≫ x0) ≈ 1 − ce−λ(x−x0),

where c is a constant, and the exponent λ obeys the equation

λ2 − 1
2 + ϵ[3 − 2gσ (λ)] = 0,

where

gσ (λ) =
∫ ∞

−∞
cosh (λx) fσ (x)dx.

This equation has been successfully used to explain the
emergence of localized domains. When λ solutions have a
non-null imaginary part, spatially damped oscillations on
the front profile are induced, leading to the stabilization of
localized domain. This mechanism is well documented for
either local or nonlocal systems [13,36,37,69].

The gσ function exists when the kernel decays faster than an
exponential one, i.e., a weakly nonlocal coupling. In the case
of strongly nonlocal interaction, gσ diverges and the above
analysis is no more longer valid.
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To determine the asymptotic behavior of the front around
the uniformly vegetated state under a strongly nonlocal
coupling, we perform a regular perturbation analysis in terms
of small parameter ϵ. At the Maxwell point, we expand the
field as

u(x) = u0(x) + ϵu1(x) + ϵ2u2(x) + · · · , (7)

where u0 = u+ is the motionless front provided by Eq. (6).
Replacing (7) in Eq. (1) and making an expansion in series of
ϵ, at order ϵ, we obtain

{∂xx − 1/2 + 3u0 (1 − u0)} u1

=
[
u0

∫ ∞

−∞
u2

0(x + x ′)fσ (x ′)dx ′ − u3
0

]
.

Let us focus in the region x ≫ x0, and, neglecting all
exponential corrections coming from u0, then we obtain

{∂xx − 1/2} u1 = −
∫ ∞

x−x0

fσ (x ′)dx ′. (8)

Equation (8) is a linear inhomogeneous equation for the
correction u1. For strongly nonlocal coupling, the particular
solution of Eq. (8) dominates over the homogeneous one,

(a)
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FIG. 3. (Color online) Numerical solutions of model (1) with the
Lorentzian kernel (2). (a) Front profile at the Maxwell point α =
0.5; other parameters are σ = 2, n = 2, and ϵ = 0.35. (b) Decay
of front to the uniformly vegetated state for α = 0.5, σ = 2, n = 2,
and ϵ = 0.1. In (b), the top panel shows the comparison between
the numerical calculation (dotted line) and the analytical estimation
(10) (continuous line), while the bottom panel displays the same
comparison in a log-log plot.

which is exponentially small, for instance, if we consider a
kernel like

fσ (x) ≈ N

xn
for x ≫ 1, (9)

with n > 1 and N a normalization constant. For x − x0 ≫ 1,
the front approaches asymptotically the following solution:

u ≈ 1 + 2ϵN

(n − 1) (x − x0)n−1 . (10)

This solution decays according to a power law 1 − n. To
check the power obtained from the above analysis, we perform
numerical simulations of the full model Eq. (1). The result
obtained from Eq. (9) and the numerical simulations are shown
in Fig. 3. Both results agree perfectly without any adjusting
parameter. Note that both analytical calculations and numerical
simulations predict the existence of one peak in the spatial
profile of the front. This peak takes place at the interface
separating both homogeneous states as shown in Fig. 3.

IV. LOCALIZED VEGETATION PATTERNS

Far from a symmetry breaking instability, LSs can be
stable as a results of front interactions. This phenomenon
occurs when the spatial profile of the front exhibits damped
oscillations [13,69]. However, around the bare state damped
oscillations are nonphysical since the biomass is a positive
defined quantity. A stabilization mechanism of LSs based
on combined influence of strongly nonlocal coupling and
bistability has been proposed [39]. This mechanism has been
applied to explain the origin of the FC phenomenon in a
realistic ecological model [40]. In addition, we have shown
that the diameter of the single FC is intrinsic to the dynamics
of the system, such as the competitive interaction between
plant and the redistribution of resources [40]. We believe that
extrinsic causes, such as termite or ant or others, cannot explain
the circular shape of FCs.

In this section we provide a detailed analysis of front
interactions leading to stabilization of both FCs and localized
patches. For both types of localized vegetation structures, we
discuss how the level of aridity affects their diameters.

A. Fairy circles

The model Eq. (1) admits stable LSs in the form of a
bare state embedded in vegetated matrix. An example of such
behavior is shown in Fig. 4. They are stable and permanent
structures. A single FC exhibits a fringe formed by tall grass
that separates the bare state from the uniformly vegetated as
shown in Fig. 1(a). From numerical simulations, we see that
the biomass possesses one peak that takes place in between
the bare and the uniformly vegetated states as shown in Fig. 4.
This can be explained by the fact that inside the circle the
competition between plants is low. Indeed, the length of the
plant root is much smaller than the diameter of the FC.

We analytically investigate the formation of a single FC
in one spatial dimension. We focus on the parameter region
near the Maxwell point ( 1

2 − α = η ≪ 1) and consider a small
nonlocal coupling (ϵ ≪ 1). We look for a solution of Eq. (1)
that has the form of a slightly perturbed linear superposition
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FIG. 4. (Color online) Stationary FC obtained from numerical
simulations of Eq. (1). (a) One dimension with α = 0.492, σ = 0.8,
n = 2, and ϵ = 0.5. (b) Two dimensions with α = 0.46, σ = 0.1,
n = 2.5, and ϵ = 10.

of two fronts,

u(x,t) = u+ [x − δ(t)] + u− [x + δ(t)] + W, (11)

where W (x,u+,u−), ∂tδ, η, and ϵ are small in a sense that will
be pinned down below, while u± are defined by Eq. (6).

Replacing ansatz (11) in Eq. (1) and neglecting high order
terms in ϵ, we obtain

−(∂xu+ − ∂xu−)∂tδ

= u+u−(3 − 3u+ − 3u−)

+ ϵu

∫ ∞

−∞
u2(x + x ′,t)K(x ′)dx ′

− η(u+ + u− − 1)(u+ + u−) + LW + h.o.t., (12)

where the linear operator L has the form

L ≡ − 1
2 + 3u+ − 3u2

+ + ∂xx + 3u− − 3u2
− − 6u+u−.

To solve the above equation, we consider the inner product
⟨g|h⟩ ≡

∫ +∞
−∞ [g(x)h(x)]dx. Then, the linear operator L+ is

self-adjoint and L∂xu± ≈ 0. The solvability condition gives

− ⟨∂xu+|∂xu+⟩ ∂tδ = G + η ⟨∂xu+|(1 − u+)u+⟩ , (13)

where

G(u±,σ ) = ⟨∂xu+

∣∣∣∣u+

∫ ∞

−∞
u2(x ′,t)K(x ′ − x)dx ′

〉
.

We neglect also the terms smaller than 1/δ2n−1 in Eq. (13).
Then it is obtained

∂tδ = 3
√

2ϵNnσ
n

(n − 1)(2δ)n−1
−

√
2η. (14)

Strictly speaking, this equation of motion is quantitatively
valid when ∂tδ ∼ ϵ/δn−1 ∼ η ≪ 1.
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50 150
0

1
u(x)
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FIG. 5. (Color online) Width of a FC as a function of aridity α

in one dimension. The solid line represents the analytical prediction
from Eq. (16). The squares are obtained by numerical simulations of
Eq. (1). The inset is the spatial profile of biomass. Parameters are
σ = 0.8, n = 2, and ϵ = 0.5.

This result is valid for any power n > 1 in the kernel
function (2). We consider n = 2 and Nn = 1/πσ in one
dimension. Then Eq. (14) takes the form

∂t+ = 6
√

2ϵσ

π+
− 2

√
2

(
1
2

− α

)
, (15)

where + = 2δ is the width of the LS. The equilibrium width
is given by

+eq = 3ϵσ

π
( 1

2 − α
) . (16)

The linear stability analysis allows us to determine the
eigenvalue λ = −2

√
2πη2/3ϵσ . Therefore, for competitive

interaction, i.e., ϵ > 0, FCs are always stable.
We plot the width of the FC in one dimension as function

of the aridity α in Fig. 5. The width of the LS grows as aridity
increases. At the Maxwell point, i.e., α = 1/2, the width of
the FC becomes infinite. In order to check the approximations
used to derive the equilibrium size (16), we perform numerical
simulations of Eq. (1). Both results are in good agreement,
without any fitting parameter.

The FCs are observed in vast territories in southern Angola,
Namibia, and South Africa [46,47], where the annual rainfall
ranges between 50 and 150 mm [54]. The size of a FC increases
from south to north where the climate becomes more and more
arid [54]. The size can also be affected by the rainfall and
nutrients [48]. Fairy circle average diameter varies in the range
of 2–12 m [54]. In agreement with field observations, Fig. 5
shows, indeed, that FC diameter increases with the aridity.

Therefore, one-dimensional front interaction explains why
FC size increases with the aridity. To wit, as environment
aridity increases, the bare state becomes more and more
favorable, increasing FC size. This mechanism demands,
however, that the uniformly vegetated state must be always
the most favorable one (α < 1/2); otherwise the bare state
propagates indefinitely. The same tendency is observed in
two-dimensional simulations [40].
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FIG. 6. (Color online) Stationary localized patch obtained from
numerical simulations of Eq. (1). (a) One dimension with α = 0.52,
σ = 0.8, n = 2, and ϵ = 0.5. (b) Two dimensions with α = 0.56,
σ = 0.1, n = 2.5, and ϵ = 10.

B. Localized vegetation patch

In this section, we investigate the formation of a single
localized patch that consists of a circular vegetated state
surrounded by a bare state. This behavior occurs for high
values of the aridity parameter, i.e., α > 1/2. An example of
a single localized patch is illustrated in Fig. 6. This localized
solution corresponds to the counterpart of FCs.

Following a strategy similar to that in the previous section
(small ϵ and ηf = α − 1/2), the patch width + in one spatial
dimension obeys

∂t+ = 6
√

2ϵNnσ
n

(n − 1)(+)n−1
− 2

√
2ηf . (17)

Note that, like in Eq. (14), the result obtain in Eq. (17) is
generic for any n in (2). For n = 2, the stable vegetated patch
has the size

+eq = 3ϵσ

π
(
α − 1

2

) . (18)

The formula (18) is plotted in Fig. 7 by a solid line.
Confrontation with direct numerical computation for the
localized patch width is in good agreement, as shown in
Fig. 7. There are no available data from the field observation
to confirm this theoretical prediction.

C. Bifurcation diagram

In this section, we establish the bifurcation diagram for both
types of localized vegetation structures. We fix the length of
the completion between plants σ , and we vary the degree of
aridity α and the strength of the competitive interaction ϵ.
We numerically establish a stability range of a single FC
and the localized patch in a one-dimensional setting. This
analysis is summarized in the parameter plane (α,ϵ) of Fig. 8.
For α < 1/2, a single FC is stable in the region FC, as
indicated in Fig. 8. This stability region is bounded from

0.50
0

0.51

100

200

0.53

∆eq

α

50 150
0

1
u(x)

x

FIG. 7. (Color online) Width of a LVP, as a function of aridity α

in one dimension. The solid line represents the analytical prediction
from Eq. (18). The dots are obtained by numerical simulations of
Eq. (1). The inset is the spatial profile of biomass. Parameters are
σ = 0.8, n = 2, and ϵ = 0.5.

below by dots and bounded from the left by the Maxwell
point (α = 1/2). Dynamically speaking, dots correspond to a
saddle-node bifurcation. The parameter zone A indicates the
regime where a FC shrinks and disappears. For large values
of the strength of the competition ϵ, the uniformly vegetated
state becomes unstable via a pattern-formimg instability. The
threshold associated with this instability is represented by a
solid line. This line is obtained by plotting formula Eq. (5). This
spatial instability impedes the existence of FCs in the region C
and may allow for the formation of periodic structures. For
α > 1/2, a single FC grows ad infinitum and disappears and
a LVP appears. This structure is stable in the region LVP, as
shown in the bifurcation diagram of Fig. 8. The region B
corresponds to a high degree of aridity. In this zone of
parameters, a localized patch shrinks and disappears, and the
transition toward a bare state occurs.

ε
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0.3 0.5 0.7

A
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FIG. 8. (Color online) Bifurcation diagram of LSs for model
Eq. (1), in parameter plane (α,ϵ), with σ = 0.8 and n = 2.
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FIG. 9. (Color online) Two-dimensional localized vegetation
patterns obtained from numerical simulations of Eq. (1). (a) Multi-
FCs for α = 0.44; (b) multi-LVPs for α = 0.57. Other parameters are
σ = 0.1, ϵ = 10, and n = 2.5.

V. CONCLUSIONS

We have investigated the role of a strongly nonlocal
coupling in a bistable model, namely the Nagumo model.
This prototype model of population dynamics could be
applied to vegetation dynamics. We have shown that, far from
any symmetry breaking or Turing-type instability, localized

vegetation structures can be stabilized in large values of
the aridity parameter. Their formation is attributed to the
interaction between fronts mediated by a strongly nonlocal
coupling in the form of a Lorentzian. We have identified the
following scenario. When increasing the level of the aridity, a
large dip embedded in a uniformly vegetated state is formed.
This structure has a single fringe peak that appears in the spatial
profile of the biomass. We have interpreted this behavior as a
FC. When increasing further the degree of aridity, LVPs can be
formed in the system. These structures have a peak surrounded
by the bare state.

The LSs reported in this work have varying widths as a func-
tion of aridity. In contrast, the widths of localized vegetation
structures found close to the symmetry breaking instability are
determined by the most unstable Turing wavelength [26,70].
We have established analytically a formula for the widths of
FCs and LVPs as functions of the degree of aridity. The widths
of these LSs are intrinsic to the dynamics of arid ecosystems
and are independent of external environmental effects, such as
termites or ants. The results of direct numerical simulations of
model Eq. (1) agreed with the analytical findings.

In this paper we have focused our analysis on a single LS;
several of them could be stable, as shown in the Fig. 9. The
formation of multiple dips or peaks LSs, their interactions,
and their stability are under investigation. Understanding the
formation of LSs is central not only in arid ecosystems but
also in spatially extended out of equilibrium systems.

ACKNOWLEDGMENTS

M.G.C. acknowledges the financial support of FONDE-
CYT Project No. 1120320. D.E. acknowledges the financial
support of FONDECYT Project No. 1140128. C.F.-O. ac-
knowledges the financial support of Becas Chile. M.T. received
support from the Fonds National de la Recherche Scientifique
(Belgium).

[1] H. Leblond and D. Mihalache, Phys. Rep. 523, 61 (2013).
[2] M. Tlidi, K. Staliunas, K. Panajotov, A. G. Vladimiorv, and

M. G. Clerc, Phil. Trans. R. Soc., A 372, 20140101
(2014).

[3] Y. Pomeau, Phys. D 23, 3 (1986); M. Tlidi, P. Mandel, and
R. Lefever, Phys. Rev. Lett. 73, 640 (1994); P. Coullet, C. Riera,
and C. Tresser, Prog. Theor. Phys. Suppl. 139, 46 (2000); M. G.
Clerc and C. Falcon, Phys. A 356, 48 (2005); U. Bortolozzo,
M. G. Clerc, C. Falcon, S. Residori, and R. Rojas, Phys. Rev.
Lett. 96, 214501 (2006); M. G. Clerc, E. Tirapegui, and M. Trejo,
ibid. 97, 176102 (2006); M. Tlidi and L. Gelens, Opt. Lett. 35,
306 (2010); A. G. Vladimirov, R. Lefever, and M. Tlidi, Phys.
Rev. A 84, 043848 (2011); V. Skarka, N. B. Aleksic, M. Lekic,
B. N. Aleksic, B. A. Malomed, D. Mihalache, and H. Leblond,
ibid. 90, 023845 (2014).

[4] K. Staliunas and V. J. Sanchez-Morcillo, Phys. Lett. A 241, 28
(1998); M. Tlidi, P. Mandel, and R. Lefever, Phys. Rev. Lett. 81,
979 (1998); H. Calisto, M. Clerc, R. Rojas, and E. Tirapegui,
ibid. 85, 3805 (2000); M. Tlidi, P. Mandel, M. Le Berre,

E. Ressayre, A. Tallet, and L. Di Menza, Opt. Lett. 25, 487
(2000); D. Gomila, P. Colet, G. L. Oppo, and M. San Miguel,
Phys. Rev. Lett. 87, 194101 (2001); C. Chevallard, M. Clerc, P.
Coullet, and J.-M. Gilli, Europhys. Lett. 58, 686 (2002).

[5] U. Bortolozzo, M. G. Clerc, and S. Residori, New J. Phys. 11,
093037 (2009).

[6] D. Escaff, Eur. Phys. J. D 62, 33 (2011).
[7] P. Kolodner, D. Bensimon, and C. M. Surko, Phys. Rev. Lett.

60, 1723 (1988); O. Thual and S. Fauve, J. Phys. (Paris) 49,
1829 (1988); B. A. Malomed and A. A. Nepomnyashchy, Phys.
Rev. A 42, 6009 (1990); W. Barten, M. Lücke, and M. Kamps,
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