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Localized waves in a parametrically driven magnetic nanowire
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Abstract – The pattern formation in a magnetic wire forced by a transversal uniform and
oscillatory magnetic field is studied. This system is described in the continuous framework by the
Landau-Lifshitz-Gilbert equation. We find numerically that, the spatio-temporal magnetization
field exhibits a family of localized states that connect asymptotically a uniform oscillatory state
with an extended wave. Close to parametrical resonance instability, an amended amplitude
equation is derived, which allows us to understand and characterize these localized waves.
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Introduction. – During the last years macroscopic
particle-type solutions or localized states in dissipative
systems have been observed in different fields, such as
domains in magnetic materials, chiral bubbles in liquid
crystals, current filaments in gas discharge, spots in
chemical reactions, localized states in fluid surface waves,
oscillons in granular media, isolated states in thermal
convection, solitary waves in nonlinear optics, dissipative
solitons in magnetic materials, to mention a few (see the
reviews [1–5] and references therein). In one-dimensional
spatial systems, localized states can be described as spatial
trajectories that connect one steady state with itself,
which means, they are homoclinic orbits from the dynami-
cal system point of view [6]. Whereas domain walls or front
solutions are seen as spatial trajectories connecting two
different steady states —heteroclinic curves of the corre-
sponding dynamical system [7]. Particular localized states
of an extended system in one-dimensions, on which many
efforts have been focused in the past decade, are local-
ized patterns. One can understand these localized patterns
as patterns extended over only a small portion of the
system [8,9]. Hence, the localized patterns are homoclinic
trajectories that link a uniform state with itself, which
passes close to a pattern state [6,7]. Recently, a geometri-
cal interpretation of the existence, the stability properties,
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and the bifurcation diagram of localized patterns in one-
dimensional extended systems has been proposed [10,11];
and more recently, the existence of localized patterns
based on front interaction was developed in ref. [12].
On the other hand, for quasi-reversible systems,

time-reversal systems slightly perturbed injection and
dissipation of energy [13], the prototype model that
exhibits localized structures (dissipative solitons) and
pattern states is the parametrically driven damped non-
linear Schrödinger equation (PDNLS) [14–16]. This model
has been derived in several contexts to describe patterns
and localized structures like vertically oscillating layers of
water [17], nonlinear lattices [18], optical fibers [19], Kerr-
type optical parametric oscillators [20], magnetization
in an easy-plane ferromagnetic exposed to an oscillatory
magnetic field [21,22], and parametrically driven damped
pendula chains [23]. However, in refs. [24,25], we have
shown that this model does not account for a family of
localized states that connect asymptotically a uniform
oscillation with itself. The main reason of the lack of these
states in PDNLS is the loss of stability of the uniform
oscillation state. The stability of these states is controlled
by higher nonlinearities. Hence, in this framework a
localized state that connects asymptotically a uniform
oscillation with an extended wave cannot be expected
in this approach —we term this state as localized waves.
Nevertheless, numerical simulations, in a ferromagnetic
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anisotropic wire exposed to an oscillatory magnetic field
in the validity region of parameter space of PDNLS
exhibit these types of localized waves.
The aim of this work is to study the family of localized

waves observed in magnetization field of an easy-plane
ferromagnetic wire in the presence of a uniform and
an oscillatory magnetic external field. Amending the
PDNLS with higher-order terms, allows us to explain
both the existence and stability of the localized-waves,
homogeneous-oscillations and extended-wave solutions.
Hence, using this amended amplitude equation, we recover
the original dynamical behavior of the magnetic system.
Moreover, close to the pattern instability, we are able
to characterize this bifurcation as a quintic supercritical
bifurcation. The paper is arranged in the following way: In
the second section the theoretical model and the numer-
ical simulations are presented. In the third section the
magnetization dynamics is reduced to a nonlinear oscilla-
tor system. The amended amplitude equation is derived
and numerical simulations are performed in the fourth
section. Finally, conclusions are given in the fifth section.

Theoretical model. – The standard approaches to
study the dynamics of the macroscopic magnetization
reversal are the Landau-Lifshitz (LL) [26] or the Landau-
Lifshitz-Gilbert (LLG) equation [27]. Nonlinear time-
dependent problems in magnetism have already been
studied in many cases, and an account of the state of the
art can be found in refs. [28–30]. These models have been
using in both discrete [31–33] and continuous magnetic
systems [21,22,24,25].
Let us consider a magnetic wire in the continuous frame-

work, such that the normalized magnetization field is given
by M=M(r, t), where r and t stand for the space coor-
dinates and time, respectively. We focus in a ferromag-
netic anisotropic long wire, so we consider the movement
of magnetization along the wire axis, represented by ẑ =
(0, 0, 1). Hence, the dynamical evolution of this wire can
be modeled by the LLG equation and it can be written as

∂tM=−M×Γ+λM× ∂tM. (1)

The effective torque field, Γ, is given by Γ=∇2M−
β (M · ẑ) ẑ+H, where the Laplacian term accounts for
the coupling of the magnetization with the first neighbors,
β > 0 is the easy-plane anisotropy constant and H is the
external magnetic field. Let us take into account that an
external magnetic field H comprises both a constant and
oscillatory parts, that isH=Hxx̂≡ (H0+h0 cos(ωt))x̂. In
the above equation, λ denotes the dimensionless phenom-
enological damping coefficient which is characteristic for
the material and whose typical value is of the order 10−4

to 10−3 in garnets and 10−2 or larger in cobalt or permal-
loy [30]. Throughout this manuscript we use dimensionless
quantities having scaled the magnetization (and magnetic
fields) by the saturation magnetization Ms, the time t by
1/|γ|Ms, where γ is the gyromagnetic factor associated
with the electron spin |γe|µ0, and the space coordinates

Fig. 1: (Color online) Phase diagram of eq. (1) as a function of
ν and h0. The shaded region is Arnold’s tongue. The dashed
line separates the existence region of the localized waves. The
fixed parameters are λ= 0.025, H0 = 1 and β = 20.

r by the exchange length lex =
√
2J/µ0M2s , where J is

the effective exchange coupling constant. Taking, e.g.,
material values [30] Ms ∼ 800 kA/m or µ0Ms ∼ 1T, J =
2π× 10−11 and |γ| ≈ 2.21× 105mA−1s−1, the dimen-
sionless time and length scale correspond to ≈ 6 ps and
to ≈ 10 nm as physical scales, respectively. The present
technology is able to follow experiments at the femto-
second scale. Indeed, Beaurepaire et al. [34] were the first
to observe the spin dynamics at a time scale below the
picosecond scale in nickel particles.

Steady states. A simple homogeneous state of model
(1) is M= x̂, which represents a uniform magnetiza-
tion parallel to the magnetic forcing. Small perturba-
tions of this homogeneous state are characterized by
damped dispersive waves, with frequency close to Ω0 =√
H0(H0+β). When the wire is forced close to double of

this natural frequency, ω≡ 2(Ω0+ ν), ν being the detuning
parameter, this uniform state becomes unstable by means
of a oscillatory instability. This subharmonic bifurcation is
characterized by a Floquet multiplier in the complex space
that crosses the unit cycle through −1. This bifurcation
gives rise to a uniform attractive periodic solution, which
corresponds to a parametric resonance [35]. More precisely,
the bifurcation occurs at h20c = (4Ω0)

2[ν2+(λq/2)2]/β2

with q= β+2H0; and this relationship defines the first
Arnold’s tongue. Figure 1 shows the phase diagram for
model (1) for the first Arnold’s tongue. We can recog-
nize two different zones, outside (OS) and inside (IS); for
instance in the left hand OS-zone there appear soliton
solutions [21] and in the right hand OS-zone there appear
extended waves [24]. Also, in the IS-zone spatio-temporal
chaos appears [36] as well as oscillating states and local-
ized waves, as we shall see later.
The uniform oscillations account for uniform or synchro-

nized precession motions of the magnetization around the
easy axis x̂ in the zy-plane with frequency close to Ω0,
as is shown in fig. 2. Note that Mz and My have the
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Fig. 2: (Color online) Uniform oscillations: spatio-temporal
diagram of the three components of the magnetization fieldM
appearing in eq. (1) by λ=0.025, H0=1, β=20, ν=−0.002441
and h0 = 0.28.

same frequency; however they are out of phase andMx has
twice of this frequency. One can understand these dynam-
ical behavior in the following way: M2x = 1−M2y −M2z ,
as a consequence of the conservation of the magnetiza-
tion modulus. Assuming My ∼Mz� 1, we can approxi-
mate Mx ≈ 1− (M2y +M2z )/2− (M2y +M2z )2/8. Moreover,
Mz and My are oscillatory functions around zero with
period T = 2π/Ω, thenMx is a periodic function with half
period.
In the same parameter region, we numerically observe

that the system exhibits sub-harmonic extended waves
with frequency Ω0 for Mz and My and frequency 2Ω0
for Mx. This motion constitutes an extended wave of the
precession motion of the magnetization around the easy
axis as shown in fig. 3.

Fig. 3: (Color online) Sub-harmonic extended waves: spatio-
temporal diagram of the three components of the magnetiza-
tion fieldM appearing in eq. (1) by λ= 0.025, H0 = 1, β = 20,
ν =−0.002441 and h0 = 0.28.

Localized waves. Due to the coexistence of these two
extended steady states, one expects to find a family of
solutions that link these states —localized waves— which
is a solution composed of a pair of fronts that corre-
sponds to a homoclinic solution. To our knowledge this
is a novel type of localized state for parametric driven
systems; and the main ingredient for the existence of this
localized states is the coexistence between uniform oscil-
lation and extended waves. We have numerically observed
these localized solutions. Figure 4 shows the three compo-
nent of the vector fieldM in its spatio-temporal diagram,
where localization is observed in all components. Further-
more, the oscillation frequencies of the components are
synchronized. These states are particle-type solutions [6],
that is, these states can be created or destroyed in any
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Fig. 4: (Color online) Localized waves: spatio-temporal diagram
of the three components of the magnetization fieldM appear-
ing in eq. (1) at λ= 0.025, H0 = 1, β = 20, ν =−0.002441 and
h0 = 0.28.

place of the system. Besides, these states are character-
ized by a set of parameters: the position of the center of
mass and the width [12]. Hence, from this states one can
build up a gas or mixture of these localized sates. Finally,
we remark that the existence region of localized waves, for
a set of fixed parameters, is shown in fig. 1 which is the
region below to the dashed line.

Amended amplitude equation. – Due to the
complexity of model (1) only fully numerical solutions
are possible. To gain more insight we study these local-
ized states in a second step by an amplitude equation,
which is quite simpler mathematically. Close to the
parametric instability it can systematically be derived
from the full dynamic equations [22] and generally
gives a qualitatively correct description, although often

quantitative agreement is not obtained [9]. The standard
amplitude equation that describes our magnetic system
close to the parametric resonance is the parametrically
driven and damped nonlinear Schrödinger equation
(PDDNLS) [21]. It is a partial differential equation for
the complex amplitude A for the envelope of the oscil-
lations, mz(t, z) =A(T,Z)exp(i(Ω+ ν)t)+ c.c.+Σ(A, t),
where c.c. signifies the complex conjugate and Σ(A, t) is
a small correction function in the form of a polynomial
series in A. One finds after some lengthy calculations the
following solvability condition [21]:

∂TA=−iνA− i|A|2A− i∂2ZA−
µ

2
A+
γ

4
Ā, (2)

where µ= λ(2H0+β) and γ = h0(2H0+β)/Ω0 are the
effective damping and driving parameters, respectively.
Also, Ā stands for the complex conjugate of A and the
normalized variables are defined by Z ≡√2ω0/(β+2H0)z
and T = γt. This model has often been studied to under-
stand soliton-like solutions [21] and Faraday waves [24,37].
Notice for certain values of the parameters, model (1)
can be approximated by the nonlinear Klein-Gordon equa-
tion and from this model one can derive the above equa-
tion [21].
In addition, the PDNLS equation has differ-

ent homogeneous states. The simple one is A= 0,
which represents the magnetization aligned in the
wire direction (M= x̂). Moreover, inside Arnold’s
tongue, which is defined by γ̃2 � µ̃2+ ν2, this model
has additional uniform states A±,± =±x0(1± iy0),
where x0 =

√
(γ̃− µ̃)(−ν+√γ̃2− ν2)/2γ̃ and y0 =√

(µ̃− γ̃)/(µ̃+ γ̃) with γ̃ = γ/4 and µ̃= µ/2. These
solutions stand for a uniform precession around the
x-axis along the wire. However, these states are unstable
and A+,± is marginally stable for zero detuning as
consequence of the spatial coupling. Hence, the only
uniform linear stable state is A= 0. Without the spatial
coupling this state is stable outside the Arnold’s tongue.
The spatial coupling described by the Laplacian term in
eq. (2) modifies this scenario and the zero state exhibits a
spatial instability at γ̃ = µ̃ (for positive detuning) giving
rise to the occurrence of pattern states. This instability
is a quintic supercritical bifurcation [37], i.e. close to the
bifurcation the pattern amplitude increases according to
the power law (γ̃− µ̃)1/4. If we decrease the detuning
parameter, at fixed {γ, µ}, the amplitude and the wave
number of the pattern are slightly modified. These
patterns still occur inside Arnold’s tongue. Nevertheless,
close to the boundary of Arnold’s tongue for negative
detuning the pattern state disappears by a saddle-node
bifurcation.
In brief, the PDNLS exhibits as trivial extended stable

state the zero-solution and pattern state, which, however,
exist in different parameter regions. Hence, this model
does not account for the coexistence of a pattern state
and nonzero amplitude states (A±,±), which is the mini-
mal ingredient to observe a localized pattern. From the
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dynamical system theory, the prototype model (2) is struc-
turally unstable [35]. The addition of higher-order terms
can modify the stability features of the nonzero amplitude
states.
To describe uniform precession and the family of local-

ized states exhibited by the magnetic system under study
it is required to consider the high-order terms that amend
the amplitude equation (2). These new terms also provide
the stability of the uniform states and the particle-type
solutions. In the parameter region where the nonzero
amplitude state is marginal at ν = 0, we expect that any
small corrections of the amplitude equation can render
this state linearly stable or unstable. Consequently, when
we consider the leading higher-order terms the amended
amplitude equation reads [24]

∂TA=−iµA− iA |A|2− i∂2ZA−
µ

2
A+
γ

4
Ā+NA, (3)

such that the amended terms, NA, are given by
NA =−αA |A|2+κ∂2xA− δ |A|2Ā+ β̃A3+ iη |A|4A. (4)
The above terms are order γ5/2. Also, {α, κ, δ, β̃} are com-
plex functions of the parameters [24]. The extra terms add
novel behavior, which can be interpreted in the following
way: the term proportional to {α, κ, δ, β̃, η} are, respec-
tively, a nonlinear dissipation, diffusion, nonlinear para-
metric forcing and higher nonlinear response in frequency.
It is important to note that we have included all

extra terms that appear of order (µ5/2), considering a
similar injection and dissipation of energy, more precisely
we consider the scaling ν ∼ γ ∼ α∼ κ∼ δ∼ β̃ ∼ µ, ∂T ∼ µ,
∂Z ∼ µ1/2, η∼ 1 and µ� 1. Equation (2) is of order µ3/2.
Since A+,± is marginally stable of model (2), the inclusion
of extra terms recover the dynamical behavior of the
original model (1). Considering only some of these extra
terms is sufficient to recover the qualitative dynamics [38];
however for consistency reasons we have considered all
corrections of the same order. In ref. [38] the PDNLS
equation is amended by a extra diffusion term, such
that this amendment produces novel localized solutions
that connect the zero state with a flat nonzero state.
A complete study of consequence of extra terms will be
presented in future works.

Numerical solutions. For small detuning, we numer-
ically observe that the amended amplitude equation (3)
has stable uniform solutions close to A+,± [24,25]. In
this subsection we have shown numerical solutions of the
amended amplitude equation.
Recently, we have shown that the amended amplitude

equation (3) has stable nonzero uniform solutions [24],
hence the spatial connection between these states with
themselves or with other states is observed. On the
other hand, model (3) presents coexistence between stable
pattern and stable nonzero uniform states for small detun-
ing; thus this model shows a solution that link these states,
which corresponds to a front solution (cf. fig. 5(a)). From
this elementary solution using the theory of fronts interac-
tion, one can build up a family of localized patterns or hole
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Fig. 5: (Color online) Localized patterns, front and hole
solutions: real part of the amplitude A for eq. (3) as a function
of Z at γ = 0.57, ν =−0.002441, µ= 0.275 and γη= 0.1.
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Fig. 6: (Color online) ν-γ phase diagram of the existence of
the localized patterns at µ= 0.275 and γη= 0.1. The solid line
represents the Arnold tongue. The gray area and points account
for, respectively, the oscillations and extended waves.

solutions [12]. The frames (b) and (c) of fig. 5 show two
localized patterns with three and nine bumps, respectively.
These solutions represent localized waves in the paramet-
rically driven magnetic system, as those shown in fig. 4.
Therefore, the incorporation of leading high-order terms in
the parametrically driven damped nonlinear Schrödinger
equation accounts for particle-type solutions that link one
homogeneous state with a pattern state, producing a local-
ized pattern.
It is worthwhile to note that in the same region of para-

meters other types of solutions can be found as shown in
fig. 5(d). In this figure, we observe a hole solution, this
state being the inverse solution of the localized pattern,
that is, this solution represents a localized uniform preces-
sion surrounded by extended waves.
Finally, in order to study the robustness of the new

types of solutions we have numerically calculated the
range of parameters where the localized patterns exist.
Figure 6 shows the region of coexistence between the
uniform oscillations, which exist within the Arnold tongue,
and extended waves, which are represented by points. We
can observe that the localized states persist in a wide range
of parameters.
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Final remarks. – Far-from-equilibrium systems in
general exhibit multistable states. The spatial connection
of these states gives rise to a wealth of and unexpected
dynamical behaviors. One of the main goals of nonlinear
science is to understand this complex behavior. We have
here presented a novel type of localized states that link
asymptotically a homogeneous precession state with a
sub-harmonic wave in a magnetic anisotropic wire in the
presence of a parametric external magnetic field in the
transverse direction. The conventional approach of this
system lacks this novel family of localized pattern states.
The improvement of this model by consideration of leading
high-order terms accounts for these localized states in a
unified manner. Hence, due to the universal nature of the
considered model we expect to observe localized waves in
several driven systems such as a vertically oscillating layer
of Newtonian fluid, forcing nonlinear lattices, optical fibers
and Kerr-type optical parametric oscillators.
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