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Dynamic behaviors of fronts connecting standing waves, such as the locking phenomenon, pinning-depinning
transitions, propagation, and front interactions, are studied. Two systems are considered, a vertically driven
pendulum chain and a generalized φ4 model. Both models exhibit in an appropriate region of parameters
bistability between standing waves. In the driven pendulum chain, using a Galerkin expansion we characterize
the region of bistability between subharmonic waves for the upright and the upside-down pendulum states. We
derive analytically the front dynamics in the generalized φ4 model, showing regions where fronts are oscillatory
or propagative. We also characterize the mechanism of the pinning-depinning transition of fronts between
standing waves. Using front interactions we predict the emergence of dissipative localized waves supported on a
standing wave and characterize their corresponding homoclinic snaking bifurcation diagrams. All these analytical
predictions are confirmed by numerical simulations with quite good agreement.
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I. INTRODUCTION

Nonequilibrium systems—systems with injection and dis-
sipation of energy and momentum—are characterized by
their ability to exhibit self-organized structures or patterns
[1–3]. Usually, nonequilibrium processes in nature lead to
the formation of spatially periodic structures developed from
a homogeneous state through the spontaneous breaking of
the symmetries which are present in the systems [1]. In
the course of recent decades, much effort has been devoted
to the study of pattern formation arising in situations such
as chemical or catalytic reaction systems, gas discharge
systems, nonlinear optics, magnetic media, liquid crystals,
hydrodynamics, granular media, and vegetation population, to
mention a few (see [4–6] and the references therein). Hence,
it is a commonplace to use a unified description to study the
dynamics of spatially periodic structures. Indeed, in most of the
aforementioned physical systems, spatially periodic structures
can be described at the onset of the bifurcation by means of
amplitude equations for the critical or marginal modes [1–5].
In general, such a description is valid in the case of weak
nonlinearities and for both slow spatial and temporal variation
of the base pattern.

Another typical feature of nonequilibrium systems is their
capacity to exhibit multistability, leading to the coexistence
of different equilibria. Consequently, a disturbance in these
systems undergoes an evolution that ends with the formation of
different domains separated by walls, fronts, or interfaces [2].
Later, the dynamics of these fronts stems from the attributes of
the connected states. For one-dimensional spatially extended
systems, the theoretical description of fronts is rather well
established. Indeed, in this case, fronts are understood as
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heteroclinic solutions connecting different equilibrium states
[7,8]. From the dynamical point of view, a front that connects
two stable uniform states is characterized by the invasion of the
more favorable state into the less favorable one at a constant
speed [7], which is proportional to the energy difference
between these states when the systems are variational [7,9].
Hence, one may expect a front connecting two symmetric
states to be stationary or motionless—a kink solution. This
statement is correct for variational systems, i.e., those where
the dynamical evolution minimizes a Lyapunov functional.
However, for nonvariational systems by means of a spon-
taneous breaking of the spatial reflection symmetry, kink
solutions can propagate with constant speed [10].

The above scenario changes, when one considers a front
connecting a stable pattern with a stable uniform state. The
main trait in this case is the emergence of a pinning range, i.e.,
a region in the parameter space where the fronts are motionless
[7]. That is, although one state is more favorable than the other,
it cannot invade due to a nucleation barrier that results from
the coupling of the envelope variations and the underlying
pattern [11]. Then, changing the control parameters, one
may reach a critical value—the pinning-depinning transition
point—beyond which a front travels with an oscillatory speed.
This propagative behavior is characterized by two regimes:
(i) an oscillatory motion of the front characterized by periodic
leaps or relaxation oscillations with a large period [12], i.e.,
the periodic leaps consist of a slow buildup followed by a
sudden relaxation, followed by another slow buildup and so
forth; and (ii) a harmonic oscillatory motion. These regimes are
observed, respectively, for values of the parameters close to and
far from the pinning-depinning transition point [13]. Recently,
experimental evidence of the dynamical behavior of these type
of fronts has been given in Ref. [14]. In the case of fronts
connecting one pattern with another, one observes qualitatively
the same scenario. This is also a consequence of the coupling
between the envelope variations and the underlying pattern,
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which induces a nucleation barrier at the interface of the front.
However, the above scenario is still incomplete, since the
properties of a front between standing waves remain to be
characterized. The behavior of these fronts is not obvious,
since as a result of the wave spatial period one would expect to
observe the pinning phenomenon. On the other hand, the wave
oscillations should destroy the nucleation barrier resulting
from the coupling between the envelope variations and the
underlying pattern. Then, one would expect the dissolution of
the locking phenomenon.

The purpose of this paper is to clarify the existence, stability
properties, dynamical evolution, and bifurcation diagram of
fronts connecting two standing waves in one-dimensional
extended systems. To achieve these purposes we consider two
examples: a driven vertically pendulum chain and a gener-
alized φ4 model. Note that both models under consideration
are paradigmatic models in nonlinear science. The pendulum
chain is the prototype model of energy transport and nonlinear
waves [15,16] and the φ4 model is the prototype equation
of spontaneous breaking of symmetry [17]. Both models
have regions of parameters where bistability between standing
waves can be observed. In the case of the vertically driven
pendulum chain, we have characterized analytically the region
of bistability between subharmonic waves supported by both
upright and inverted pendulum states by means of the Galerkin
method. Numerical simulations of the parametrically driven
sine-Gordon equation describing the motion of the pendulum
chain display a good agreement with the theoretical result.
We have also characterized analytically the front dynamics in
the generalized φ4 model, showing regions where fronts are
oscillatory or propagative. The pinning-depinning transition
mechanism between these standing waves has been singled out
with good agreement with numerical simulations. In the two
systems under consideration, the interaction of the observed
front leads to the emergence of dissipative localized waves.
The derivation of the front interaction allows us to describe
accurately their respective homoclinic snaking bifurcation
diagrams.

The paper is organized as follows: The characterization
of the bistability regions and existence of front solutions for
a vertically driven pendulum chain is presented in Sec. II.
For sufficiently large frequencies and amplitudes the system
exhibits coexistence between subharmonic waves for vertical
and inverted pendula. In Sec. III, the existence, stability
properties, dynamical evolution, and bifurcation diagram of
a front connecting two standing waves in the generalized φ4

model is presented. Based on front interactions, in Sec. IV the
existence and the bifurcation diagrams of localized waves are
studied. Finally, the conclusions are presented in Sec. V.

II. FRONT SOLUTION BETWEEN STANDING WAVES
IN A VERTICALLY DRIVEN PENDULUM CHAIN

A simple physical system exhibiting standing waves is a
vertically driven damped pendulum chain, which is described
in the continuum limit by the parametrically driven sine-
Gordon equation

θ̈(z,t) = −[
ω2

0 + γ sin(ωt)
]

sin θ − μθ̇ + κ∂zzθ, (1)

where θ (z,t) is the angle formed by the pendulum and the
vertical axis in the z position at time t , ω0 is the pendulum’s
natural frequency, and {μ,κ,γ,ω} are the damping, elastic
coupling, amplitude, and frequency of the parametric forcing,
respectively. Hence, the terms proportional to γ and μ

describe the injection and dissipation of energy, respectively.
Let us introduce the parameter a ≡ γ /ω2 which accounts
for the displacement of the pendulum pivot in units of the
pendulum’s natural length. Without forcing and damping
(γ = μ = 0) the above model is a conservative Hamiltonian
system, which presents time-reversal invariance. Hence, the
inclusion of injection and dissipation of energy can lead to
complex spatiotemporal dynamics which are usually observed
in nonequilibrium systems. Notice that Eq. (1) also has the
reflection symmetry θ → −θ .

A simple homogeneous state of Eq. (1) is θ (z,t) = 0, which
stands for a uniform vertical oscillation of pendula. It is well
known that when the pendulum chain is forced close to twice
the natural frequency—ω = 2(ω0 + ν), where ν � 1 is the
detuning parameter—the vertical solution becomes unstable
at ν2 + μ2/4 = γ 2/16 for small {ν,γ,μ} [18]. In the νγ space
or equivalently ωa space, this curve is known as the Arnold
tongue as shown in Fig. 1. In this figure, the solid curve
	1 corresponds to the Arnold tongue for small [Figs. 1(a)
and 1(b)] and large dissipation [Fig. 1(c)]. In the limit of
small dissipation, one intuitively expects that when the system
is forced at 2ω0 the term γ sin(ωt) sin θ oscillates at the
natural frequency ω0 and thus forces the oscillator at its
natural frequency. This generates an efficient mechanism of
energy injection that is responsible for parametric resonance.
Elsewhere, one expects that for any frequency ω a value of γ

might exist for which the vertical solution is unstable, because
the injection of energy in a period of oscillation is greater
than the corresponding energy dissipation. To characterize this
parametric resonance curve in the case of a single pendulum
(κ = 0), we use the following expansion as proposed in
Ref. [19]: θ (t) = A1e

iωt/2 + A3e
i3ωt/2 + · · · + c.c. (where the

symbol c.c. stands for the complex conjugate); introducing this
expansion in Eq. (1) with κ = 0, and linearized in the complex
amplitude An (n = 1,3,5, . . .), one gets a set of equations for
An with constant coefficients. The instability curve is derived
by means of imposing the requirement that this linear system
has a nonzero solution. As shown in Ref. [19] with a small
number of the first modes—the Galerkin method [20]—one
obtains a quite good approximation to the instability curve.
For instance, considering the first two modes {A1,A3}, one
obtains the marginal curve
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0 = 0. (2)

Figure 1 shows this curve, which is denominated as 	1. Above
the 	1 curve the uniform vertical solution is unstable.
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FIG. 1. (Color online) Bifurcation diagram of parametrically driven chain of pendula. (a) Bifurcation diagram for vertical uniform solution

θ (x,t) = 0 for small dissipation μ = 0.2. The 	k and 	1 curves are stationary instabilities with and without space, respectively, of the
uniform upright pendulum oscillation. The shaded region shows where standing waves are observed. The inset illustrates the standing wave
typically observed. (b) and (c) Bifurcation diagram for upside-down pendula θ (x,t) = π/2, for small (μ = 0.2) and large (μ = 10) dissipation,
respectively. 	0 and 	uk are, respectively, the curve that accounts for the inverted pendulum stabilization through the Kapitza effect and the
spatial instability curve for uniform inverted pendula. Note that in the central panel that corresponds to small dissipation, the 	uk curve has no
relevant differences from the 	k curve. 	2 stands for the stationary instability curve for a single upside-down pendulum. In the shaded regions
in (b) and (c) are observed, respectively, a stable single upside-down and a stable uniform upside-down pendulum.

To study the stability of the uniform vertical oscillation
(κ �= 0), we consider an extension of the previous expansion.
Thus, we use the following ansatz:

θ (x,t) ≈ A1e
iωt/2+ikx+λt + A3e

i3ωt/2+ikx+λt + c.c. (3)

Introducing this ansatz in Eq. (1), linearized in the complex
amplitudes, and imposing the requirement that this linear
system has a nonzero solution, one finds the expression for
the growth rate λ(k). The spatial instability curve is derived by
requiring that the global maximum of λ(k) is zero with k �= 0.
We obtain the expression

36μ3ω2 − 36aμ2ω3 + 81μω4 + 12a2μω4 − 81aω5

− 72μω2ω2
0 + 72aω3ω2

0 + 16μω4
0 − 16aωω4

0 = 0. (4)

This curve is represented by the dashed curve 	k in Fig. 1.
Below (above) this curve the uniform oscillation (θ = 0)
is stable (unstable). Then the system exhibits a spatial
instability giving rise to standing waves with wavelength k2

c =
ω2/4 − ω2

0 − a2ω4(9ω2 − 4ω2
0)/[(9ω2 − 4ω2

0)2 + 36μ2ω2] at
frequency ω/2. In the inset of Fig. 1(a) is illustrated the
typical pattern observed above the 	k curve. The shaded region
represents the region where standing waves around the uniform
upright pendula are observed.

On the other hand, it is well known that a vertically
driven pendulum chain at high frequencies can stabilize the
inverted pendulum, the Kapitza effect [21]. It is important
to note that the upside-down state becomes stable at high
frequencies even for small displacement of the support point.
This counterintuitive fact was first predicted analytically in a
simple driven pendulum by the pioneering work of Stephenson
[22] which spanned a large amount of theoretical [21,23]
and experimental discussions [24,25] of the phenomenon. The
stabilization of the inverted state can be understood as a result
of time scale separation between the forcing and the state
variable θ itself, producing the appearance of an effective
force. Using the strategy proposed by Kapitza [26], which

is based on the decomposition of the evolution of θ into a
slow and rapid dynamics, one finds that the vertical solution
is stabilized when [21,26]

a2 � 2
ω2

0

ω2
. (5)

The shaded region in Fig. 1(c) represents the region where
the uniform inverted pendulum state is stable and the curve
a2 = 2ω2

0/ω
2 is represented by 	0. To study the stability of

an upside-down pendulum, we proceed as for the case of the
upright pendulum, with the only difference that in the linear
equation for θω0 should be replaced by iω0 and κ = 0, which
changes the sign of the first term of Eq. (1). One obtains the
marginal curve [19]
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This curve is represented by 	2 in Fig. 1. In a similar manner
(κ �= 0), for the spatial stability of uniform upside-down
pendula, we derived the following spatial marginal curve for
uniform upright pendula:

36μ3ω2 − 36aμ2ω3 + 81μω4 + 12a2μω4 − 81aω5

+ 72μω2ω2
0 − 72aω3ω2

0 + 16μω4
0 − 16aωω4

0 = 0. (7)

This curve is represented by 	uk in Fig. 1. Above this
curve we observe that the uniform inverted pendula exhibit
a supercritical spatial bifurcation, which gives rise to the
emergence of a standing wave with wavelength k2

c1 = ω2/4 +
ω2

0 − a2ω4(9ω2 + 4ω2
0)/[(9ω2 + 4ω2

0)2 + 36μ2ω2] at the
frequency ω/2. It is important to note that the difference
between the curves 	uk and 	k are noticeable only for large
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FIG. 2. (Color online) Front solution connecting standing waves
in a vertically driven pendulum chain: (a) standing wave of vertical
pendula, (b) standing wave of upside-down pendula, and (c) front
solution connecting these states obtained from model (1), with ω0 =
0.01, γ = 1.17, ω = 1.0, μ = 1.0, and κ = 1.0. Spatiotemporal
diagram of the front solution connecting vertical and inverted
pendulum waves obtained from model (1), with γ = 1.7, μ = 1.0,
ω = 1.0, κ = 1.0, and (d) ω0 = 0.001 and (e) ω0 = 0.2. The values
on the axes are given in arbitrary units.

dissipation (see Fig. 1). The 	uk curve may be below or above
the Kapitza curve 	0 depending on whether the dissipation is
large or small, respectively. Therefore, one would not expect
to observe standing waves around the upside-down state for
small dissipation because the spatial instability anticipates
stabilization for high frequencies [see Fig. 1(b)]. Conversely,
for large dissipation one expects to see a region of parameters
where the upside-down state and the standing waves around
the inverted pendulum are stable [see Fig. 1(c)].

It is worthy of note that for large dissipation in the region
above the 	2 curve, the vertically driven pendulum chain
displays a coexistence between standing waves destabilizing
the upright and upside-down states. Hence, one can find
solutions which connect these two standing waves—the front
solution. Figures 1 and 2 show the standing wave solution of
vertical, inverted pendula, and the front solution connecting
these states for the same parameters. As a result of gravity
the vertical pendulum wave is always more stable than the
inverted one. Thus one expects that the front propagates such
that the vertical pendulum wave invades inverted pendulum

waves. Figure 2(e) shows the propagation of this front through
the spatiotemporal diagram of the field θ . Surprisingly, when
one modifies the parameters, the front becomes motionless
although the vertical pendulum wave is more stable—this is
the locking phenomenon. This behavior is observed in a wide
region of parameters. The spatiotemporal diagram of Fig. 2(d)
shows a motionless front.

From these numerical observations arises the query as to
what is the mechanism that causes the locking of the front
propagation—the pinning effect. Due to the lack of analytical
expressions for the waves of upside-down and upright pendula,
and their respective fronts, it is troublesome to understand the
front dynamics and the mechanism that generates the locking
phenomenon. Thus for the sake of simplicity, we shall consider
a simpler model that allows us to infer analytically the front
dynamics and then verify these properties in the vertically
driven pendulum chain.

III. SIMPLIFIED MODEL FOR A FRONT CONNECTING
STANDING WAVES

Let us consider the following generalized φ4 model:

∂ttu = η + u − u3 + ∂xxu + μ∂tu + ν sin(kx) cos(ωt).

(8)

Note that for η = μ = ν = 0 the above equation is the
well-known φ4 model [17]. This model is characterized by
having two stable symmetric uniform states u = ±1 and front
solutions that connect these states, which are usually called
kink solutions. Figure 3(a) shows a kink solution of Eq. (8). For
the generalized φ4 model μ is the damping parameter which
accounts for the energy dissipation and η is a parameter that
breaks the reflection symmetry of this model. In that sense this
parameter plays a similar role to gravity in a vertically driven
pendulum chain. For η �= 0, the more favorable state invades
the less favorable one, and then the front propagates (ν = 0).
For small η, it is easy to show that the speed is proportional to
η [7]. Then, for η = 0 the system has a Maxwell point [27], i.e.,
both uniform states are energetically equivalent. The parameter
ν measures the strength of the spatiotemporal forcing, which
causes the uniform states to become standing waves with
amplitudes proportional to ν. Figure 3(b) shows how the fronts
are modified in the presence of spatiotemporal forcing and the
spatiotemporal diagrams Figs. 3(c) and 3(d) illustrate the front
dynamics of the standing waves. Numerically, we observe that
for η �= 0 the front is motionless in a wide region of parameters
[see Fig. 3(c)] and when one increases η from a critical value
the fronts become propagative [see Fig. 3(d)]. Note that this is
a similar dynamic to that observed in the parametrically driven
pendulum chain at high forcing frequencies and amplitudes.

A. Analytical description of the front dynamics

For ν = η = 0, the kink solution of model (8) may be
written as

uk(x,xk) = tanh

[
x − xk√

2

]
, (9)

where xk is a continuous parameter that parametrizes the
family of kink solutions, which is a consequence of the
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FIG. 3. (Color online) Front solution of generalized φ4 model (8).
(a) Kink solution obtained for by η = 0.0, μ = 0.5, k = 1.0, ω =
1.0, and ν = 0.0. (b) Front solution obtained for by η = 0.001, ω =
1.0, μ = 1.0, and ν = 0.6. Spatiotemporal diagram of front solution
connecting standing waves obtained from model (8), for ω = 1.0,
μ = 1.0, k = 1.0, ν = 0.6, and (c) η = 0.001 and (d) η = 0.14. The
values on the axes are given in arbitrary units.

spatial translation invariance of model (8). xk represents the
point where the derivative of the kink solution has its global
maximum [see Fig. 3(a)], usually denominated the core of the
front. Because of the reflection symmetry of the φ4 model, the
system has antikink solutions uak(x,xk) = −uk(x,xk). If ν, μ,
and η are small (perturbative terms), then one can consider the
following ansatz for the kink solution:

u(x,t) = uk[x − xk(t)] + W (u0,xk,x,t), (10)

where xk(t) has been promoted to a temporal function and
W is a small correction function. In what follows we also
assume that these functions have a slow temporal variation,
i.e., W � 1, ∂tW � 1, and ∂tx0 � 1. Introducing the above
ansatz in Eq. (8) and linearizing in W , we obtain at the leading
order

−LW = ∂xuk(μ∂tx0 + ∂ttx0) + η + ν sin(kx) cos(ωt),

(11)

U(xk,t)

xk

U(xk,t+π/ω)

FIG. 4. (Color online) Schematic representation of the mecha-
nism of the front core propagation. The curves account for the core
of the front potential a given time U (xk,t) and a half period later
U (xk,t + π/ω).

where L ≡ 1 − 3u2
k + ∂xx is a linear operator of the Sturm-

Liouville type [28]. Introducing the inner product

〈f |g〉 ≡
∫ ∞

−∞
f (x)g(x)dx, (12)

the above linear operator becomes self-adjoint. To solve
Eq. (11), we use the solvability condition or Fredholm
alternative [2]. That is, we multiply by ∂xuk and integrate in
the whole space of Eq. (11). After straightforward calculations
based on residue integration, we obtain

ẍk = −μẋk − 3η√
2

− 3πkν cos(ωt)

2 sinh(πk/
√

2)
sin(kxk)

= −μẋk − ∂U

∂xk

, (13)

where the core of the front potential has the form

U (xk,t) = 3η√
2
xk − 3πν cos(ωt)

2 sinh(πk/
√

2)
cos(kxk), (14)

which is a temporal 2π/ω-periodic function. Therefore, the
core of the front satisfies a Newton-type equation. This equa-
tion is characterized by a damping constant and periodic force
with an oscillatory amplitude. The derivation of analytical
solutions of model (13) is a thorny task. Intuitively, for η �= 0
and small ν, one expects the front core to propagate. Indeed, if
at the beginning of a period xk is located in a minimum of the
potential (see Fig. 4), at half the period it will be located close
to the maximum, and then it will move toward the nearest
global potential minimum in order to minimize the energy
(see Fig. 4). Hence, xk propagates toward a given direction
determined by the sign of η.

The above mechanism of propagation can be interrupted
in the case that the forcing ν is large enough, since the core
of the front fails to move to the next minimum, leading to
oscillation of the core of the front around a given equilibrium
position—the pinning phenomenon.

B. Front dynamics at high frequency and large amplitude

In the case of large frequency and forcing amplitude with
respect to the characteristic dynamics of the unforcing system
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(ν = 0), we can use the Kapitza method to obtain an effective
dynamic for Eq. (13). Consequently, the dynamics of the
core of the front can be decomposed into a rapid and a slow
evolution, that is,

xk(t) = z(t) + y(t), (15)

where the rapid dynamics y(t) is small (y � z and 1 � ẏ �
ÿ). Using the above ansatz in Eq. (13) and linearizing in the
fast variable y, we get

z̈ + ÿ ≈ −μż − μẏ − ∂U (z,t)

∂z
− ∂2U

∂z2
y. (16)

Hence, when we assume ω � μ the leading term of the above
equation takes the form

∂tty = − 3πkν sin(kz)

2 sinh(πk/
√

2)
cos(ωt). (17)

Integrating in the rapid scale, we obtain y(t) =
3πkν sin(kz) cos(ωt)/2ω2 sinh(πk/

√
2). Next, considering

the average of xk in a period 2π/ω and using the Laplace
integral method [29], one obtains

〈xk〉 = ω

2π

∫ t+2π/ω

t

xkdt ≈ z(t). (18)

Therefore, z and y describe the mean dynamics and the
oscillations around it, respectively. Replacing the expression
for y(t) in Eq. (16) and averaging over a period 2π/ω, this
equation reads

z̈ = −μż − 3η√
2

− 9π2k3ν2

16ω2 sinh2(πk/
√

2)
sin(2kz). (19)

Consequently, the mean variable also satisfies a Newton-type
equation, with the same damping and constant force as
in Eq. (13). However, the periodic force with oscillatory
amplitude becomes a periodic force with half the spatial
period for the mean variable z. As a result of the rapid
oscillations—high-frequency limit—the effective potential for
the core of the front has one-half the spatial period (cf. Fig. 4).

The locking phenomenon, the pinning range, and the
pinning-depinning transition of model (8) are easy to under-
stand from Eq. (19); the locking phenomenon is obtained when
the mean variable of the core of the front z(t) has stable
equilibria. These equilibria correspond to different stable
positions of the fronts. On the other hand, the pinning range and
the pinning-depinning transition are, respectively, the region
of parameters where model (19) has equilibrium points and
the bifurcation point of these equilibria. Let us introduce the
parameter

 ≡ 8
√

2ηω2 sinh2(πk/
√

2)

3π2k3ν2
, (20)

which accounts for the ratio between the coefficients of the
constant and the periodic forcing of model (19). Introducing
 in Eq. (19) we have

z̈ = −μż − 3η√
2

[ − sin(2kz)] . (21)

Notice that  is proportional to η; thus to change  is
equivalent to modifying η. Therefore all the analysis below
corresponding to increasing  is equivalent to increasing
η. If  < 0 and || > 1, the model (19) does not have

equilibria. Then, one infers that the core of the front moves
backward and its acceleration increases and decreases peri-
odically; hence the upper state (u ≈ 1) invades the lower one
(u ≈ −1) with an oscillatory speed. Figure 3(d) shows the
corresponding spatiotemporal evolution of the front in this
region of parameters. On increasing  (η), the system exhibits
a simultaneous infinite number of saddle-node bifurcations
for  = − ≡ −1. For  > − and || < 1, the system
has an infinite number of stable equilibria. Each equilibrium
point represents an oscillatory front around a fixed position
[see Fig. 3(c)]. On increasing  further, all critical points
disappear simultaneously through a saddle node when  > 0
and  = + ≡ 1. For  > + the front core moves forward;
hence the lower state invades the upper state with an oscillatory
speed. Figure 5(a) shows the average speed of model (8) as a
function of η, which illustrates the above scenario. Note that
a front connecting a uniform state with a pattern has the same
bifurcation diagram [7,11,14].

For − <  < + (pinning range) the system exhibits
the locking phenomenon and the pinning-depinning transition
takes place at || = 1. From this condition, we found the

0.5 1.5 2.5 3.5x10-6
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4
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ηη

0.5 1.0 1.5x10-4

ω0
2
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1.5
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(a)

(b)

<
θ>

 
>

 
<

Z>

FIG. 5. (Color online) Bifurcation diagram of the front connect-
ing standing waves. (a) Average speed as a function of η̄ ≡ 3η/

√
2

for model (8) with ω = 0.05, μ = 0.005, k = 2.0, and ν = 0.000 25.
The circles stand for the values obtained by numerically integrating
the model (13) and the solid curve is obtained using formula (23).
(b) Average speed as a function of ω0 for the vertically driven
pendulum chain model (1) with ω = 4.0, μ = 3.5, and γ = 15.76.
The circles stand for the values obtained by numerically integrating
the model (1) and the solid curve is obtained using formula (23) as a
fitting function. The spatiotemporal diagrams inset with time running
up depict the front dynamics in the different regions. The values on
the axes are given in arbitrary units.
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FIG. 6. (Color online) Pinning-depinning transition curve. The
solid curve is obtaining using formula (22) with the + sign and
the circles stand for the values obtained numerically by integrating
model (8) with μ = 0.01, ω = 0.1, and k = 1.0. The spatiotemporal
diagrams inset with time running up represent, respectively, the
typical observed dynamics. The values on the axes are given in
arbitrary units.

pinning-depinning transition relation

η = ± 3π2k3

8
√

2ω2 sinh2(πk/
√

2)
ν2, (22)

which corresponds to a parabolic curve between η and
ν. Figure 6 shows this pinning-depinning transition curve
contrasted with the numerical results obtained from model (8).
Notice that the above theoretical prediction has a quite good
agreement with the numerical observations. It is important to
note that in the {η,ν} space the pinning region exhibits a cusp.
One can infer that this behavior is a consequence of the cusp
catastrophe of the bistability region [30], where the pinning
region is circumscribed.

As we have mentioned before, front propagation is char-
acterized by an oscillatory behavior of the speed. In the over-
damping limit of model (19), after straightforward calculations
one can compute analytically the average speed [13,14]:

〈ż〉 =
√

2 − 1

=
√(

8
√

2ηω2 sinh2(πk/
√

2)

3π2k3ν2

)2

− 1. (23)

Therefore, for || < 1 the average speed is zero,  � 1 grows
with a square root law, and  � 1 increases accompanied by
a linear law. In Fig. 5(a), the solid curve is obtained using the
above formula (23). This curve has a quite good agreement
with the numerical observations as shown in Fig. 5(a). The
spatiotemporal diagrams inset with time running up depict the
front dynamics in the different regions. It is worthy of note
that for a front connecting a pattern with a uniform state or
pattern state, one can obtain a similar formula for the average
front speed [13,14].

The dynamics of the front core is composed of a slow and
a rapid dynamics. The slow dynamics describes the average
behavior of the front core and the rapid dynamics accounts for
the oscillations with respect to the main dynamics. Hence, in
the pinning range the front core dynamics is characterized by
oscillation around the fixed position. The left-hand side inset in
Fig. 5(a) depicts this oscillatory dynamics [see also Fig. 3(c)].

The simplified model (8) exhibits a front connecting two
standing waves. These front solutions present the locking

phenomenon in a broad region of parameters. Using an
adequate limit, we have characterized analytically the coupling
between envelope variations and the underlying waves. This is
manifested in the equation of the front core [cf. Eqs. (13) and
(19)]. Hence, this simplified model allows elucidation of the
mechanism of front dynamics that is summarized in Eq. (23).
So we have also applied this formula (23) to characterize
the front dynamics in a vertically driven pendulum chain.
Figure 5(b) shows the average speed of the front connecting
standing waves for the vertically driven pendulum chain as a
function of the gravity. The circles stand for the values obtained
by numerical integration of model (1) and the solid curve is
obtained using formula (23) as the fitting function. As can be
seen from this figure, we have good agreement between the
two results. Hence, we have recognized two different regimes
for a front connecting standing waves in a vertically driven
pendulum chain: the locking and the propagation regions. This
last region is initially characterized by front propagation with
periodic leaps or relaxation oscillations [12] that are distinctive
for saddle-node bifurcations, and later by front propagation
with periodic oscillations.

IV. LOCALIZED STATES

Localized states arise in dissipative and spatially extended
systems and can be seen as patterns extended over a restricted
spatial domain, which represents a singleunit or multicellular
units. They are characterized by a family of continuous
parameters such as the position, the amplitude, and the width.
Formally, localized states can be described as particlelike
objects, even though made of a large number of fundamental
constituents—atoms or molecules. The autocatalytic reaction-
diffusion model with inhomogeneous coefficients is one
of the pioneering physical contexts where localized states
were proposed [31] (for details, see Chap. 7 of Ref. [1]
and references therein). Their universal nature has been
demonstrated by observation in many fields of physics, with
examples including magnetic materials, liquid crystals, gas
discharge systems, chemical reactions, fluids, granular media,
nonlinear optics, and Bose-Einstein condensates, to mention a
few (see the reviews [32–35], and references therein). Many
experimental and theoretical works have been devoted to the
study of localized structures. Different mechanisms leading to
stable localization have been proposed [36]. Among these, two
main classes of localized structures have to be distinguished,
namely, those localized structures arising as solutions of a
quintic Swift-Hohenberg-like equation [37] and those that are
stabilized by nonvariational terms in the subcritical Ginzburg-
Landau equation [38]. The main difference between the two
cases is that the localized structures arising in the first model
have a characteristic size which is fixed by the pinning
mechanism over the underlying pattern or by spatially damped
oscillations between homogenous states [36], whereas the
localized structures arising in the second model have no
intrinsic spatial length, their size being selected by nonva-
riational effects and going to infinity when the dissipation
goes to zero. Additionally, intriguing dynamical behaviors,
displaying mutual interaction of localized structures, have been
reported and control methods have been developed in view of
potential applications, these mainly aimed at using single-cell
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localized structures as elementary, erasable, and rewritable
storage bits [39].

The dynamics of localized structures based on pinning
mechanisms and the interaction between them have inspired
many theoretical works. Most of them are based on a
one-dimensional geometrical description, in which localized
structures are understood as the homoclinic orbits in the
Poincaré section of the corresponding spatially reversible
dynamical system [40–43]. In this framework, localized
structures are predicted to exist in regions of parameters
where the system exhibits bistability between a pattern and
a uniform stable state. Localized spatial states are, thus,
understood as macroscopic particlelike objects realizing
the spatial connection between two metastable states and
appearing— the homoclinic curve—close to the pinning
range of the front solution [7]. Inside the pinning range,
the bifurcation diagram displays a snaking shape with an
infinite sequence of saddle-node bifurcations, each bifurcation
creating a cell of the localized pattern solution [42]. Extensions
of the same scenario have been given in later papers [40,44,45].
More recently, localized structures have been described in
terms of front interactions [46] and their existence has been
generalized to the case when the homoclinic orbits connect
two pattern states, thus leading to localized peaks [47].

Close to the pinning range, the vertically driven pendulum
chain (1) as well as the simplified model (8) exhibit a family
of localized structures with different widths. The widths of
the localized structures are roughly multiples of that of the
half wavelength of standing waves. Figure 7 shows the typical
localized structure and the respective spatiotemporal evolution
observed in the vertically driven pendulum chain model (1) and
the simplified model (8).

To understand the existence, stability properties, dynamical
evolution, and bifurcation diagram of the localized waves, we
describe these localized structures as a bound state composed
of two fronts [36,46]. Therefore the characterization of the
front interactions is a master key to understanding the localized
states. For the sake of simplicity, we study the front interactions
of model (8) in the limit of small η and ν. Since in this limit the
fronts interaction is analytically accessible. Thus, a localized
structure can be approached by Refs. [36,46]

u(x,t) = uk[x + δ(t)] + uak[x − δ(t)] − 1 + W (x,δδ(t)),

(24)

where {uk(x),uak(x)} are, respectively, the kink and the
antikink solutions of model (8), 2δ(t) stands for the distance
between fronts (see insets in Fig. 8), which is assumed to be
larger than the characteristic length of the front (δ � √

2), and
W is a small correction function. Introducing the above ansatz
in Eq. (8), using the fact that uk(x + δ), uak(x − δ), and u = 1
are solutions of model (8) for η = ν = 0 and linearizing in W ,
we obtain at dominant order

−[1 − 3(uk + (uak − 1)]2 + ∂xx)W

= −∂xuk(μ∂tδ + ∂tt δ) + ∂xuak(μ∂tδ + ∂tt δ)

+ (
1 − 3u2

k + ∂xx

)
(uak − 1) − 3uk(uak − 1)2

− (uak − 1)3 + η + ν sin(kx + φ) cos(ωt). (25)
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FIG. 7. (Color online) Localized waves. (a), (b), (c), and (d) are
profiles and spatiotemporal diagrams of localized waves, respectively,
obtained from model (1), with a = 0.83, ω = 4.0, μ = 3.0, and ω2

0 =
0.0001. (e), (f), (g), and (h) are profiles and spatiotemporal diagrams
of localized waves, respectively, obtained from model (8), with η =
0.001, ω = 1.0, μ = 1.0, k = 1.0, and ν = 0.6. The values on the
axes are given in arbitrary units.

Introducing the inner product (12), the linear operator L ≡
−[1 − 3(uk + (uak − 1)]2 + ∂xx) is self-adjoint. To solve the
above linear equation, we use the solvability condition or

η

ζ*

0.5x10-6

-0.5

-1.5

6 108 12

2 δ

2 δ 2 δ

ηc

-ηc

FIG. 8. (Color online) Homoclinic snaking bifurcation diagram
of localized waves of model (8) with k = 2, ν = 0.000 25, and
ω = 0.05. ζe is the half-width of the localized waves and η̄ ≡ 3η/

√
2.

The solid (dashed) lines represent the stable (unstable) localized
waves, which were obtained from Eq. (28). The circles account for
the numerical equilibrium widths of localized states. The values on
the axes are given in arbitrary units.
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Fredholm alternative [2], in a similar manner to that used
to derive the front core equation (13). After straightforward
calculations we obtain

〈∂xuk|∂xuk〉 (μ∂tδ + ∂tt δ)

= 〈∂xuk| − 3uk(uak − 1)2 − (uak − 1)3〉
+ 〈∂xuk|∂xuk〉

(
3η√

2
− γ sin

[
kδ + φ

2

]
cos(ωt)

)
,

(26)

where φ can be 0 or π as a consequence of the discrete
translational symmetry and γ ≡ 3πkν/2 sinh(πk/

√
2). Using

the kink and antikink solutions [Eq. (9)], the above equation
explicitly reads

δ̈ = −μδ̇ − 12e−2
√

2δ + 3η√
2

− 3πkν

2 sinh(πk/
√

2)
sin

(
kδ + φ

2

)
cos(ωt). (27)

Notice that the dynamics between the fronts also satisfies a
Newton-type equation, with the additional term −12e−2

√
2δ ,

which accounts for the effect of one front on the other one.
Therefore, a front exponentially affects the dynamics of the
other through this attractive force.

Although Eq. (27) is of Newton type, this is still a complex
model to solve analytically. In order to derive analytical
expressions we consider a similar procedure as we have done
for the front dynamics (Kapitza strategy). Therefore, we may
consider the high-frequency and high-amplitude limit. In this
limit we obtain the following equation for the mean variable:

ζ̈ − μζ̇ = f (ζ ), (28)

where

f (ζ ) ≡ −12e−2
√

2ζ + 3η√
2

− 9π2k3ν2 sin(2kζ + φ)

16ω2 sinh2(πk/
√

2)
,

ζ (t) ≡ ω

2π

∫ t+2π/ω

t

δ(t)dt.

f (ζ ) describes the effective force in the Newton-type Eq. (28).
The equilibria of this system satisfy f (ζ ∗) = 0, where ζ ∗
accounts for the respective width of the localized structure.
Figure 8 shows the equilibria as a function of η̄ ≡ 3η/

√
2,

deduced from the above force [Eq. (28)].
From the force f (ζ ) we conclude that for large η, Eq. (28)

like Eqs. (8) and (27), has no bound states, while for small
η there are bound states. More precisely, for sufficiently
large and negative η, the fronts move away from each
other (ζ increases as a function of time); then the higher
standing wave invades the system. When η increases (η <

0), a series of successive saddle-node bifurcations occurs
for η ≈ −3π2k3ν2/8

√
2ω2 sinh2(πk/

√
2). These bifurcations

generate the appearance of localized structures in pairs, one
stable and the other unstable, and each time with a smaller
number of bumps. That is, this sequence of bifurcations is
characterized by localized states with large widths appearing
first and later the states with small ones. These infinite number
of bifurcations occur in an exponentially small region as shown

in Fig. 8. A similar scenario is observed in the case of localized
patterns [40,42].

For small η, and close to the Maxwell point (η = 0), the
system has an infinite number of localized waves with all the
possible number of bumps. The widths of the localized wave
are roughly multiples of that of the shortest localized state. In
contrast, for η ≈ η̄c ≡ 3π2k3ν2/8

√
2ω2 sinh2(πk/

√
2). The

dashed horizontal lines in Fig. 8 illustrate this critical value.
The localized waves disappear via saddle-node bifurcations.
On increasing η the larger localized patterns disappear se-
quentially one after the other. Hence, the shortest localized
state is the last to disappear (see Fig. 8). Thus for sufficiently
large and positive η, fronts attract each other (ζ decreases as a
function of time), and then the lower standing wave invades the
system. The same complex structure of bifurcation is observed
in localized patterns [40,42]. The above complex scenario is
known as the homoclinic snaking bifurcation diagram [42].
Recently, this dynamics has been reported in an experimental
work [48].

V. CONCLUSION

In past decades a great effort has been devoted to under-
standing the existence, stability properties, dynamical evo-
lution, and bifurcation diagram of localized states in systems
out of equilibrium. A simple way to understand these localized
states is by considering that they are composed of a bound state
of two fronts. Hence, in this framework localized states must
be observed in a bistability region. Indeed, in such a region
one can observe fronts between the respective states. The
dynamical properties of these fronts allow one to understand
the corresponding features of the localized structures. In
the present work, we have characterized the possibility of
fronts and dissipative localized states in systems that exhibit
bistability between standing waves. More precisely, we have
characterized the locking phenomenon, the pinning-depinning
transition, the propagation, and the interaction of this type of
front. We have considered two systems: a vertically driven
pendulum chain and a generalized φ4 model. Both systems
exhibit in some regions of parameter bistability between
standing waves. In the case of the parametrically driven
pendulum chain, we have characterized the region of bistability
between subharmonic waves for upright and upside-down
pendula by using the Galerkin method, obtaining a good
agreement between the theoretical and numerical results. The
fronts exhibit a rich dynamics, which has been characterized
analytically in the generalized φ4 model, showing the regions
where the front is oscillatory and propagative. These results are
verified numerically for the vertically driven pendulum chain
and the generalized φ4 model. The analytical characterization
of the fronts interaction allows us to predict the emergence
of dissipative localized waves and the derivation of their
respective homoclinic snaking bifurcation diagrams. Although
we have considered two specific paradigmatic examples, it is
important to note that the phenomenon under study is universal
and that both examples contain the ingredients necessary to
observe localized waves and pinning-depinning transitions of
the standing waves.

Parametrically driven systems generically exhibit standing
waves, Faraday waves; however, they do not necessarily
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coexist with other standing waves. One possible strategy to
induce coexistence of standing waves is by consider the effects
of high frequencies, which can stabilize unstable states and
induce their respective self-parametric resonances [23]. The
results found in this work are general and we expect the effects
to be observed in other physical systems exhibiting bistability
of standing waves, such as fluids submitted to parametric
forcing and forced magnetic systems. Work in this direction is
in progress.
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