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Spatially modulated kinks in shallow granular layers
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Departamento de Fı́sica, Facultad de Ciencias Fı́sicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago, Chile
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We report on the experimental observation of spatially modulated kinks in a shallow one-dimensional fluidized
granular layer subjected to a periodic air flow. We show the appearance of these solutions as the layer undergoes a
parametric instability. Due to the inherent fluctuations of the granular layer, the kink profile exhibits an effective
wavelength, a precursor, which modulates spatially the homogeneous states and drastically modifies the kink
dynamics. We characterize the average and fluctuating properties of this solution. Finally, we show that the
temporal evolution of these kinks is dominated by a hopping dynamics, related directly to the underlying spatial
structure.
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Macroscopic systems under the influence of injection and
dissipation of quantities such as energy and momentum usually
exhibit coexistence of different states, which is termed mul-
tistability [1–3]. Heterogeneous initial conditions—usually
caused by the inherent fluctuations—generate spatial domains
which are separated by their respective interfaces. These inter-
faces are known as fronts [2]. The evolution of these solutions
can be regarded as a particle-type one, i.e., they can be
characterized by a set of continuous parameters such as
the position, width, charge, and so forth. In the particular
case where fronts separate symmetric states, these front
solutions are termed kinks. Usually, these types of structures
have been studied in regimes where the symmetric states are
homogeneous ones [2]. Kinks have been a central element
in classical and quantum field theory to understand the
dynamics and evolution of several physical systems [4]. In
parametrically driven systems this type of structure appears
through instabilities which lead to the emergence of symmetric
states which are out of phase by half the period of the
forcing [5]. A typical example of such systems are vertically
vibrofluidized two-dimensional granular layers where kink so-
lutions have naturally been observed (see references in Ref. [6]
therein). Although several studies have been performed in
two-dimensional fluidized granular layers, only a handful of
studies on one-dimensional fluidized granular layers where
kinks connecting homogeneous states have been reported
experimentally [7,8] and numerically [9,10]. Furthermore,
to our knowledge, there is no observation of kink solutions
connecting spatially modulated states [11], which can strongly
influence their stability, bifurcation diagrams, and dynamical
properties.

The aim of this Rapid Communication is to report the
observation of kink solutions connecting spatially modulated
states. The system under study is a one-dimensional shallow
granular layer fluidized by periodic air flow (cf. Fig. 1). Air
flows have already been used to study pattern formation in flu-
idized granular layers in one- [12] and two- [13] dimensional
systems. Here, we show experimentally the emergence of kink
solutions as the layer undergoes a parametric instability, and
characterize its average and fluctuating properties. Its profile
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displays spatial oscillations on the homogeneous state induced
by intrinsic fluctuations of the system. These oscillations
dictate the temporal evolution of the kink, which is a hopping
one, much similar to a Brownian particle in a periodic potential
[14,15].

Experimental setup. The experimental setup under study
is displayed in Fig. 1. A cell (width L = 200 mm, height
H = 200 mm, and depth D = 3.5 mm) made out of two
large glass walls with a horizontally placed thick-band-like
sponge (6 mm thick, 200 mm wide, and 15 mm tall) acts
as a porous floor where approximately 25 000 monodisperse
bronze spheres (diameter a = 350 μm) are deposited. In grain
diameter units, the granular layer is 570a wide, 10a deep, and
5a tall. D is not changed in these experiments in order to
treat the interface dynamics as a quasi-one-dimensional one.
Thin rods of plexiglass were introduced vertically between the
glass walls effectively shortening L to study the dynamics of
a reduced granular layer, which we will explain below.

The excitation system of the granular layer is similar to the
one described in [12], where a periodic air flow is generated
by an air compressor (Indura Huracán 1520) and regulated by
an electromechanical proportional valve (Teknocraft 203319),
a precision control regulator (Controlair 100), and an air lung.
The valve aperture is set by a variable voltage signal controlled
by the first output of a two-channel function generator (RIGOL
DG1022) through a power amplifier (NF model HFA4011).
A symmetrical triangular signal with frequency fo and a
nonzero offset is used to generate through the air flow a
time-modulated controllable pressure signal, as shown in the
inset of Fig. 1(a). Pressure oscillations are measured 50 cm
before the flow enters the cell with a dynamic pressure sensor
(PCB 106B) and a signal conditioner (PCB 480C02). We have
checked experimentally the linearity between the peak voltage
delivered by the function generator and the peak pressure
fluctuations Po at the forcing frequency fo. Hence, the control
parameters are fo and Po. We have also checked that the extra
pressure drop due to the motion and fluidization of the granular
layer is negligible with respect to the one measured on the
unloaded cell.

Images of the granular bed motion are acquired with a
CCD camera over a 100 s time window in a 1080 × 200 px
spatial window (0.19 mm/px sensitivity in the horizontal
direction and 0.18 mm/px in the vertical direction). For each
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FIG. 1. (Color online) (a) Experimental setup. The inset depicts a
typical temporal trace of the pressure fluctuations. (b) Typical image
of the excited granular layer. The dashed white line corresponds to
the numerically calculated granular interface y(x). (c) Granular
surface kink on shallow granular layers.

experimental configuration, two image sequences are taken.
The first one, acquired at high frame rate (100 fps), is used to
study the typical oscillation frequencies of the granular layer.
The second one, set at the subharmonic frequency fo/2 using
the second output of the function generator as a trigger, is used

to ensure a stroboscopic view of the oscillating layer. The
granular interface y(x,t) is tracked for every point in space x

at each time t using a simple threshold intensity algorithm (see
Ref. [12] for more information), as shown in Fig. 1. To do this,
white light is sent through a diffusing screen from behind the
granular layer as images are taken from the front, enhancing
contrast and thus surface tracking algorithms. Figure 1 shows
a snapshot of the granular layer and a kink solution using the
above mentioned tracking algorithm.

Experimental results. We have conducted experiments in
the parameter space of peak pressures Po ranging from 100 Pa
to 10 kPa and excitation frequencies fo ranging from 5 to
20 Hz. We have concentrated our studies in the frequency
range fo ∈ [12.5,14.5] Hz, as the phenomenology is quite
reproducible and less input pressure is needed. We have
restricted our experimental cell, shortening L to 5 cm, in order
to study the dynamics of the homogeneous state, preventing
the appearance of kinks which form for larger widths.

As we increase Po for a fixed excitation frequency fo,
the granular bed displays small surface fluctuations (less
than a diameter) of the upper layer of grains. This motion
is enhanced as Po increases, lifting the complete layer over
a period of the pressure fluctuations. For a critical value
of Po = P c

o , the flat oscillating layer becomes unstable to
small perturbations through a parametric instability, displaying
subharmonic oscillations at fo/2. Therefore, the granular layer
presents an effective parametric resonance as a consequence
of the forcing [16]: The periodic air flow is responsible
for inducing the oscillatory behavior of the layer and its
respective parametric resonance. This subharmonic response
can be observed by measuring the space averaged motion
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FIG. 2. (Color online) (a) Parametric instability curve. The continuous line shows the experimentally computed phase line P c
o as a function

of fo. For Po < P c
o only harmonic oscillations of the flat layer are present in the reduced cell (L = 5 cm). For Po > P c

o subharmonic
oscillations are dominant, arising from a parametric instability. Lower inset: power spectral density (PSD) of the flat layer harmonic oscillations
at fo = 14 Hz for Po = 1520 ± 20 Pa. Upper inset: PSD of the dominant subharmonic oscillations of the flat layer at fo/2 = 7 Hz for
Po = 3840 ± 20 Pa. (b) Bifurcation diagram for the subharmonic amplitude 〈Ae〉 vs Po for fo = 14 Hz. Dashed line is the theoretical prediction
for 〈Ae〉 = α1/2(Po − P c

o )1/2 where α = 33.64 ± 1.16× cm2/kPa is a calibration factor and P c
o = 2247 ± 39 Pa. The continuous line is

a theoretical fit of 〈Ae〉 = α{(Po − P c
o ) + [(Po − P c

o )2 + 2η̃]1/2/2}1/2 where η̃ = 9264 ± 2913 Pa2 is the noise intensity. Inset: Normalized

amplitude 〈Ã〉 = 〈Ae〉/α
√

P c
o vs ε = (Po − P c

o )/P c
o . The dashed line follows the prediction Ã = ε1/2. The continuous line is a theoretical fit

of 〈Ã〉 = {[ε + (ε2 + 2η)1/2]/2}1/2, where η is the normalized noise intensity.
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of homogeneous granular interface y(x,t), that is, Y (t) =
L−1

∫ L

0 y(x,t)dx as a function of time t . For small Po the
power spectral density of Y (t) displays a peak at fo showing
the harmonic character of the oscillation (cf. Fig. 2, lower
inset). As Po is increased, a subharmonic oscillation appears
[cf. Fig. 2(a), upper inset]. For each excitation frequency
there is a transition from harmonic to subharmonic dominant
oscillations of the flat layer as Po surpasses a critical value P c

o ,
which is displayed by the continuous line in Fig. 2(a). This
transition is found to be smooth and supercritical in nature
for all fo ∈ [12.5,14.5] Hz. For the sake of simplicity in what
follows fo will be fixed at 14 Hz. It must be noticed that
increasing H from 5a to 10a will change this dynamical state,
as a patterned state appears [12].

To characterize the transition pressure P c
o , we follow the

scheme proposed in [17]. We compute the bifurcation diagram
of the envelope Ae of subharmonic oscillations of Y (t),
Ae cos (πfot), as Po is increased. From the temporal trace of
the layer oscillations the harmonic part is filtered out and the
amplitude of the remaining subharmonic oscillations is com-
puted using a Hilbert transform algorithm [18]. The bifurcation
diagram is shown in Fig. 2(b), where the temporal average of
Ae, 〈Ae〉, is plotted versus Po. The error bars correspond to
the standard deviation of the values of the envelope σA =√

A2
e − 〈Ae〉2. The smooth bifurcation curve can be described

with a simple model which takes into account noise in a su-
percritical transition [17]. Thus, we can compute the threshold
value of P c

o for each excitation frequency fo, and the intensity
of the noise η of the layer fluctuations following the expression

〈Ae〉 = α

√
[(Po − P c

o ) + √
(Po − P c

o )2 + 2η̃]/2, where η̃ is
the noise intensity and α is a calibration factor. For every
fo in our experiments, all bifurcation curves follow the above
expression.

The spatial structure of the granular layer was also studied
to characterize the stationary states as the layer oscillates. For
Po < P c

o , the harmonically oscillating flat layer displays no
typical spatial scale. For Po > P c

o , fluctuations of the flat layer
display a characteristic wavelength and frequency sporadically
[see Fig. 1(b)], disappearing randomly with a typical lifetime,
which is known as a precursor [19]. This phenomenon is a
consequence of the balance between energy injection, caused
by internal fluctuations of the granular layer, and the local
dissipation of the slowest decaying spatial mode of the uniform
steady state of the layer interface. In our experimental setup,
the typical wavelength λ of the precursor is typically ∼2 cm,
which is of the order of 60a. We have checked that λ is
independent of the periodicity or the position of the air inlets.
No discernible change is observed for our experimental control
parameters. λ can be understood as the typical wavelength of a
secondary spatial instability which occurs for larger pressures
than the ones reported here. It must be noticed that this
type of supercritical noisy bifurcation has also been observed
in vibrofluidized granular layers, although the analysis of
the transition was performed via spectral properties of the
fluctuations [20].

Now, we will concern ourselves with kinks appearing
through the above described transition in the extended cell
for L = 20 cm. Maintaining fo at 14 Hz and increasing
ε = (Po − P c

o )/P c
o above the transition, the subharmonic

motion described above allows the system to exhibit bistability
between two states which are out of phase and, thus, a spatial
connection between them. More precisely, there is a height
jump as we go from left to right through a finite region of the
layer where this shift occurs. This means that, at any given
instant, on one side of the region the granular layer is moving
upwards and on the other side it is moving downwards.

A kink can appear in any point of the experimental cell
spontaneously. By choosing the phase mismatch between the
triggering signal and the layer oscillation, we can image the
kink when the separation between the in-phase and out-of-
phase parts of the oscillating granular layer is at its maximum.
Averaging over all the computed interfaces in an image se-
quence, we calculate the averaged front, its height d, and width
	 for different ε, as shown in Fig. 3. Here, 2d corresponds to
the distance between the in- and out-of-phase states, measured
at its maximum separation. 	 is computed as the average width
of the spatial derivative of the kink solution. The error bars
correspond to the standard deviation of d and 	. We can see
that d grows linearly with ε and 	 is roughly constant at 0.7 cm
(independent of ε). Note that the computed kink displays
a spatial modulation on both connected states, as discussed
above. Thus, its typical wavelength is again λ (cf. Fig. 3).
Further increasing the number of images used in the average
values of d, 	, and λ does not affect the computed values.
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FIG. 3. (Color online) Top: Typical image of a granular kink
at Po = 8038 ± 20 Pa (ε = 2.42 ± 0.01). The dashed line is the
numerical interface detection. Middle: Granular kink averaged over
1000 frames. d stands for the granular kink height with respect to
the middle plane and 	 stands for the typical core size of the kink.
Bottom: Granular kink height d (×) and typical core size 	 (◦) as a
function of ε. Error bars stand for the standard deviation for d and 	

for each value of ε.
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FIG. 4. (Color online) Motion of the granular kink. (a) Image
sequence of 20 min of Po = 8038 ± 20 Pa (ε = 2.42 ± 0.01).
(b) Temporal trace of the core of the kink xo(t) as a function of time.

The long term dynamics of the spatially modulated kink
are dictated by its structure and inherent fluctuations. A
typical image sequence of the kink motion acquired over
long time periods (∼104 periods of oscillation) is depicted
in Fig. 4(a), where the complete structure shifts its position in
the experimental cell through discrete jumps. This motion is
tracked in time by following the kink position, xo(t), which
is the position in space where the spatial derivative of the

kink reaches its maximum. The typical distance between
these jumps is λ [cf. Fig. 4(b)] and they occur at random
times either to the left or the right of the cell. Although
the kink displays these jumps, the temporal average of xo(t),
〈xo〉, does not change in the experimental observation time.
Hence, the dynamics of xo(t) can be understood as a random
motion (where fluctuations come from the inherent noise of
the granular layer) within a periodical potential (arising from
the spatial structure of the precursor) [14]. It can be foreseen
that in the case of the existence of a small asymmetry in the
system (for instance, tilting the cell) the evolution of the kink
could resemble that of a Brownian-type motor [15,21], but this
is only an extrapolation of the previous dynamics and needs
experimental confirmation.

In summary, we have studied the stability properties and
bifurcation diagrams of kink solutions in a shallow one-
dimensional fluidized granular layer subjected to a periodic
air flow. The inherent noise of the system simultaneously
induces fluctuations on the kink position, and sustains an
effective pattern over the extended homogeneous state. These
ingredients combined allow us to figure out the long time
dynamics of the kink solution as a Brownian-type motor. A
deeper understanding on the existence, properties, dynamics,
and interaction of kinks is still lacking. Theoretical and
experimental work in this direction is in progress.
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