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Abstract – In the present work we study the pattern formation in a magnetic wire forced by
a transversal uniform and oscillatory magnetic field. This system is described in the continuous
framework by the Landau-Lifshitz-Gilbert equation. We find numerically that the spatio-temporal
magnetization field exhibits a family of breather soliton states. We characterize different types of
breathers as a function of the amplitude and frequency of the driven field.
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Introduction. – Localized states have been observed
in different fields, such as, chiral bubbles in liquid crys-
tals, current filaments in gas discharge, spots in chemical
reactions, localized states in fluid surface waves, oscillons
in granular media, isolated states in thermal convection,
solitary waves, just to mention a few [1,2]. In the frame-
work of magnetism the classical localized solution is the
soliton. The state of the art for conservative and for dis-
sipative systems can be found in refs. [3–5]. Here, we deal
with dissipative systems. Such systems can have spatially
localized, stable, dynamic excitations [4]. Such a dynamic
structure, appearing in a restricted spatial region and con-
necting asymptotically time-independent states in the rest
of the space, are called dissipative solitons [1]. Such dissi-
pative solitons in magnetic systems have been found, ex-
perimentally, [6,7]. In addition, magnetic solitonic modes
in nano-oscillators have been observed [8–10]. Recently,
dissipative magnetic droplet solitons were experimentally
found and studied [11,12], after they were theoretically
predicted in ref. [13]. In addition to ordinary single-soliton
solutions, there exist other localized states [14–21]. In par-
ticular, there are complex time-dependent soliton states,
called breather solitons [22–25]. The breathers are solitons
such that their amplitude and width can vary on space
and/or on time. This internal motion can be periodic,
quasi-periodic or chaotic. Moreover, they were experi-
mentally found in graphene nanoribbons [26], in chemical
reactions [27], or in polymers [28]. Also, these states can

be traveling or motionless in the space. Here we analyze
the motionless dissipative breather solutions.

The aim of the present work is to investigate breather
soliton precession states of an easy-plane ferromagnetic
wire subject to a combined, constant and oscillatory, ap-
plied magnetic field. We perform intensive numerical sim-
ulations to characterize the region of existence of these
localized solutions. In particular we focus on the depen-
dence with the amplitude and the frequency of the ex-
ternal time-dependent magnetic field. We found that the
number of oscillatory modes changes in a complex manner
depending on these parameters. In fact, the oscillations
can be periodic or quasi-periodic. Also, we found that the
width and the amplitude of the soliton can be changed as
a function of the parameters.

Theoretical model. – The standard approaches to
study the dynamics of the macroscopic magnetization re-
versal are the Landau-Lifshitz equation, or the Landau-
Lifshitz-Gilbert (LLG) equation [29]. These models have
been used in both discrete [30–32] and continuous mag-
netic systems [16–20]. Let us consider a magnetic wire of
total length L in the continuous framework, such that the
normalized magnetization field is given by m = m(r, t),
where r and t stand for the space coordinates and time, re-
spectively. We focus on a ferromagnetic anisotropic long
wire, so we consider the dynamics of the magnetization
along the wire axis, represented by ẑ = (0, 0, 1). Hence,
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the dynamical evolution of this wire can be modeled by
the LLG equation and it can be written as

∂m

∂t
= −m× Γ+ αm× ∂m

∂t
. (1)

The effective torque field, Γ, acting on the magnetiza-
tion is given by Γ = ∇2

m−β(m·ẑ)ẑ+h, where the Lapla-
cian term accounts for the coupling of the magnetization
with the first neighbors, β ≥ 0 measures the anisotropy
along the ẑ-axis, and h is the external magnetic field. In
this case the LLG equation is invariant under the rescal-
ing α = η α′, β = σ β′, m = m

′/η, t = η t′/σ, z = z′/
√
σ,

h = σ h
′/η, for η > 0 and σ > 0.

Let us take into account an external magnetic field
that comprises both a constant and an oscillatory part,
h = (hc + h0 cos(Ωt))x̂, where the coefficients {hc, h0,Ω}
are constants. Here α denotes the dimensionless phe-
nomenological damping coefficient which is a material
property. Throughout this manuscript we use dimen-
sionless quantities having scaled the magnetization (and
magnetic fields) by the saturation magnetization MS; the
time t by 1/γ0MS , where γ0 = 2.2 × 105A−1ms−1 is
the electron gyromagnetic ratio [29], and the space co-
ordinates r by the exchange length ℓex =

√

2A/μ0M2
S ,

where A is the exchange stiffness constant. In the long-
wire approximation, the dimensionless anisotropy param-
eter becomes β = −(1/2 + 2Ku/μ0M

2
S), where Ku is the

uniaxial anisotropy constant and the 1/2 term corresponds
to the dipole field contribution [33]. Taking, e.g., material
values for CsNiF3 [34–36]: Ms = 2.2 × 105A/m, Ku =
−1.2 × 106 J/m3, A = 0.8 pJ/m, we obtain ℓex = 5nm,
τ = 20 ps, and that β = 39.
In the macro-spin approximation, when spatial coupling

is ignored, the system can exhibit uniform states, peri-
odic solutions, quasi-periodic solutions, or chaotic states
depending on the parameters [30–32]. In this approxima-
tion a simple homogeneous state of model (1) is m = x̂,
which represents a uniform magnetization parallel to the
magnetic forcing. Small perturbations of this homoge-
neous state are characterized by damped dispersive os-
cillations, with frequencies close to Ω0 =

√

hc(hc + β).
When the wire is forced at about twice this natural fre-
quency, Ω ≡ 2(Ω0 + ν), ν being the detuning parameter,
this uniform state becomes unstable by means of an oscil-
latory instability. This subharmonic bifurcation is char-
acterized by a (complex) Floquet multiplier that crosses
the unit cycle at −1. This bifurcation gives rise to a
uniform attractive periodic solution, which corresponds
to a parametric resonance [20]. More precisely, the bi-
furcation occurs at h2

0,c = (4Ω0)
2[ν2 + (αq/2)2]/β2 with

q = β + 2hc; this relationship defines the first Arnold
tongue.
The inclusion of spatial couplings, which in our case

is represented by the Laplacian term, should increase the
complexity of the dynamical behavior. For example, one
expects the formation of standard dissipative soliton so-
lutions [4,5], two-soliton solutions [16], domain walls, and

(a)

(b)

(c)

Fig. 1: (Color online) y-component of the magnetization,
my(t, z), as a function of the space and time for different values
of ν and h0 at α = 0.015, hc = 3, β = 20. In panels (a)–(c) the
values of the pair (h0, ν) are (0.476,−0.302), (0.578,−0.390),
(0.732,−0.495), respectively.

localized states near the parametric resonance [17–21].
Apart from the standard soliton solution, we numerically
found other types of localized structures by directly
solving eq. (1). In particular, the system exhibits a stable
breather soliton solutions, where the localized dynamic
structure exhibits an internal spatio-temporal modulation.
Figure 1 shows the second component of the magnetiza-
tion field, my (z, t), as a function of space and time for
the standard soliton states (panel (a)) and two breather
soliton states with different types of internal modulations
(panels (b) and (c)). The fast Fourier transforms (FFT)
of the central points of the breather solitons of panels
(b) and (c) are shown in fig. 2, revealing the temporal

40001-p2



Breather soliton solutions

10
-4

10
-3

10
-2

10
-1

10
0

 0  2  4  6  8  10

|S
(ϖ

)|
/|S

(ϖ
)|

m
ax

ϖ

10
-4

10
-3

10
-2

10
-1

10
0

 0  2  4  6  8  10

|S
( ϖ

)|
/|

S
( ϖ

)|
m

ax

ϖ

10
-4

10
-3

10
-2

10
-1

10
0

 0  2  4  6  8  10

|S
(ϖ

)|
/|S

(ϖ
)|

m
ax

ϖ

10
-4

10
-3

10
-2

10
-1

10
0

 0  2  4  6  8  10

|S
(ϖ

)|
/|

S
(ϖ

)|
m

ax

ϖ

Fig. 2: (Color online) Fourier power spectrum of the central
point of my(t, z) for the breather-soliton–like solutions appear-
ing in panels (b) and (c) of fig. 1. The inset in both panels is
the corresponding Fourier power spectrum of the simple soliton
solution given in panel (a) of fig. 1.

complexity. In fact, we can observe that, instead of the
(four) single peaks of the standard soliton, these new
states show (four) peaked distributions of multiple peaks.
Hence, a breather soliton solution is exhibited when a
splitting in the four original peaks is observed. Since the
fourth peak is small with respect to the others, we will
only analyze the three first ones in the following. The
complete details of the simulations and the corresponding
characterization are given in the next section.

Simulations. – Firstly, let us describe the numerical
method. We have numerically solved eq. (1) using the
variable step fifth-order Runge-Kutta (RK) scheme with
a maximum tolerance of 10−5%, over a linear lattice of size
5×102 a.u. with a spatial discretization step set to 0.4. We
use a double-precision RK method provided in ref. [37].
In order to test our numerical scheme we have monitored
step by step the dynamical constraint, |m(z, t)|2 = 1,
with a precision of 10−6, which is sufficiently small for
the purpose of the present analysis. For comparison we
have also studied smaller and larger lattice sizes and dis-
cretization steps to guarantee that there are no finite-size
effects. We have integrated the system for the time inter-
val tF = 5× 103, which is almost four times the transient
time and seems to be long enough. The fixed parameters
in the simulations are {α, β, hc} = {0.015, 20, 3}, which
applies to CsNiF3 taking σ = 0.51 and η ≤ 1.

Dynamical indicators. For the temporal analysis of
each solution we first take the FFT of the central point
(at z0 = L/2) of the y-component of the magnetization,
FFT (my(t, z0)), which gives us a complex discrete signal,
S(̟), in frequency space ̟ = (̟1, . . . , ̟n), producing
a set of pairs {̟k, S(̟k)}. For this signal we calcu-
late its power spectrum |S(̟)|2 and count the numbers
of peaks, N̟, corresponding to a given frequency, which
is a measure for the number of oscillation modes. We
have defined a peak when its height relative to the back-
ground is greater than 10−7. We start the FFT calcula-
tion at t0 = 4.8 × 103 within a rectangular time window
of ∆t = 200, and with 216 sample points.

In addition, we calculate the probability to obtain a
state with frequency ̟q,

Pq = |S(̟q)|2
⎡

⎣

N̟
∑

j=1

|S(̟j)|2
⎤

⎦

−1

, (2)

which gives us the information about the predominant fre-
quencies in the modulation.
Moreover, in order to obtain a global characterization,

we have calculated the magnetic energy of the system [29]

Q =
1

L

∫ L

0

dz

[

1

2
(∂zm)2 − β

2
(1−m2

z)− h ·m
]

, (3)

which is frequently used as an indicator to detect non-
regular dynamics in optics, localized patterns in fluids,
and other physical systems [2]. We remark that the time
dependence of Q reflects the temporal behavior of the pat-
terns, i.e. in a stationary regime, Q is constant, while in
a (quasi-)periodic one, Q is a (quasi-)periodic function of
time. Consequently, if the system is in a chaotic regime,
the time series of Q will also be chaotic. Taking the maxi-
mum value ofQ within a fixed time interval, one can gener-
ate a bifurcation diagram as a function of the parameters.
To complement the information (in particular to dis-

criminate between quasi-periodic and chaotic dynamics)
and to provide a more quantitative aspect of the dy-
namics, we calculate the largest Lyapunov exponent [38],
defined by

λmax = lim
t→∞

1

t
ln

‖δm(t, z)‖
‖δm(t0, z)‖

, (4)

where ‖ • ‖ ≡ (
∫ L

0
dz| • |2)1/2 and δm satisfies the differ-

ential equation
∂δm

∂t
= J̄ · δm, (5)

with J̄ the Jacobian matrix of eq. (1) with respect to m.
This number quantifies how fast the distance, δm, be-
tween two initially close trajectories (one of them called
the fiducial trajectory) of the vector field m either van-
ishes (λmax < 0) or diverges exponentially (λmax > 0).
The latter is the hallmark of chaotic behavior. We calcu-
late λmax from t0 = 4.8 × 103 up to tmax = 14.4 × 103.
In order to overcome exponential divergences we rescale
‖δm(t, z)‖ by the initial norm ‖δm(t0, z)‖ and take as
time steps ∆t = 1.5625.
For the spatial analysis we compute the space-time av-

erage of the width of the solitons, ∆a, which we define as

∆2
a =

22

Lζ

∫ L

0

dz

(

z −
(

1

Lζ

∫ L

0

dz′z′Λa(z
′)

))2

Λa(z),

(6)
where

ζ =
1

L

∫ L

0

dz Λa(z), (7)
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Fig. 3: (Color online) The existence range of solitons in the h0

(field amplitude), and ν (detuning parameter) phase diagram
of eq. (1) and eq. (8) (inset) for α = 0.015, hc = 3, and β =
20. The (green) squares denote single-soliton solutions, while
filled (blue) circles represent the breather soliton states. The
dashed line is the first Arnold tongue, while the (continuous)
parabola, h0(νh0

) = 1.665 ν2
h0

+ 0.324, is used in the following
as a reference curve to show the different behavior.

and Λj(z) =
√

〈(δjx −mj(z, t))2〉, with j ∈ {x, y, z}; δab
being the Kronecker-Delta distribution and 〈•〉 denoting
the time average. This particular choice for the weight
function is adopted because we consider perturbations to
the homogeneous state m = x̂.

Numerical results. The existence region of dissipa-
tive breather solitons is shown in fig. 3. This phase di-
agram contains the spatio-temporal evolution of 5.4× 104

points in the ν-h0 parameter space. The standard solitons
and breathers are denoted by squares (green) and circles
(blue), respectively. We observe that the existence range
of standard solitons is larger than that of the breathers,
and the latter occur for more negative detuning values.
In order to build this phase diagram, we start with the
same initial condition and determine the final state for
various values of ν and h0. For this initial condition
we always take a soliton-shaped profile with the bump
located in the center of the wire, explicitly given by
my(z, 0) = my0 = sech(z − z0)/2, mz(z, 0) = f my0 and
mx(z, 0) = [1 − (1 + f2)m2

y0]
1/2, where f = 0.95 and

z0 = 102. Depending on the parameters, this perturba-
tion either decays (no soliton), evolves as a single soli-
ton, or forms an extended pattern. The existence range
of these solutions is robust against starting with different
finite amplitude initial conditions. Nevertheless, starting
with a gas of solitons as initial condition, the system could
additionally exhibit bound soliton states [16].

Figure 3 also shows the parabola h0(νh0
) = 1.665 ν2h0

+
0.324, along which we discuss the sequence of different

Fig. 4: (Color online) Final states of the y-component of the
magnetization, my(z, t = tF ), (in a.u.) along the continuous
reference curve in fig. 3. From bottom to top there are stan-
dard solitons, breather solitons, extended patterns, and homo-
geneous solutions.
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Fig. 5: (Color online) Number of oscillation modes, N̟,
(top left) and the probabilities associated with the first three
breather soliton frequencies (in a.u.). Notice the different scales
used for P1,2,3.

dynamical states in fig. 4. There, the final states of the
y-component of the magnetization, my(z, t = tF ), along
the curve h0(νh0

), is shown in arbitrary units (accord-
ing to the attached color code). From bottom to top we
observe standard solitons, breather solitons, extended pat-
terns, and homogeneous solutions. While standard soli-
tons have a well-defined spatial width, breather solitons
radiate waves that propagate laterally, where they fade
away. Following the same curve, there is a critical value of
the detuning parameter, for which the dynamics changes
abruptly to a regime with patterns that are not localized,
but fill the entire wire. Above that regime there is a sharp
transition to a soliton-free area in phase space.
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solitons.

Figure 5 shows, in the ν-h0 phase space, the number of
FFT modes, N̟, (upper left panel) and the corresponding
three probabilities, {P1, P2, P3} associated with the first
three soliton frequencies. The number of modes has a
complicated and non-monotonous dependence on h0 and
ν, although there is an overall tendency to find the high-
est (lowest) numbers of modes for the most (least) neg-
ative values of ν. Similarly, all probabilities, {Pj}, show
a structured behavior (rather than being monotonous) in
this phase-space projection. For example, we can distin-
guish a fold-like pattern for P1, globular-type patterns for
P2, and a kind of curved stripes for P3. Generally, the
probabilities Pj decay rapidly with increasing number j,
P1 ≫ P2 ≫ P3.

Let us analyze in more detail the Fourier spec-
tra in order to clarify, whether breather solitons are
(multi-)periodic or quasi-periodic solitons. If the localized
states are periodic, there exists a gap ∆̟min such that
all distances between the various peaks in a given spec-
trum, ∆̟, are an integer (K) multiple of the minimal
one, ∆̟ = K∆̟min. Hence, for (n + 1)-adjacent peaks
with ∆̟i+n = ̟i+n−̟i there is n−1∆̟i+n/∆̟i = 1
for periodic spectra, and �= 1 for quasi-periodic ones. For
each spectrum from the sample of about 1.9 × 104 spec-
tra of breather solitons we calculate the r.m.s. devia-
tion from the unity of the distance ratio 2−1∆̟i+2/∆̟i

(fig. 6 (left)), and build the corresponding histogram (fig. 6
(right)). These results, with a few exceptions (∼0.1%),
show an appreciable departure from unity, demonstrated
in the histogram by the broad peak at a finite value, and
therefore prove quasi-periodicity for breather solitons.

Figure 7 shows the bifurcation diagram in terms of Q
and the largest Lyapunov exponent, λmax, along the curve
h0(νh0

). The magnetic energy Q shows two branches
corresponding to the two most important oscillation fre-
quencies. There is a dramatic change in the dynamics
(enhanced in the inset) from standard soliton to breather
soliton states when the value of h0(νh0

) is increased
(beyond ca. 0.563). Increasing the value of h0(νh0

) fur-
ther (beyond ca. 0.744) the system suffers another abrupt
instability to the extended pattern state. This part of
the bifurcation diagram is of the typical chaotic type. To
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Fig. 7: (Color online) Bifurcation diagram using the maxima of
the magnetic energy, Q, and the maximum Lyapunov exponent
along the continuous parabola h0(νh0

) shown in fig. 3.
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Fig. 8: (Color online) Average width and average maximum
amplitude of the components of m along the continuous refer-
ence curve in fig. 3.

complement this analysis the largest Lyapunov exponent
is shown in the right frame of fig. 7. Since all the values of
λmax are clearly positive in the extended pattern states,
we conclude that these states are chaotic. In the range of
the ordinary soliton solutions, λmax is negative indicating
non-chaotic behavior. The transition from the standard to
the breather solitons is clearly visible in the inset and λmax

jumps from a slightly negative value to a slightly positive
one. In principle, this signals chaos, but the value of λmax

is so small that it might be compatible with zero within
the numerical accuracy. In that case it fits to the quasi-
periodic interpretation of the bias from unity evidenced in
the distribution of fig. 6. Certainly, the spatio-temporal
behavior of the breathers is rather complex.

In addition, we want to compare the spatial “form” of
ordinary and breather solitons. Figure 8 shows the av-
erage spatial width and the average maximum amplitude
of the three components of m along the curve h0(νh0

).
The abrupt transition from standard to breather solitons
is obvious and manifest by kink-like features. Neverthe-
less, both types of solitons become taller and narrower
towards the transition zone.

Finally, let us comment that a simpler description of
these soliton states can be given by an amplitude equa-
tion of the envelope of the z-component of m (mz ∝
Re(A exp(i(Ω0+ ν)t)+ . . .), where the complex amplitude
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A satisfies

∂tA = −(iν + μ)A− iA|A|2 + γĀ− i∂2
ZA, (8)

with μ = αq/2, γ = βh0/4Ω0 and Z =
√

2Ω0/q z.
The last equation is known as the parametrically driven,

damped nonlinear Schrödinger equation (PDDNLS) [4,5].
We solve numerically eq. (8) and found that the standard
and the breather solitons have a phase diagram which is
qualitatively similar to the LLG diagram as is shown in
the inset of fig. 3. In general, amplitude equations give
a qualitatively correct description, although often quanti-
tative agreement is not obtained [5]. More details about
breathers in the PDDNLS can be found in refs. [23–25].

Final remarks. – In summary, we have determined
the parameter region where dissipative breather soliton
precession states occur in an anisotropic magnetic wire ex-
posed simultaneously to a constant and a time-dependent
magnetic field. We found that depending on the amplitude
and the frequency of the driven field the numbers of oscil-
latory modes change from several modes up to hundreds
of modes, and the probabilities to find a specific mode of
the Fourier spectra have intricate patterns. Bifurcation
diagrams using the maxima of the magnetic energy and
the calculation of the largest Lyapunov exponent have al-
lowed us to conclude that breather solitons in the sys-
tem under study are not chaotic states. Furthermore,
using the peaks in the Fourier spectra, we numerically
prove that their frequencies are incommensurable, indi-
cating that breather solitons are quasi-periodic localized
patterns. Finally, we remark that we have also obtained
dissipative breather solitons in the case of negative β, ap-
plicable to, e.g., Ni80Fe20 [9,10]. The complete character-
ization of those localized structures is still in progress.
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