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Zig-zag wall lattice in a nematic liquid crystal with an in-plane switching configuration
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Liquid crystals displays with tailoring electrodes exhibit complex spatiotemporal dynamics when a large
voltage is applied. We report experimental observations of the appearance of a programmable zig-zag lattice
using an in-plane-switching cell filled with a nematic liquid crystal. Applying a small voltage to a wide
range of frequencies, the system exhibits an Ising wall lattice. Increasing the voltage, this lattice presents
a spatial instability generating an undulating wall lattice, and to higher voltages it becomes zig-zag type.
Experimentally, we characterize the bifurcations and phase diagram of the wall lattice. Theoretically, we develop,
from first principles, a descriptive model. This model has a good qualitative agreement with experimental
observations.
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I. INTRODUCTION

Liquid crystals are made of anisotropic-shaped organic
molecules [1–5]. This results in a strong anisotropy of all
their physical properties, especially optical features [2–5]. In
the nematic phase, the lowest-energy configuration is reached
when all the rodlike molecules are aligned along a mean
direction represented by a unit vector n called the director.
Since this vector shows only a direction and not a particular
sense, any description must include the symmetry n ↔ −n.
This direction can be specified either by applying an external
field, like an electric or magnetic one, or by imposing some
particular boundary conditions—anchoring conditions—at the
edges of the confined sample. When two of these constraints
are competing, the long-range orientational order may be
partially destroyed. Thus, orientational deformations then
appear in the sample. These deformations are theoretically
described by a vector field n(�r,t) which points out the
averaged orientation of the molecules in the fluid particle
located in �r and at time t . This phenomenon actually occurs
when one tries to lead the reorientation of the molecules,
using an external field, in an anchored layer of nematic
liquid crystal. For a field magnitude sufficiently high, the
initial alignment, due to the anchoring, is suppressed in the
bulk. This phenomenon is usually named the Fréedericksz
transition [6]. Due to the twofold degeneracy of the bifurcated
state, domains of opposite orientations may be created [7].
The interface between two of these domains is called the
Ising wall in the homeotropic geometry of the Fréedericksz
transition [8], which corresponds to the equivalent of magnetic
Ising walls in liquid crystals [9]. In this configuration the
molecules are anchored perpendicularly to the boundary glass
plates. Thus the Ising wall is a topological defect of the
Fréedericksz bifurcation [10–13]. An Ising wall corresponds
to an interface separating two symmetric equilibria. These
walls, subjected to electric and magnetic fields, can ex-
hibit a zig-zag instability [13–15]. This type of instability
is a universal phenomenon, which is observed in various
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physical contexts such as in microwrinkle grooves [16], gas
discharge systems [17], crystals growth [18], rifts in the
spreading wax layer [19], the chevron layer structure of
smectic liquid crystals [20], and nematic liquid crystal samples
subjected to a temperature gradient [21] or a confinement
configuration [22].

The liquid crystals are ubiquitous in our daily lives,
due to the adjustability of the molecule orientation, with
several applications [23,24], in particular, visual display
technology [25,26]. One of these applications is the liquid
crystal display, with, more specifically, the in-plane-switching
technology [27], where the electrodes can be designed, by
use of deposition processes, with different shapes on a single
substrate. This allows us to apply tension in the transverse
and vertical directions. Figure 1 shows the typical in-plane-
switching configuration. This type of electrode configuration
was developed for screen application. The electro-optical
characteristics of these types of cells, such as optical transmit-
tance, are well explained by a one-dimensional model [28,29].
When one applies a voltage and surpasses a certain critical
value, one expects that the molecules self-organize [30–33]
through the creation of different domains separated by walls.
Increasing the tension, one expects a complex spatiotemporal
walls dynamic.

The aim of this article is to evidence the observation of
a programmable zig-zag lattice in a nematic liquid crystal
inserted in an in-plane-switching cell. Applying a small voltage
in a wide range of frequencies, the system exhibits an Ising
wall lattice. Increasing the voltage this lattice presents a spatial
supercritical instability generating an undulating lattice, and at
higher voltages it becomes a zig-zag lattice. Experimentally,
we characterize the bifurcations and phase diagram of the wall
lattice. Theoretically, we develop, from first principles, a model
to describe the walls dynamical behavior which is described
by a nonlinear diffusion equation with a dissipative term. This
model has a good qualitative agreement with experimental
observations.

The manuscript is organized as follows. In Sec. II,
first, is presented the experimental setup of this study.
Subsequently, the wall lattice and their respective instabilities
are characterized. The theoretical description of the wall
lattice is presented in Sec. III. Our conclusions and remarks
are left for the final section.
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FIG. 1. (Color online) Sketch of the experimental setup, which
represents an in-plane-switching cell connected to a generator and
observed by a microscope (top), with 40× magnification, in white
light (bottom). Thickness between the two glass plates, d = 8.8 ±
0.2 μm. Thickness of a glass plate, g = 1 mm. Active zone, l × l =
1 cm2. Gap between two electrodes, e = 15 μm. Parallel polarizers
to the molecules anchoring, P⊥ (following the x axis).

II. ZIG-ZAG WALL LATTICE IN A IN-PLANE-SWITCHING
NEMATIC LIQUID CRYSTAL CELL

A. Experimental setup

The experimental configuration under study is depicted
in Fig. 1. A layer of E7 nematic liquid crystal is inserted
between two glass plates (thickness g = 1 mm) with a cell
gap d = 8.8 ± 0.2 μm. The elastic constants of the liquid
crystal are, respectively, K1 = 11.2, K2 = 6.8, and K3 = 18.6
(×10−12 N). The parallel and the perpendicular dielectrical
constants are ε‖ = 18.96 and ε⊥ = 5.16, respectively [4,5].
We consider an in-plane-switching cell, with a homogeneous
planar alignment (following the x axis, cf. Fig. 1) and a
parallel rubbing to the electric field (Instec, IPS02A89uX90).
The indium tin oxide electrode width and the gap width are the
same, e = 15 μm. The height of the electrodes is negligible
(∼25 nm) compared to the cell thickness (d = 8.8 μm).
The active zone is a square of side l = 1 cm. Under these
settings, we can consider the cell in a good approximation
as an infinite system. The electrodes are connected to a
function generator. An alternating current voltage is applied
with frequencies ∼10 Hz–100 kHz and an amplitude ∼10
Vpp–20 Vpp (volt peak to peak). A white light illuminates the
cell, which is placed between two parallel linear polarizers
and observed with an optical microscope. The microscope
magnification used is 40×. A charge-coupled-device (CCD)
camera connected to a microscope allows us to record and
measure the liquid crystal dynamics. We have increased
the contrast of the experimental images to improve the
visibility.

FIG. 2. (Color online) Wall lattice, experimental snapshots with-
out voltage (top left panel) and for T = 20 Vpp with different
frequencies: top right panel, f = 10 Hz, Ising wall lattice; bottom
left panel, f = 15 Hz, undulating wall lattice; bottom right panel,
f = 100 Hz, zig-zag wall lattice.

B. Experimental observation of the wall lattices

Using the CCD camera, we can observe a small portion of
the sample. By direct observations, without applying a voltage
to the sample, one detects only the bands of electrodes. Figure 2
(top left) shows these bands of electrodes characterized by a
darker gray zone. The gap between two consecutive electrodes
and the size of the electrodes are the same, e = 15 μm.
When applying voltage with an amplitude of 20 Vpp, with
a low frequency, f = 10 Hz, the system exhibits an Ising wall
lattice, following the y axis (cf. top right panel of Fig. 2).
This Ising wall lattice is a consequence of the transverse
periodic electric field with an undulatory structure induced
by the in-plane switching electrodes. Then the molecules are
oriented according to the electric field since εa = ε‖ − ε⊥ > 0.
Figure 3 depicts the transverse structure of the electric field and
the director orientations inside the sample. Hence, the Ising
wall lattice is observed as a consequence of the molecular
reorientation. This effect can be viewed with two parallel
polarizers positioned parallel to the molecules anchoring. The
white lines in the top right panel of Fig. 2 indicate that the
molecules are vertical (following the z axis). In this case,
the light can cross this region. The dark stripes represent a
decrease of the light intensity crossing the second polarizer.

FIG. 3. (Color online) (a) The electric field representation inside
the liquid crystal sample using formula (4). (b) The molecules
orientation in the liquid crystal sample.
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FIG. 4. Experimental characterization of the undulation wall.
Amplitude of the undulation wall vs (a) frequency for V = 20 Vpp;
(b) amplitude for f = 100 Hz. � experimental points; the dashed and
solid lines, respectively, represent the analytical expectation value
|amax| of Eq. (1) without and with noise, respectively. (a) α = 0.53,
f0 = 14.7 Hz; α = 0.53, f0 = 14.7 Hz, η = 0.005. (b) α′ = 1.92,
V0 = 15.7 V; α′ = 2.02, V0 = 15.7 V, η = 0.002.

This is due to the light polarization changing when it crosses
the liquid crystal sample. The wavelength of this lattice is
directly related to the electrodes size, λ0 = 2e = 30 μm.

Increasing the frequency to f = 15 Hz and maintaining
the voltage, we observe the appearance of a supercritical
modulational instability or spatial bifurcation following the x

axis. At the onset of the modulational instability, the lattice
is characterized by the presence of a fundamental mode
(sinusoidal wall). We term this structure an undulating wall
lattice. The typical undulating wall lattice is shown in the
lower left panel of Fig. 2. The wavelength of the undulation
depends slightly on the frequency and on the applied voltage,
as it is depicted in the bottom panels of Fig. 4. This wavelength
is typically of the order of 28.5 ± 0.5 μm. The amplitude of
the undulation, as function of the voltage and the frequency,
is presented in Figs. 4(a) and 4(b). From this figure, one
concludes that the modulational bifurcation is of supercritical
type, and close to the bifurcation the amplitude grows with a
power law of the square root [cf. dashed curves in Figs. 4(a)
and 4(b)]. Such an exponent is universal and is generically
observed in the appearance of patterns in nonequilibrium
systems [30–34]. Far from the bifurcation, the amplitude of the
undulation moves away from this law due to the nonlinearities
of the system. Below the bifurcation point, we observe
experimentally a disordered and incoherent pattern, which is a
result of a balance between fluctuations and dissipation. This
phenomenon is well known as a precursor [35–37].

Recently, one of our authors has analytically characterized
the universal shape of noisy bifurcation diagrams for the
expectation value [36–38]. In the case of the supercritical
bifurcation, it reads

|amax| =
√

ε +
√

ε2 + 2η

2
, (1)

where ε and η are the bifurcation parameter and the noise
level intensity, respectively. In our physical system, the control
parameter is driven by the frequency or voltage. Fixing the
voltage (frequency), the bifurcation parameter takes the form

FIG. 5. (Color online) Phase diagram of the wall lattice in the
frequency and voltage domain. The dark and the light zones account
for the regions of Ising and zig-zag wall lattice, respectively.
Dashed curve accounts for the modulational instability. � stands for
experimental points of the spatial bifurcations.

ε = α[f − f0], where α is a parameter of order 1 and is
determined by other physical magnitudes, see Fig. 4(a) [for
ε = α′[V − V0] see Fig. 4(b)]. Using the above expression,
Eq. (1), as a fitting formula, we can determine the bifurcation
point and the noise level intensity. We have a quite good
agreement between the fits and the experimental data, as
illustrated in Fig. 4. Dashed curves are obtained neglecting the
effect of noise (η = 0), which corresponds to the deterministic
bifurcation diagram.

Increasing further the frequency, the undulation amplitude
is bigger and the sinusoidal walls are replaced by a wall
composed by straight segments with opposite slopes connected
by a region of strong curvature giving rise to a wall with a
zig-zag structure. Therefore, the system exhibits a zig-zag
wall lattice. Figure 2, in the lower right panel, shows the
typical observed zig-zag wall lattice. Note that by increasing
the frequency or the voltage, the number of unstable spatial
modes increases, and then the wall exhibits a more complex
equilibrium. However, the walls amplitude has a saturation
induced by the electrodes geometry.

We have experimentally characterized the phase diagram of
the wall lattices in the space of frequency and voltage. Figure 5
illustrates the phase diagram. The frequency domain where we
observe the zig-zag instability is between f = 15 ± 1 Hz and
f = 1 ± 0.1 MHz, for the maximal accessible voltage value
V0 = 20 Vpp. Outside this domain, we have some capacitance
effects, which do not allow us to observe the wall lattices.
A minimal voltage threshold is observed in a large frequency
band (f = 70 Hz–90 kHz) for V0 = 15.75 ± 0.25 Vpp. Hence,
for low voltages in a wide range of frequencies we only observe
Ising wall lattices. Increasing the voltage, this lattice presents
a spatial instability generating an undulating wall lattice,
and at higher voltages it becomes zig-zag type. Therefore,
as a function of frequency and voltage one can generate
a programmable wall lattice, in which one can change the
amplitude and the wavelength.

C. Spatiotemporal evolution of Ising walls

To study spatiotemporal dynamics of the walls, we have
identified the white line in the black strips (see Fig. 2), as
the wall amplitude. Initially, we consider the sample at a low
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FIG. 6. (Color online) Spatiotemporal diagram (smoothed) of a
Ising wall. (a) Experimental spatiotemporal of the pattern, and (b) plot
of the last line of the spatiotemporal diagram. V = 17 Vpp and f =
1 kHz.

voltage and a high frequency (f = 1 kHz), then we abruptly
increased the voltage to V = 17 Vpp. We record the temporal
evolution of the Ising wall. Figure 6 shows the spatiotemporal
diagram of the amplitude of a wall in the center of the
sample. The spatial structure of the wall emerges in fewer
than 2 s (cf. Fig. 6), with a well-defined periodicity. After 4 s,
the dynamics is stationary. The smoothed pattern profile of
the last state of the spatiotemporal diagram shows a zig-zag
structure like those observed in similar experiments in liquid
crystals [13,16,21]. However, in our case the pattern amplitude
is limited by the electric field induced by the electrodes
geometry.

III. THEORETICAL DESCRIPTION OF
THE ZIG-ZAG WALL LATTICE

To understand the origin of the wall lattice, first, we must
characterize the electric field structure inside the nematic liquid
crystal sample.

A. Voltage and electric field inside the nematic liquid crystal cell

The nematic liquid crystal is an anisotropic medium, so
the voltage V (x,y,z) inside the cell satisfies an anisotropic
Laplace equation, which has the form

∂xxV + ε⊥
ε‖

∇2
⊥V = 0,

where ∇2
⊥ is the Laplacian operator in the transversal coor-

dinates to the unit vector x̂ and ε⊥ and ε‖ are, respectively,
the perpendicular and the parallel dielectric constants to
the nematic director. The dielectric anisotropy is defined as
εa ≡ ε‖ − ε⊥ and it is positive for the liquid crystal used in
our experiment, εa > 0. The voltage satisfies the boundary
conditions V (x,y, − d/2) = f (x) and V (x,y,d/2) = 0, with
f (x) a periodical function which follows the electrodes

periodicity. Using the Fourier transform in the x coordinate,
neglecting the dependence on the y coordinate and solving the
above equation with the corresponding boundary conditions,
after straightforward calculations one obtains [39]

V (�r) =
∫

dkdx ′exp[−ik(x ′ − x)]f (x ′)
sinh

[
�k

(
d
2 − z

)]
2π sinh(�kd)

,

(2)

where k ≡ π/2e, � ≡ √
ε⊥/ε‖, and exp[x] stands for the

exponential function. For simplicity, we consider f (x) =
V0 cos(kx), where e is the electrode size and 4e is the
wavelength of the f (x) function. Thus the voltage inside the
cell takes the form

V (x,y,z) = −V0 cos(kx)
sinh[�k(z − d/2)]

sinh(�kd)
, (3)

then the voltage is a periodical function in the transverse
direction and a decreasing function in the vertical direction.
The electric field E = −∇V inside the sample has the explicit
form

E = V0k� cos(kx)
cosh[�k(z − d/2)]

sinh(�kd)
ẑ

−V0k sin(kx)
sinh[�k(z − d/2)]

sinh(�kd)
x̂. (4)

Figure 3(a) depicts the electric field in the liquid crystal sample.
Since the liquid crystal has positive anisotropic constant εa ,
the molecules align with the electric field. Figure 3(b) shows
the expected structure for a director within the liquid crystal
sample. Then the electric field induces naturally nematic Ising
walls.

To understand the origin of the walls and their instabilities,
first we will consider only the effect of the transverse electric
field, which will allow us to understand the emergence of
straight walls. Then we will consider the effect of the horizontal
field together with the anisotropic features of the nematic liquid
crystal that will be responsible of the zig-zag wall emergence.

B. Nematic Ising walls

The dynamical equation for the molecular director n,
reads [2–4]

γ ∂tn = K3[∇2n − n(n · ∇2n)]

+ (K3 − K1)[n(n · ∇)(∇ · n) − ∇(∇ · n)]

+ (K2 − K3)[2(n · ∇ × n)(n(n · ∇ × n) − ∇ × n)

+ n × ∇(n · ∇ × n)] + εa(n · E)(E − n(n · E)), (5)

where γ is the rotational viscosity, and {K1,K2,K3} are the
elastic constants of the liquid crystal, which are related to
splay, twist, and blend deformations, respectively [2–4].

To simplify, we will focus, in our theoretical description,
on taking just one electrode and on considering that the
transverse dimensions of the system are infinite. The base
state for the molecules with an in-plane anchoring is n = x̂.
It is equivalent to a state where the molecules are orthogonal
to the electrode. Note that this state is a trivial equilibrium
of Eq. (5). Considering only an electric field constant in the
vertical direction, E = Ezẑ, it is easy to show the existence
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of stable nematic Ising walls. Let us consider the following
ansatz for the molecular director:

n(x,y,z; t) =
⎛
⎝ 1 − u2

2 cos2
(

πz
d

)
0

u(x,y; t) cos
(

πz
d

)
⎞
⎠ + W[u], (6)

where u(x,y; t) accounts for the amplitude of the first Fourier
mode in the z axis and W[u] stand for higher nonlinear correc-
tions in u. Introducing the above ansatz in Eq. (5), linearizing
in W[u] and imposing the solubility condition [13,31], one
obtains

γ ∂tu = εu − bu3 + (K3∂xx + K2∂yy)u, (7)

where ε ≡ εaE
2
z − K1π

2/d2 is a bifurcation parameter for
the Fréedericksz transition and b ≡ 3/4((K1 − K3)π2/d2 +
εaE

2
z ) stands for the nonlinear saturation. Close to the

Fréedericksz transition [6], ε 
 1, the above equation was
derived using the amplitude u which is a slow variable in
space and time and further considering the asymptotic limit
u ∼ ε1/2, ∂2

y ∼ ∂2
x ∼ ε, ∂t ∼ ε, K1 ∼ K3 ∼ 1, K2 ∼ 1. For

higher voltages than the Fréedericksz transition, ε > 0, the
above model, Eq. (7), exhibits Ising wall solutions of the forms

u⊥(x) = ±
√

ε

b
tanh

(√
ε

2K3
(x − x0)

)
(8)

and

u‖(y) = ±
√

ε

b
tanh

(√
ε

2K2
(y − y0)

)
, (9)

where u⊥(x) and u‖(y) are Ising walls parallel to the y axis and
the x axis. x0 and y0 define the position of the walls. Hence,
these solutions are parameterized by a continuous parameter
that describes their position. Note that the only difference
between these walls is the size of the wall core, which is
determined by the respective elastic constants.

To study the stability of these walls we consider the
following ansatz:

u(x,P (y,t)) = u⊥[(x − P (y,t)] + w(x,P ), (10)

which accounts for a disturbance of the wall in the transverse
direction (x axis) and w describes the corrections due to the
disturbance. Introducing the ansatz (10) in Eq. (7), linearizing
in w, and imposing the solubility condition [31], one gets the
diffusion equation

γ ∂tP = K2∂yyP . (11)

Therefore, perturbations of the wall are characterized by a
diffusive dynamics and then the wall is stable. Analogously
one can do the same analysis for the wall u‖ and conclude that
it is also stable. In the next subsection, we will analyze the
effect of considering a horizontal electric field.

C. Derivation of the wall equation

Experimentally, the zig-zag instability of an Ising wall was
observed for higher intensities of the electric field, far from
the Fréedericksz transition, which is typically a few volts [4].
Thus, the previous analysis is no longer valid. Since the
vertical component of the electric field is too strong, we can
conjecture the emergence of two boundary layers touching

FIG. 7. (Color online) (a) Molecules orientation in the liquid
crystal sample, showing the two boundary layers in green with a
thickness δ and the bulk in white with a thickness d . (b) Horizontal
component of the electric field representation (continuous line) and
its approximation (dashed curve).

the glass layers, where the molecules reorient in a complex
manner under the anchoring boundary conditions, whereas in
the bulk the molecules are mainly oriented perpendicularly
to the glasses (n = ẑ) (cf. Fig. 7). The thickness of these
boundary layers is characterized by the parameter δ. The
above description is valid over the electrode area, where
the vertical component of the electric field, Ez, is the highest.
The molecules above the gap area are mainly oriented in the x

axis, where the horizontal electric field Ex is more important
than Ez (see Fig. 7). Therefore, at a high electric field intensity,
we can consider an effective homeotropic anchoring medium
in the bulk of the sample, neglecting the boundary condition
occurring in the boundary layer. Hence, in order to describe
the dynamics of the interface we can consider the following
ansatz for the molecular director n in the bulk:

n =

⎛
⎜⎝

u cos(πz/d)
K1
a

∂xyu cos
(

πz
d

) + K2
1

a2 ∂xy3u cos2
(

πz
d

)
1 − u2

2 cos2(πz/d)

⎞
⎟⎠ + W[u],

(12)

where u(x,y; t) accounts for the amplitude of the first Fourier
mode in the x component and W[u] stands for higher
nonlinear corrections in u and a ≡ εaE

2
z + K3π

2/d2. Note
that when u = 0, the system exhibits, as an equilibrium, a
homeotropic state in the bulk, i.e., the molecules are oriented
perpendicularly to the glass plates. Considering an electric
field of the form E = Ezẑ + Exx̂, introducing the above ansatz,
expression (12), in Eq. (5), linearizing in W[u] and imposing
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the solubility condition [13,31], one obtains

γ ∂tu = ε̃u − b̃u3 + K1∂xxu

+K2∂
2
yy + K2

1

a
∂x2y2u + K3

1

a2
∂x2y4u − 3

4
K3u(∂yu)2

+ 2

d
εaEzEx, (13)

where ε̃ ≡ −εaE
2
z − K3π

2/d2 + εaE
2
x is a bifurcation pa-

rameter for the effective Fréedericksz transition of the
bulk homeotropic media and b̃ ≡ (K1 − 3K3/2)π2/2d2 −
3εaE

2
z /4 is a saturation parameter. The above equation was

derived using the fact that the amplitude u is a slowly variable
in space and time and further by considering the asymptotic
limit u ∼ ε1/2, ∂t ∼ ε, ∂2

y ∼ μ, ∂2
x ∼ ε, K1 ∼ K3 ∼ 1, K2 ∼ ε,

Ez ∼ 1, Ex ∼ ε, μ ≡ (K2/ε − 2K1/5a), and ε 
 μ 
 1.
Note that the horizontal component of the electric field has the
form illustrated in Fig. 7(b). To achieve simpler calculations we
approach this function by straight lines [cf. to the dotted lines in
Fig. 7(b)]. Thus near the electrode Ex(x) ≈ −(�E/e)x ∼ μ.

Then, in the previous asymptotic limit, the first three terms
of the right side of Eq. (13) are dominant and all other terms
are corrective. The dominate equation only has u⊥(x − x0) as
Ising walls. In order to understand the effect of the perturbative
terms, we consider the following ansatz:

u(x,t) = u⊥[x − P (y,t)] + w(x,P ), (14)

where u⊥ is considering {ε,b,K3} by {ε̃,b̃,K1}, P (y,t) is a
field that accounts for the position and the dynamic of the
wall. Introducing this ansatz in Eq. (13) and linearizing in w,
we obtain

Lw = γ ∂tP (∂xu⊥) − K2Pyy (∂xu⊥) + P 2
y

(
∂2
xu⊥

)
+ K1ε

2a

[−Pyy

(
∂3
xu⊥

) + P 2
y

(
∂4
xu⊥

)]
+ K2

1 ε

2a2

[−Pyyyy

(
∂3
xu⊥

) + 4PyPyyy

(
∂4
xu⊥

)
+ 3P 2

yy

(
∂4
xu⊥

) − 6P 2
y Pyy

(
∂5
xu⊥

) + P 4
y

(
∂6
xu⊥

)]
− 3

4
K3P

2
y u⊥(∂xu⊥)2 − q(x + P ), (15)

with q = 2εaEz�E
√

2K1/ε/de and the linear operator L =
−(ε − 3bu2

0 + K1∂
2
x ). This operator is a Hermitian one with

respect to the inner product 〈f |g〉 = ∫ +∞
−∞ fg dx, L = L†. As

consequence of the translation invariance of the dominate
part of Eq. (13), this operator has a Goldstone mode, that
is, L†∂x0u0 = 0. To solve the above linear equation, we use the
Fredholm alternative or solubility condition [31], i.e., the right
side of Eq. (15) is orthogonal to the kernel of L†. Note that
because u⊥ is an odd function the scalar products 〈∂xu⊥ |
∂2
xu⊥〉, 〈∂xu⊥ | ∂4

xu⊥〉, 〈∂xu⊥ | ∂6
xu⊥〉, 〈∂xu⊥ | u⊥(∂xu⊥)2〉,

and 〈∂xu⊥ | x〉 vanish. Hence, the previous solubility condi-
tions leads to the wall equation,

γ ∂tP = D1Pyy + D2P
2
y Pyy − D3Pyyyy − 2qP,

where D1 = K2 − 2K1ε/5a, D2 = 48K2
1 ε/7a2, and D3 =

2K2
1 ε/5a2. Rescaling space, time, and field in the following

manner: t ′ ≡ t/γ , y ′ ≡ y/ 4
√

D3, and P ′ = P/
√

D3/D2), the

asymptotic equation for P leads to (omitting the apostrophes)

∂tP = DPyy + P 2
y Pyy − Pyyyy − λP, (16)

where D ≡ D1/
√

D3 = (K2 − 2K1ε/5a)/
√

2K2
1 ε/5a2 and

λ = 8εaEz�E
√

2K1/ε/de. The above wall model is a nonlin-
ear diffusion equation with a linear relaxation, where the co-
efficient D accounts for the diffusion, the second and the third
terms stand for the nonlinear diffusion and the hyperdiffusion,
and the last term reports for the linear relaxation. When λ is
zero this model has been widely used to describe the dynamics
of interfaces between symmetric states [13]. In this case, if one
introduces the variable change  ≡ ∂xP , Eq. (16) becomes
the Cahn-Hilliard equation [40,41]. This model describes
the dynamics of phase separation in conservative systems.
The introduction of λ modifies this model to a modified
Cahn-Hilliard equation.

D. Zig-zag instability of a wall

The wall dynamics is described by Eq. (16). When D is
positive, i.e., for low voltages, the above model describes a
diffusion equation with a linear relaxation. Then P = 0 is a
stable solution, that is, the straight wall located on the electrode
is stable. The above scenario changes while increasing the
voltage, the sign of the diffusion coefficient changes and the
wall becomes unstable. To study this dynamics, we perform a
linear stability analysis. Using P = P0exp[−ikx + σ t], where
P0 is a constant in Eq. (16), after straightforward calculations
we obtain the growth rate relation

σ (k) = −Dk2 − k4 − λ. (17)

Figure 8 shows the above relationship for different values of
the relaxation parameter. The instability condition is obtained
when this growth rate curve crosses the horizontal axis.
The most unstable mode corresponds to the maximum of
σ (k), which occurs in k2

c = −D/2. The instability condition
σ (kc) = 0, allows us to find the critical relation λc = D2/4
[cf. Fig. 8(a)]. In Fig. 8, the wall is shown below and above
the spatial instability. The numerical simulations show a quite
good qualitative agreement with experimental observations of
wall lattice, see Figs. 8(b)–8(d). Hence, this wall equation (16)
is an appropriate model to describe the dynamics of a wall.
Figure 9 outlines the spatiotemporal evolution of the wall
when it suffers from the spatial instability. We note that the
experimental system exhibits a similar dynamical behavior (cf.
Fig. 6).

E. Undulating wall

To study the dynamics of the wall close to the spatial
instability, we will perform weakly nonlinear analysis. Let
us consider the bifurcation parameter near the instability,
λ = λc − �, and introducing the ansatz for P ,

P (y,t) = A(y,t)exp[ikcy] + A∗exp[−ikcy] + w, (18)

where A(y,t) accounts for the amplitude of the critical spatial
mode, we assume that close to the bifurcation this amplitude is
a slow variable in time and space, and w stands for nonlinear
corrections. Replacing this ansatz, expression (18) in Eq. (16),
linearizing in w, and imposing the solubility conditions, we get

022504-6
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FIG. 8. (Color online) Interface dynamics. (a) Growth rate rela-
tion, Eq. (17), for three values of λ. Experimental and numerical
interface profiles for the three previous cases: (a) f = 10 Hz (exp),
λ1 = 0.30 (num); (b) f = 15 Hz (exp), λ1 = 0.24 (num); (c) f =
100 Hz (exp), λ1 = 0.0001 (num). V = 20 Vpp (exp), D = −1 (num),
λc = D2/4 = 0.25.

the Ginzburg-Landau equation with real coefficients [31,32],

∂tA = �A − D2

4
A|A|2. (19)

This is a universal model describing pattern formation in
a supercritical spatial bifurcation [31,32]. Using a polar
representation, A = R eiφ , the above equation reads

φ̇ = 0,

Ṙ = �R − D2

4
R3, (20)

FIG. 9. (Color online) Spatiotemporal diagram of an Ising wall
obtained from numerical simulations of the wall equation (16), D =
−1 and λ = 0.2. (a) Spatiotemporal evolution of the wall; (b) plot of
the last line of the spatiotemporal diagram.

Then the trivial solution of this set of equations is that the
phase φ is an arbitrary constant; the modulus is constant and
it is determined by the bifurcation parameter. In the case of
� < 0, the magnitude of the amplitude satisfies R = 0 and
� � 0,

R∗ = 2

D

√
� = 2

D

√
D2

4
− λ. (21)

Then as a function of the bifurcation parameter the magnitude
of the amplitude grows with the square root of it. Figure 10
shows the amplitude of the wall, model (16), as a function of
the bifurcation parameter and compares it with the previous
prediction, finding a quite good agreement close to the
bifurcation. Note that experimentally we found a similar
bifurcation diagram (see Fig. 4).

The present analysis of this section allows us to understand
the dynamics of a zig-zag wall. Analogously, we can perform

FIG. 10. Bifurcation diagram of the amplitude of the wall,
model (16), as a function of the bifurcation parameter � = D2/4 − λ.
The points represent the results obtained by numerical simulations of
the model (16). The solid curve is obtained by using the formula (21).
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this analysis for each Ising wall and then describe the
emergence of the Ising wall lattice, the undulating wall lattice,
and the zig-zag wall lattice

IV. CONCLUSIONS

In the present work, we have evidenced the observation of
a programmable zig-zag lattice in a nematic liquid crystal in-
serted into an in-plane-switching cell. Applying a small voltage
in a wide range of blue frequencies, the system exhibits an Ising
wall lattice. By increasing the voltage, this lattice presents a
spatial supercritical instability generating an undulating lattice,
and at higher voltages this wall lattice becomes a zig-zag
type. Experimentally, we have characterized the bifurcations
and phase diagram of the wall lattice. Theoretically, we have
developed, from first principles, a model to describe the
dynamical behaviors of the walls. The dynamical behavior
of each wall is described by a nonlinear diffusion equation

with a relaxation term, which we have termed wall equation.
This model is equivalent to the Cahn-Hilliard equation with
a relaxation term. The wall equation has a good qualitative
agreement with the experimental observations.

This type of programmable wall lattice can be useful to have
a deformable diffraction grating, which can offer new methods
in images treatment. Works in this direction are in progress.
The possibility of having electrodes with varied geometries
may allow the creation of complex wall lattices, with new
disordered behaviors such as a programmable lattice.
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