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Dissipative localized structures exhibit intricate bifurcation diagrams. An adequate theory has been

developed in one space dimension; however, discrepancies arise with the experiments. Based on an optical

feedback with spatially modulated input beam, we set up a 1D forced configuration in a nematic liquid

crystal layer. We characterize experimentally and theoretically the homoclinic snaking diagram of

localized patterns, providing a reconciliation between theory and experiments.
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Localized patterns arise in dissipative and spatially ex-
tended systems and can be seen as the single or multicells
units into which it is possible, under certain circumstances,
to decompose a pattern. Characterized by a family of
continuous parameters, as position, amplitude and width,
localized patterns can, formally, be described as particle-
like objects, even though made of a large number of
fundamental constituents—atoms or molecules. Their uni-
versal nature leads to observe them in such different fields
as magnetic materials, liquid crystals, gas discharge sys-
tems, chemical reactions, fluids, granular media, nonlinear
optics, and Bose-Einstein condensates [1–3]. Many experi-
mental and theoretical works have been devoted to the
study of localized patterns, and different mechanisms
have been identified as being responsible for their appear-
ance. Additionally, intriguing dynamical behaviors, dis-
playing mutual interaction of localized structures, have
been reported and control methods have been developed
in view of potential applications, these mainly aimed at
using single-cell localized structures as elementary, eras-
able and rewritable, storage bits.

A soliton is an example of a macroscopic localized
object, which arises from the balance between dispersion
and nonlinearity. Solitons have been reported in various
fields such as fluid dynamics, nonlinear optics, and
Hamiltonian systems [4]. Localized patterns can be con-
sidered as a generalization of this concept to out of equi-
librium, dissipative systems. Usually emerging in the
region of bistability between a uniform and a pattern state,
localized patterns extend over a limited space region and
consist of only a few cells, eventually a single one, of the
corresponding extended structure. While a front connect-
ing two uniform states has to be motionless only in a
specific point of the parameter space, the so-called the
Maxwell point [5], when one of the two states is a pattern
the corresponding orbits in the phase space of the equiva-
lent dynamical system exhibit heteroclinic tangle, leading
to a family of localized solutions with increasing number
of spatial oscillations. This description corresponds to the

well-known homoclinic snaking bifurcation [6], which
occurs in the pinning range of the front solution [7,8].
The scenario has been studied numerically in various
physical contexts [1,3]; however, an experimental valida-
tion has been proposed only for vertical-cavity semicon-
ductor lasers [9] and gas discharge systems [2]. In general,
several discrepancies arise when comparing the experi-
mental observations with theory. For instance, the extent
of the bistability region is not always consistent with that
expected from theory. Other discrepancies come from the
difficulty to unambiguously distinguish between a bound
state of localized structures and a multicells localized
pattern. For example, in a liquid crystal light-valve experi-
ment, bifurcation diagrams of localized patterns with dif-
ferent symmetries have been reported [10,11], thus
showing that coexistence of localized patterns can be due
to mechanisms other than the heteroclinic tangle. Hence,
the conclusions drawn when comparing theory and experi-
ments are not decisive.
In this Letter, we propose a new strategy to elucidate the

mechanism of homoclinic snaking of localized patterns.
Our approach is based on introducing a spatial forcing in a
system that exhibits bistability between two uniform states.
Because of the spatial forcing, the uniform states become
periodic (patterns) and the stationary behavior of the dy-
namical system becomes equivalent to that previously
described: the orbits in the stationary phase space show
heteroclinic tangle, leading to a family of localized solu-
tions with increasing number of spatial oscillations. When
referring to the equivalent temporal system, a straightfor-
ward analogy can be drawn by considering, for instance,
the effect of a forcing on the orbits of an oscillator [12].
Recently, by using a similar strategy, we have shown that it
is possible to characterize the pinning range and the bista-
bility region of patterns [13], confirming that localized
patterns may appear as a consequence of front interaction
[14]. More precisely, here we consider a setup based on a
nematic liquid crystal layer and a 1D spatially modulated
optical feedback. In a large region of the parameter space
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the system exhibits bistability between two different aver-
age orientations of the liquid crystal molecules. Because of
the spatial forcing, a large and controlled pinning range
exists, within which a family of localized patterns can be
carefully addressed, thus allowing us to construct a de-
tailed snaking bifurcation diagram, which is consistent
with the theory.

Experimental setup and results.—The experiment con-
sists of a liquid crystal light valve (LCLV) with optical
feedback. The LCLV is made of a thin nematic liquid
crystal (LC) layer inserted in between a glass plate and a
photoconductive wall over which a dielectric mirror is
deposited. An externally applied V0 voltage induces an
electric field, in the direction of which molecules tend to
orientate. When reflected by the mirror, and after passing
through the LC layer, light acquires a phase shift that is a
function of the LC orientation angle, which depends on the
light intensity Iw present on the photoconductive side of
the LCLV [15]. A spatial light modulator (SLM) controls
the light intensity profile at the entrance of the feedback
loop, which is closed by a fiber bundle. The intensity
distribution at the SLM is exactly imaged on the LCLV
and the rear side of the fiber bundle. In this configuration
the system exhibits bistability between uniform states [15].
We use V0 as a control parameter, whereas the other
parameters are similar to those considered in [13]. By
using the SLM, suitable intensity masks are produced in
order to impose a quasiunidimensional spatially periodic
forcing, which is responsible for the uniform states to
become spatially periodic ones. Hence, the system presents
coexistence of patterns and we expect to observe localized
patterns [16,17].

We first characterize the pinning region, then, by using
the SLM, we selectively create localized patterns with a
different number of elementary cells. A single-cell and a
two-cells structure are reported in Figs. 1(a) and 1(b),
respectively. It is worth noting that a two-cells structure
is different from a bound state of two single-cell structures.
In our system, this distinction becomes clear and can be
verified by the selective writing and erasure of single cells,
as allowed by the spatial forcing method. This is a major
difference with respect to previous experiments, where

localized patterns arise spontaneously and are difficult to
control [18], unless pinned over an underlying grid
potential [19]. Moreover, in the present case the bistability
is between two patterns: a small amplitude spatially modu-
lated lower state and a larger amplitude spatially modu-
lated upper state.
By varying the external voltage V0, we characterize the

region of coexistence of different localized patterns and we
construct the homoclinic snaking bifurcation diagram.
With this purpose, we measure the total intensity. This
quantity is proportional to the area of the pattern, each
localized pattern being characterized by a different number
of cells, and is consistent with the numerical representa-
tions, usually measuring the area of the patterns [6].
Figure 2 shows the results. Examples of the typical local-
ized patterns observed in the coexistence region are sche-
matically reported in Fig. 2(a), where the intensity profile
is shown together with the corresponding experimental
snapshot for n-cells localized patterns, with n from 1 to
9. The low amplitude pattern and the large amplitude
pattern are also shown, respectively, at the bottom and at
the top of the figure. The total extension of the system is of
approximately 12 cells. Larger patterns are difficult to
obtain because of spatial inhomogeneities in the system.
Figure 2(b) displays the snaking bifurcation diagram as a

function of the applied voltage V0. The different lines
inside the coexistence region (light shadow) mark stable
localized structures with a different number of cells. By
decreasing V0, we observe that localized patterns shrink
and become smaller until they reach the lowest state, that
is, the small amplitude pattern. On the other side, by
increasing V0, localized patterns expand, developing an
increasing number of spatial oscillations until they reach
the uppermost state, that is, the large amplitude pattern.
Within the experimental accuracy, and up to the structure
with n ¼ 6, the oscillations of the snaking diagram are
consistent with previously derived analytical results
[14,20]. However, when going towards the top of the
diagram the branches become slanted. As we will see in
the following, this effect can be explained by considering
the influence of spatial inhomogeneities in the system.
Theoretical description.—The dynamics of the system is

characterized by the reorientation of the LC molecules,
which is phenomenologically described by a relaxation
equation for the average tilt angle �ðx; tÞ, 0 � � � �=2,
and is driven by the feedback light intensity Iw [15,18].
Thus, the model reads as

�LC@t� ¼ l2@xx�� �þ �

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VFT

�V0 þ �Iwð�Þ

s �
; (1)

where x is the transverse direction of the LC layer, �LC the
LC relaxation time, l the electrical coherence length, and
�V0 þ �Iw � VFT the effective voltage applied to the LC
layer, with VFT the threshold for the Fréedericksz
transition, � the overall impedance of the LCLV dielectric
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FIG. 1 (color online). Snapshots (top) and corresponding 1D
intensity profiles (bottom) of experimental localized patterns:
(a) an isolated one-cell pattern, (b) a bound state of two-cells
patterns. g.v. represents gray values.
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layers, and � a phenomenological parameter summarizing,
in the linear approximation, the response of the
photoconductor [15]. In the presence of the spatial forcing
the light intensity reaching the photoconductor is

Iwð�Þ ¼ Iin

�
1þ B sin

�
2�x

p

��
½1þ cosð�cos2�Þ�; (2)

where Iin is the total input intensity, B and p are, respec-
tively, the amplitude and period of the forcing, and �cos2�
the overall phase shift experienced by the light traversing
the LC layer. Here,� ¼ 2kd�n, with d the thickness of the
nematic layer, �n the LC birefringence, and k ¼ 2�=�
with � the laser wavelength.

The model Eqs. (1) and (2) present coexistence between
patterns [13]. These are characterized by different ampli-
tudes due to the fact that the forcing is composed of an
additive and a multiplicative part (the feedback intensity
depends on �). Figure 3 illustrates the typical extended
and localized patterns obtained with this model. In

Fig. 3(a) we can appreciate the difference of oscillation
amplitude for the lowest and uppermost pattern, whereas in
Fig. 3(b) a single-cell localized structure is shown.
Figures 3(c) and 3(d) emphasize the different nature of
the solution with two-cells and the bound state of two
localized structures, respectively. In one spatial dimension,
theoretically and numerically, it is simple to distinguish
between these solutions that correspond, respectively, to a
single homoclinic and a double homoclinic orbit.
Nevertheless, to distinguish them experimentally is a com-
plex task, which becomes more and more complex as one
considers all the possible combinations of cells. A mixture
of these solutions in the bifurcation diagram generates
enormous distortions of the snaking sequence, which was
predicted only for multiple-cell patterns and in one dimen-
sion. In our experiment we achieve a high degree of control
of localized states and the system is constrained to be
quasi-one-dimensional. However, the case with two
single-cells localized structures is quite delicate to stabilize
unless an empty cell is left between the two.
Numerically, we have measured the total intensity

Itotal ¼
R
L
0 dxIw½�ðxÞ�, where L is the size of the system,

and we have constructed the bifurcation diagram of local-
ized patterns as a function of the control parameter V0, as
displayed in Fig. 4(a). This snaking diagram gives results
very similar to those observed in simple unforced models
like the Swift-Hohenberg equation [21]. The most signi-
ficative difference is that, when increasing the amplitude of
the forcing, the bistability region between the two patterns
shrinks. This causes the snaking bifurcation diagram to
shift outside the bistable region [see Fig. 4(a)], with the
coexistence region of localized patterns occurring in a
different range of parameters. This behavior is consistent
with the experimental findings [see Fig. 2(b)].
Moreover, the snaking region is contained in a slightly

slanted rectangular area, consistent with the first 6 experi-
mental branches of localized patterns. However, the last 5
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FIG. 3 (color online). Steady states obtained from model
Eqs. (1) and (2), VFT ¼ 3:2 V, V0 ¼ 6:3 V, Iin¼1:2mW=cm2,
� ¼ 1, � ¼ 59, B ¼ 0:77, p ¼ 0:077: (a) coexistence of pat-
terns, (b) localized one-cell pattern, (c) localized two-cells
pattern, and (d) bound state of two localized structures of one
cell.
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FIG. 2 (color online). Homoclinic snaking bifurcation of localized patterns. (a) Snapshot (top) and corresponding 1D intensity
profile (bottom) of the typically observed patterns; the number of cells increases from bottom to top. (b) Total intensity as a function of
the external voltage V0, showing the homoclinc snaking diagram of localized patterns; n-c stands for n-cell localized structure. The
light shadow area marks the region of coexistence of localized patterns, while the dark shadow area denotes the region of bistability
between the two extended patterns.
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experimental branches are more slanted. To account for
these observations, we include in the model a spatial
inhomogeneity of the parameters. For instance, we con-
sider a small gradient of the voltage, V0ðxÞ¼V0þx�V=L,
in order to reproduce the weak intensity gradient visible in
the experimental patterns (see Fig. 1). The resulting bifur-
cation diagram, and associated patterns, are displayed in
Fig. 4(b). Because of the spatial inhomogeneity, the snak-
ing diagram becomes tilted, with each successive saddle-
node bifurcation now occurring at an increasingly larger
voltage from bottom to top. Additionally, the bistability
region is highly reduced and the uppermost pattern is
located at the edge of the snaking region, similarly to
what is observed experimentally.

Finally, we have considered the influence of the forcing
amplitude on the extent of the snaking region. The numeri-
cal results are reported in Fig. 5, where the region of
coexistence of localized patterns is plotted in the V0 � B
parameter space. For low forcing amplitude the size of the
snaking region increases with B; however, it decreases at
large forcing amplitude because of the saddle-node bifur-
cation occurring when the uppermost state reaches the
lowest one [16]. As for the influence of the forcing wave-
length p, its variation only introduces a rescaling of the
pattern wavelength [13].

Conclusions.—One-dimensional spatially forced sys-
tems allow us to characterize the complex organization
of localized patterns in the homoclinic snaking diagram.

Our experimental observations are consistent with the
theoretical results. However, it is important to remark
that the snaking diagram is structurally fragile, since small
effects generate large deformations, which explains the
difficulty of achieving experimental verification.
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FIG. 4 (color online). Homoclinic snaking diagrams from
model Eqs. (1) and (2), same parameters as for Fig. 3:
(a) homogeneous voltage, (b) inhomogeneous voltage, �V=L ¼
0:025; the inset images are the corresponding localized patterns.
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