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One-dimensional patterns subjected to counter-propagative flows or speed jumps exhibit a rich and

complex spatiotemporal dynamics, which is characterized by the perpetual emergence of

spatiotemporal dislocation chains. Using a universal amplitude equation of drifting patterns, we

show that this behavior is a result of a combination of a phase instability and an advection process

caused by an inhomogeneous drift force. The emergence of spatiotemporal dislocation chains is

verified in numerical simulations on an optical feedback system with a non-uniform intensity pump.

Experimentally this phenomenon is also observed in a tilted quasi-one-dimensional fluidized shallow

granular bed mechanically driven by a harmonic vertical vibration. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4883650]

Nature is ripe with patterns and structures of different

shapes and sized. These patterns naturally show imper-

fections where the pattern amplitude goes to zero, termed

defects, which can display a rich and complex spatiotem-

poral dynamics. In this article, we show that when one-

dimensional patterns are subjected to flows that change

spatially their intensity, single defects or arrays of them

appear constantly over the observed pattern in space and

time. These defects are thus known as dislocations on the

space-time evolution of the pattern, as they are similar

the classical dislocations observed in solids or in the

stripe patterns of bi-dimensional systems out of equilib-

rium. We explain this phenomenon theoretically using a

universal model that describes how the amplitude of the

moving pattern creates such defects through a combina-

tion of an phase instability of the pattern interacting with

the inhomogeneous flow. The explanation of the continu-

ous generation of defects in drifting patterns is verified

by simulating numerically the proposed model. This veri-

fication is also performed on a more complex model

describing the evolution of an optical feedback system

with a non-uniform intensity pump. Furthermore, we

observe experimentally the generation of spatiotemporal

dislocation chains on a quasi-one-dimensional fluidized

shallow granular bed mechanically driven by a harmonic

vertical vibration, where the inhomogeneous flow is

included by tilting the cell. In that sense, the results pre-

sented in this work are meaningful to the whole commu-

nity involved in understanding the way defects interact

within pattern forming systems and how their dynamics

influence the long-term evolution of the underlying

pattern.

I. INTRODUCTION

Non-equilibrium processes often lead to the formation

of spatially periodic structures arising from an homogeneous

state through the spontaneous breaking of symmetries pres-

ent in the system under study.1–5 Pattern formation is gener-

ally observed by modifying a single parameter, usually

called bifurcation parameter, which controls the transition

from an homogeneous state to a patterned one as it surpasses

a certain threshold. In one-dimensional extended systems,

when one continues increasing this parameter above thresh-

old, the pattern can exhibit secondary instabilities, for exam-

ple, spatial and temporal period doubling, oscillatory,

Eckhaus, and parity breaking ones.6 Secondary instabilities

are generically the cause of the transition from motionless to

propagative patterns. These transitions in pattern forming

systems have been studied in several physical contexts, such

as parametrically amplified surface waves in Newtonian7

and non-Newtonian fluids,8 fluidized granular beds,9 binary

fluid convection,10 and nonlinear optics,11 to mention a few.

This phenomenon can be produced by two mechanisms: (i)

spontaneous symmetry-breaking transitions, where the pat-

tern will choose spontaneously the direction of its propaga-

tion depending on initial conditions,2,12 and (ii) induced

parity-breaking transitions, where stationary-to-propagating

pattern bifurcations arise when motionless patterns are

exposed to drift forces or spatial inhomogeneities.9,11 In the

latter case, patterns are commonly deformed and advected,

which is usually related to the development of convective

instabilities.2

The entire class of scenarios that can trigger the spatio-

temporal evolution of drifting patterns have not been identi-

fied yet. Particularly, one expects a rich and complex

spatiotemporal dynamics. Experimental observations of drift-

ing patterns have been reported in particle-laden flows inside

a partially fluid filled, horizontal, rotating cylinder,13 a free

electron laser14 and a one-dimensional transverse Kerr-type

slice subjected to optical feedback.15 In the former work, the
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proposed physical mechanism for this phenomenon is based

on nonuniformities of the control parameter, which induce an

Eckhaus instability.15,16 The aim of this letter is to study and

explain the appearance of spatiotemporal dislocation chains

in drifting patterns. Despite of experimental reports, the rec-

ognition of the nature and origin of this universal phenom-

enon and the ingredients necessary for its existence are

absent. A dislocation chain is a defect line composed by

phase singularities. The distance between neighboring singu-

larities is of the same order of the underlying wavelength.

Indeed, this spatiotemporal dynamics can be understood as a

consequence of counter-propagative flows, speed jumps, or

inhomogeneities in the parameters of drifting pattern systems.

That is, the inhomogeneous spatial coupling is responsible of

this phenomenon. Based on an amplitude equation describing

the evolution of a pattern, we identify the mechanism for the

emergence of spatiotemporal dislocation chains in the pres-

ence of a drift. This dynamical behavior is a combination of a

phase instability–local Eckhaus instability–and an advection

process caused by the inhomogeneous drift force. The appear-

ance and dynamics of dislocation chains are numerically veri-

fied on a one-dimensional amplitude equation where the

ingredients described above are present, and also on a model

describing a transverse Kerr-type slice under to optical feed-

back illuminated by a non-uniform beam. Furthermore, the

phenomenon is observed experimentally in a tilted quasi-one-

dimensional fluidized shallow granular bed mechanically

driven by harmonic vertical vibrations.

II. THEORETICAL DESCRIPTION OF DISLOCATION
CHAINS

Let us consider a one-dimensional extended system

described by the dimensionless partial differential equation

@t~uðx; tÞ ¼ ~f ð~uðx; tÞ; @x; fegÞ � vðxÞ@x~u; (1)

where ~uðx; tÞ is a vectorial field that describes the system

under study, {x, t} respectively stand for the spatial and tem-

poral coordinates, ~f is the vector field, feg is a set of parame-

ters that characterizes the system under study, and v(x)

accounts for an inhomogeneous drift force.

In the case of zero-drift, i.e., v(x)¼ 0, we assume that

the system possesses a stationary state ~u0 that satisfies
~f ð~uðx; tÞ; @x; fegÞ ¼ 0, which exhibits a supercritical spatial

instability at a critical wavenumber k¼ kc when one of the

parameters surpasses a certain threshold, say ec, generating a

stationary pattern.

Under suitable boundary conditions, when the pattern is

subjected to a small constant drift force ½vðxÞ ¼ vo 6¼ 0�, it

remains motionless in a parameter region, i.e., there is a pin-

ning range.11 Above a critical value of the drift force, the pat-

tern becomes propagative, which correspond to a regime of

absolute instability.2 Increasing further vo, the system enters a

convective instability regime where the drift is large enough

to advect the patterned state away completely from the region

under study, returning the system to an homogeneous state.17

The former scenario changes dramatically when we con-

sider non-uniformities in the drift force ½vðxÞ�. Physical

transport processes such as inhomogeneous diffusion or dis-

persion and inhomogeneous spatial coupling can lead to an

inhomogeneous drift force in the system. In such cases, the

drifting pattern can be deformed creating regularly isolated

or sequence of dislocations in the spatiotemporal diagram,

which corresponds to singularities in the phase or hole solu-

tions in the pattern envelope (see Figs. 1 and 2).

Examples of non-uniform drift forces can be encoun-

tered in different fields ranging from biology to chemistry to

physics. For instance in physics, particle segregation in a

FIG. 1. Spatiotemporal dislocation chains in drifting patterns. (a) and (b)

are spatiotemporal diagrams of the phase uðx; tÞ and (c) and (d) their re-

spective phase gradients @xu given by model Eq. (3). Simulation parame-

ters are l¼ 0.4, dx¼ 0.4, L¼ 400, X0¼ 0 with j ¼ 10�4 (left panel) and

j ¼ 3� 10�4 (right panel), respectively. Dislocation chains and isolated

defects are framed by dashed circles and squares, respectively. Xc corre-

sponds to critical position.

FIG. 2. Spatiotemporal dislocation chains in drifting patterns. (a) and (b) are

spatiotemporal diagrams of the phase uðx; tÞ and (c) and (d) their respective

phase gradients @xu given by model Eq. (3). Simulation parameters are

l¼ 0.4, dx¼ 0.4, L¼ 400, X0¼ 80 with j ¼ 10�4 (left panel) and

j ¼ 3� 10�4 (right panel), respectively. Dislocation chains and isolated

defects are framed by dashed circles and squares, respectively. Xc corre-

sponds to critical position.
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laden flow inside a horizontal, rotating cylinder exhibit band-

ing pattern formation.13 The spatiotemporal dynamics shows

two counter propagative drifts. Due to this non-uniform drift

caused by the cylinder curvature, the pattern exhibits a con-

tinuous formation of defects. Another example is a liquid

crystal layer subject to an inhomogeneous optical pump.15 In

this case, a Kerr medium slice is shined by a Gaussian laser

beam which through optical feedback generates an inhomo-

geneous flow, locally advecting the pattern, creating disloca-

tions in the spatiotemporal diagram.

A. Unified description

To understand in a unified manner the previously dis-

cussed phenomenon, we study the amplitude evolution at the

onset of the spatial bifurcation assuming that the drift force

varies smoothly compared with the pattern wavelength.

Introducing the following ansatz for the critical propagative

mode:

~uðx; tÞ ¼ l1=2AðX; TÞeiðkcx�v0tÞ~uk þ c:c:þ h:o:t:; (2)

where A(X,T) is the envelope of the propagative pattern,

which is a slowly varying in time and space which scale as

X � l1=2x; T � lt, respectively, c.c. and h.o.t. stand for

complex conjugate and higher order terms, see Ref. 2. ~uk is

the marginal mode at ec with wavenumber kc. The corre-

sponding amplitude equation close to threshold is the

Ginzburg-Landau equation

@TA ¼ l0A� jAj2Aþ @XXA� i~vðXÞA; (3)

where l0 � ðe� ecÞ=l and ~vðXÞ � ½vðXÞ � v0�kc=l is a spa-

tial function accounting for the effect of the inhomogeneous

drift force. Using polar fields representation of the amplitude,

A ¼ Reiu, one introduces two scalar fields R(X,T) and uðX; TÞ,
the magnitude and phase of the amplitude, respectively.

B. Derivation of the amplitude equation in a simple
model

In order to illustrate the above procedure, let us consider

the following prototype model of pattern formation with

drifting force (supercritical drifting Swift-Hohenberg):

@tu ¼ lu� u3 � @xx þ q2
� �2

u� cðxÞ@xu; (4)

where u(x,t) is a scalar field, l is the bifurcation parameter, q
is the pattern wavenumber, and c accounts for drift source of

the pattern. The Swift-Hohenberg model was introduced to

describe the onset of Rayleigh-Benard convection; however,

recent generalizations have been used intensively to account

for pattern formation in several systems.2 Equation (4) under

the influence of a small drifting force ðcðxÞ � 1Þ describes a

spatial supercritical bifurcation. For l< 0, the system

presents a stable uniform state u(x,t)¼ 0. At l¼ 0, the system

bifurcates, the uniform solution becomes unstable, giving rise

to pattern formation. For l> 0, the pattern amplitude, at

wavenumber kc¼6q, grows as the square root of l.

To describe the dynamics of the pattern at the onset of

bifurcation ðl� 1Þ, we introduce the ansatz

uðx; tÞ ¼ AðT;XÞffiffiffi
3
p eiqx þ

�AðT;XÞffiffiffi
3
p e�iqx þWðA; �A; xÞ; (5)

where A accounts for the amplitude of the critical mode q,

which varies slowly in space and time (@XXA� @XA� 1

and @TA� 1) and WðA; �A; xÞ is a small correction function

including high order terms in A and �A. Introducing the above

ansatz in Eq. (4), linearizing in W and considering the domi-

nant terms, we get

@XX þ q2
� �2

W ¼ A3

3
ffiffiffi
3
p ei3qx þ �@TAþ lA� jAj2A

�
þ 4q2@XXA� iqcAg eiqxffiffiffi

3
p þ c:c:

To solve the above equation, we must to impose the follow-

ing solvability conditions:3

@TA ¼ lA� jAj2Aþ 4q2@XXA� iqcðXÞA; (6)

and then

WðA; �A; xÞ ¼ A3

2633=2
ei3qx þ

�A
3

2633=2
e�i3qx: (7)

Then, one simultaneously determines the change of variable

[Eq. (5)] and the amplitude equation of the critical mode

[Eq. (6)]. Note that the Eq. (6) is valid considering the fol-

lowing scaling A � l1=2; @T � l; @X � l1=2 and c � l.

Normalizing the spatial scale and the coefficients in Eq. (6),

one obtains the amplitude Eq. (3).

C. Mechanism of spatiotemporal dislocations chain

Numerical simulations of amplitude Eq. (3) show the

formation of spatiotemporal dislocation chains (see Fig. 1).

We consider Eq. (3) with Neumann boundary conditions,

i.e., @XAð0; tÞ ¼ @XAðL; tÞ ¼ 0, for any t, where L is the sys-

tem size. Equation (3) is simulated with a 4th order Runge-

Kutta solver where the temporal step dt¼ 0.02 and with a fi-

nite difference solver with a spatial step dx¼ 0.4.

For the sake of simplicity, we consider a linear ramp

forcing of the form vðXÞ ¼ jðX � X0Þ ðj� 1Þ, where X0 is

the point when ~vðXÞ ¼ v0kc=l. The phase uðX; TÞ (Figs. 1(a)

and 1(b)) and the phase derivative @xuðX; TÞ (Figs. 1(c) and

1(d)) are shown for different values of j with X0¼ 0. In this

case, only a left pointing drift appears. Successive appearan-

ces of phase instabilities are observed. For small values of j,

we observe the appearance of isolated dislocations at a dis-

tance Xc from X0¼ 0. For larger values of j, formation of

dislocation chains is observed.

For a uniform drift (j¼ 0), the amplitude Eq. (3) has a

family of periodic solution ApðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0 � p2

p
eipðX�X0Þ, par-

ametrized by a continuous parameter p <
ffiffiffiffiffi
l0

p
. This family

describes an homogenous pattern, which goes through a

023133-3 Clerc et al. Chaos 24, 023133 (2014)
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phase instability at p¼ pc, where p2
c � l0=3, corresponding

to the well-known Eckhaus instability threshold.2 To

describe the dynamics in the inhomogeneous media, Eq. (3),

we promote the parameter p to a function of space, which at

dominant order is quadratic function of X. Thus, we propose

the ansatz

ApðZ ¼ X � X0Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0 � pþ j

6
Z2

� �2
s

ei pþj
6
Z2ð ÞZ; (8)

which corresponds to a pattern with increasing modulus and

phase as a function of the spatial coordinate. The Eckhaus

instability is characterized by the local deformation of phase

gradients, which generates phase singularities and, respec-

tively, hole solutions on the envelope modulus. Later, the

pattern modifies locally its wavenumber, diffusing it within

itself and finally materializing a stable pattern state. From

expression (8), using the Eckhaus instability criterium, the

inhomogeneous pattern state becomes unstable at a critical

position

XcðpÞ ¼ sgnðjÞ
ffiffiffiffiffiffi
6

jjj

s ffiffiffiffiffi
l0

3

r
� jpj

" #1=2

: (9)

Notice that the critical distance is a function of the wave-

number of the pattern that is parametrized by p. Therefore,

these phase singularities generated at this position are

advected as a consequence of the drift force, restarting the

process. Hence, the system exhibits the perpetual creation of

spatiotemporal dislocations as a result of the above process.

As in the case of the Eckhaus instability, depending on initial

conditions, it is possible to generate several phase singular-

ities on different locations of the pattern, which diffuse the

stable wavelength. Then, when j�1 is larger than the size of

phase singularities ðj > ffiffiffi
l
p Þ, the system presents the forma-

tion of dislocation chains. If we consider counter propagative

flows at a confluence point X0 ðX0 6¼ 0Þ, a similar behavior

composed by two opposite propagative patterns is observed

in the region of confluence (cf. Fig. 2). For j > 0 ðj < 0Þ,
the defects annihilate (create) successively. For small j, we

observe the annihilation (creation) of defects only in the con-

fluence region. For greater values of j, the pattern starts to

destabilize at a distance Xc from X0, creating new defects at

each side. We like to emphasize that the former dynamical

behavior was equally observed in our numerical simulations

with periodical boundary conditions.

III. OPTICAL SPATIOTEMPORAL DISLOCATION
CHAINS

As an example of the former dynamics in a physical sys-

tem, we have conducted numerical simulations of a one-

dimensional transverse Kerr-type slice with optical feedback

shined by a non-uniform laser beam.15 This system is com-

posed of a nematic liquid crystal sample (Kerr media repre-

sented in Fig. 3(a) by LC) and a mirror, which is illuminated

with a non-uniform beam, which crosses first the liquid

crystal layer, then reflected on the mirror and re-crosses the

liquid crystal layer. Figure 3(a) depicts a schematic sketch of

the transverse Kerr-type slice with optical feedback. The

numerically simulated nonlinear medium is assumed to be a

50 lm thick layer of E7 nematic liquid crystal with homeo-

tropically anchored. The laser beam is chosen as monomode

frequency source, k0¼ 532 nm and unidimensional (1D) fol-

lowing the x axis (see Fig. 3(a)), which can be produced by

cylindrical lenses for instance. The laser field profile is repre-

sented by a stationary linear ramp function, as F(x)¼F0(1 –

x/2L), where jF0j2 is the maximum laser intensity and

L¼ 1.6 mm is the system size. This kind of profile is feasible

experimentally with a Spatial Light Modulator. B(x,t) is the

backward field which crosses the slide, which is reflected by

the mirror M. This field is directly reinjected itself onto the

slide from the back. Notice that this field is depend on space

and time because its phase is modified by the liquid crystal

refractive index when it crosses the sample. R is the mirror

intensity reflectivity, which is positioned at a distance d of

the liquid crystal sample. The modification of the refractive

index dn(x,t) induced by light with respect to the unperturbed

refractive index n0 is a satisfactory order parameter to

describe the dynamics of this system. Thus, we will concern

ourselves with nðx; tÞ ¼ n0 þ dnðx; tÞ, where n(x,t) is the

effective refractive index of the Kerr-type slice and dn� n0.

Hence, dn(x,t) satisfies18,19

s
@dn

@t
¼ �dnþ l2

d

@2dn

@x2
þ jFðxÞj2 þ jBðx; tÞj2; (10)

with s is the relaxation time of the liquid crystal molecules,

and ld is the diffusion length. The explicit form of B(x,t) is

given by18,19

FIG. 3. Spatiotemporal dislocation chains in 1D optical Feedback with linear

transverse pumping. (a) Schematic sketch of the Kerr-type slice with optical

feedback. M is the mirror, LC is the liquid crystal, and F and B are the forward

and the backward fields. (b) Drifting pattern with long dislocation chains. (c)

Local phase gradient. F0¼ 1.1, d¼ 5 mm, k0¼ 532 nm, v l ¼ 1, ld¼ 10lm,

and s¼ 2.23 s. F xð Þ ¼ F0 1� x
2L

� �
, with L¼ 512. Iðx; tÞ ¼ jBðx; tÞj2.
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Bðx; tÞ ¼
ffiffiffi
R
p

e
idk0
2p @xxðeivldnðx;tÞF xð ÞÞ;

where k0 is the laser wavelength, v is the coefficient of the

Kerr nonlinearity, and l is the liquid crystal sample thickness.

We assume that free space propagation length is much bigger

that the liquid crystal sample thickness, d 	 l, to neglect the

diffraction in the nonlinear medium. When F0 exceeds a crit-

ical value F0c � ðk2
c þ 1Þ=2Rv sinðk2

c dk0=2pÞ, the refractive

index exhibits a spatial modulation instability with wave-

number kc ¼ p=ðdk0Þ.19 Based on the amplitude equation

method, close to the spatial instability, we can introduce

the ansatz nðx; tÞ ¼ Aeikcx=
ffiffiffi
q
p þ h:o:t, where q ¼ RF0;c

v2½3vsinðrk2
cÞ�vsinð3rk2

cÞþ2a1vðcosðrk2
cÞ�cosð3rk2

cÞÞ� in

Eq. (10), and we get at dominant order the amplitude Eq. (3)

with

l0 ¼
2RðF0 � F0;cÞvsinðrk2

cÞ
F0;c

;

~vðxÞ ¼ 2RF0;cvkcsinðrk2
cÞ

2L
x:

(11)

Therefore, we expect that this system exhibits spatiotemporal

dislocation chains. To verify the above predictions, we con-

ducted numerical simulations of model (10) with a variable

step of RungeKutta order 8 solver (dop853)20 and with peri-

odical boundary conditions. We perform the spatial deriva-

tives using the Fourier space (FFTW3 Library) with a spatial

step dx¼ 0.27 ld. Figure 3 displays a numerical simulation of

Eq. (10) considering the linear forward propagation profile

F(x). Such profile generates a non-uniform drift in one direc-

tion, as we can see in Fig. 3(b) where the intensity has been

displayed as a function of time. Close to the left border, the

formation of sequences of dislocation chains can be

observed. As seen in Fig. 3(c), these sequences correspond

to phase singularities. Thus, the optical feedback system

verifies the appearance of spatiotemporal dislocation chains

when this is subjected to an inhomogeneous drifting force as

predicted by amplitude Eq. (3).

IV. GRANULAR DISLOCATION CHAINS

The phenomenon theoretically explained above was also

observed experimentally on a simple fluidized granular sys-

tem, which presents drifting patterns. The experimental setup

is depicted in Fig. 4(a). A container (60� 40� 7 mm3) made

out of two 5 mm thick plexiglas walls with a aluminum

frame between them holds in the space between the walls

4.0 g of monodisperse brass spheres of diameter D¼ 150 lm,

creating a granular layer 1.7 mm in depth. In units of grain

diameters, the granular layer is approximately 400 D wide,

47 D in thickness, and 12 D in depth. The cell is mounted on

an electromagnetic vibration exciter, driven by a frequency

synthesizer (FS), via a power amplifier (Amp), providing a

vertical sinusoidal acceleration (horizontal acceleration less

than 1% of the vertical one). The sinusoidal gravity modula-

tion gef f ðtÞ ¼ aexcosð2pfextÞ is measured by a piezoelectric

accelerometer (Acc) and a charge amplifier, where aex is pro-

portional to the applied tension with a 1.0 Vs2/m sensitivity

and fex is the excitation frequency. A biaxial tilt sensor

driven by a 12 V power supply is positioned solidary on top

of the cell in order to measure the inclination of the cell with

respect to the axis of gravity in the x – y plane with a sensi-

tivity of 100 mV/8. This inclination is represented by the

angle / (cf. Fig. 4). In this experimental configuration, / is

monitored by measuring the x-axis voltage difference. The

variations of the off-plane inclination angle on the x-axis are

also monitored to ensure that only in-plane movements of

the cell are allowed. The control parameters are the forcing

frequency fex, the acceleration amplitude aex, and the

in-plane inclination angle /. Images were acquired at 20 fps

over 100 s using a CCD camera over a 120� 840 px window

(6.5� 10�3 cm/px sensitivity in the horizontal direction and

6.3� 10�3 cm/px in the vertical direction). Using a simple

tracking scheme,21 the granular pattern interface y(x,t) is

computed (as shown in Fig. 4(b)), where x corresponds to

the spatial coordinate along the x-axis and t to the temporal

one. Using this data, the local envelope, phase gradient, and

velocity are obtained. In this work, we focused solely on the

characterization of the spatiotemporal dynamics of the sub-

harmonic standing waves formed on top of the quasi-one-di-

mensional fluidized shallow granular bed appearing through

a supercritical parametric instability22,23 as a certain acceler-

ation threshold of the container is surpassed. To do this,

the excitation parameters are fixed at fex¼ 40 Hz, and

aex¼ 58 m/s2, which is �20% larger than the critical acceler-

ation for subharmonic patterns at fex.

Dislocation chains appear locally in the spatiotemporal

diagram of the pattern evolution,24 as it is depicted in Fig. 5.

These dislocations, appearing isolated or in groups, can be

clearly pinpointed as we compute the phase gradient of pat-

tern @xu (cf. Fig. 5(b)). In our experimental setup, due to the

horizontal inclination angle of the cell9 and the intrinsic

heaping of the system arising from air-grain interactions,25

inhomogeneous drift force appears (cf. Fig. 5), which can be

measured by the local time-averaged phase speed of the pat-

tern (cf. Fig. 5(c)). The local averaged phase speed is

obtained by two independent methods: the Hilbert transform

FIG. 4. Granular drifting patterns. (a) Schematic representation of the exper-

imental setup. (b) Typical snapshot of the granular pattern. The continuous

white line corresponds to the numerically calculated granular interface.
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algorithm26 and the rigid solid method.27 For very small in-

clination angle /, the dominant mechanism for the genera-

tion of drift forces are inhomogeneities created by the air-

grain interactions such as heaping (speed jumps, see Fig.

5(d)). For / > 0:5
, contrarily, the horizontal inclination

leads the dynamics (counter flows, see Fig. 5(g)). For inter-

mediate angles, both mechanisms contribute to generate

inhomogeneities in the speed profile. It must be stressed that

without inhomogeneous drift force, no defects are observed

in the stationary pattern. Figure 5 shows, respectively, the

stroboscopic spatiotemporal diagram of y(x,t) acquired at

fex/2, / ¼ 0:02
 (top) and / ¼ 0:15
 (bottom). We observe

that for the counter-propagative flow (cf. bottom panel

Fig. 5) or speed jumps (cf. top panel Fig. 5), the spatiotempo-

ral diagrams of fluidized shallow granular bed show the

emergence of dislocations. These dislocations, which are sin-

gularities in the local phase of the pattern, appear in the

region where the speed of the pattern presents substantial

spatial variations (see Fig. 5(g)). Hence, in these regions, the

drifting pattern manifests a phase instability that leads to the

emergence of phase singularities. As we have mentioned,

analogous spatiotemporal diagrams have been reported in

particle-laden flows inside a partially fluid filled, horizontal,

rotating cylinder,13 a free electron laser,14 and a one-

dimensional transverse Kerr-type slice subjected to optical

feedback.15 Therefore, spatiotemporal dislocation chains are

a robust phenomenon displayed by pattern forming systems

in the presence of inhomogeneous forcing.

To complete our analysis, we perform a numerical and

experimental verification of the theoretical prediction for Xc,

Formula (9). As seen in Fig. 6 (left panel), numerical simula-

tions of the amplitude Eq. (3) exhibit a power law of the

form Xc ¼ að1=jÞb with a¼ 3.25 y b¼ 0.43 6 0.05 close to

the expected critical exponent b¼ 0.5 of expression (9). The

experimental verification in drifting granular patterns shows

a deviation of the predicted behavior, exhibiting a power law

Xc ¼ að1=jÞb with a¼ 23.29 y b¼ 0.28 6 0.1 [see Fig. 6

(right panel)]. Such deviation can be due to the fact that the

inhomogeneous drift does not follow a linear profile in space

[Figs. 5(d) and 5(g)]. Notwithstanding, we can approximate

in some limit this profile to a linear ramp close to the conflu-

ence region X0¼ 0. An additional effect that can modify this

scale-invariant behavior is defect interaction that is not

included in the above approach.

V. CONCLUSION

We have shown that the complex spatiotemporal dy-

namics exhibited by inhomogeneous drifting patterns can be

figured out as a perpetual phase singularity production result-

ing from phase instabilities (coming from a local Eckhaus

instability) and pattern propagation induced by an inhomoge-

neous drift force. Thus, inhomogeneities in spatial coupling

are the origin of this phenomenon. Hence, this rich and com-

plex spatiotemporal dynamics can be understood as a combi-

nation of simple phenomena. The experimental findings of

the spatiotemporal dynamics of dislocation chains are in

quite good agreement with our theoretical general descrip-

tion valid for a broad class of physical systems. The study of

the effect of fluctuations (noise) on the spatiotemporal dy-

namics of phase singularities and their interactions is a work

in progress.

FIG. 5. Experimental dislocation chains. (a) Drifting pattern with long dislocation chains (dashed ovals) for / ¼ 0:07
. (b) Drifting pattern for / ¼ 0:02
. (c)

Local phase gradient. Dashed squares represent isolated defects and dashed circles dislocation chains. (d) Local velocity averaged over the entire image

sequence. The continuous line corresponds to the velocity computed using a rigid solid approximation (see Ref. 27) and the dashed line using a Hilbert trans-

form. (e) Drifting pattern for / ¼ 0:15
. (f) Local phase gradient. Dashed squares represent isolated defects and dashed circles dislocation chains. (g) Local ve-

locity averaged over the entire image sequence. The continuous line corresponds to the velocity computed using a rigid solid approximation (see Ref. 27) and

the dashed line using a Hilbert transform.

FIG. 6. Plot of Xc vs j�1 obtained by numerical simulations (left) and direct

experimental measurements (right). Continuous lines are numerical fits.
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