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Abstract. We study the formation of localized structures in two-dimensional systems with periodic forcing,
showing that these types of systems provide an adequate framework for the study and control of localized
structures. Theoretically, we introduce a dissipative φ4 model as a prototype for a bistable spatially forced
system, and we show that with different spatial forcings of small amplitudes, such as square or hexagonal
grids, this model exhibits a family of localized structures. By changing the forcing parameters, we control
the bistability between the various induced patterns. Experimentally, based on an optical feedback with
spatially amplitude-modulated beam, we set-up a two-dimensional forced experiment in a nematic liquid
crystal cell. By changing the forcing parameters, the system exhibits a family of localized structures that
are confirmed by numerical simulations for the average liquid crystal tilt angle.

1 Introduction

Non-equilibrium systems often exhibit different station-
ary states for different initial conditions. Multistability is,
therefore, one of the typical features of this class of sys-
tems. Spatially extended multistable systems can exhibit
solutions connecting two different steady states, and these
types of solutions are commonly denominated fronts [1].
The concept of front propagation, emerged in the field
of population dynamics [2,3], has gained growing interest
in biology [4], chemistry [5,6], physics [1,7,8] and math-
ematics [9,10]. On the other hand, spatial patterns ap-
pear spontaneously in out-of-equilibrium systems and are
observed in many different physical contexts [11]. Dur-
ing the last two decades, spatial pattern formation has
been largely studied, leading to the identification of var-
ious types of spatio-temporal instabilities and symmetry
selection processes in the general framework of dynami-
cal systems and bifurcation theory [11]. Localized struc-
tures, that is, patterns extended over a restricted spatial
domain, have received, in particular, a large interest, and
from the early observations of magnetic domains in fer-
romagnetic materials [12], localized states have been suc-
cessively observed in such different systems as liquid crys-
tals [13], plasmas [14], chemical reactions [15], fluid surface
waves [16], granular media [17,18], and thermal convec-
tion [19,20], just to cite a few. In nonlinear optics localized
structures were first predicted as solitary waves in bistable
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optical cavities [21], and successively explained in terms of
diffractive auto-solitons [22]. Optical localized structures
attract nowadays a lot of interest since they are potential
candidates for optical memories (see the review [23] and
references therein).

All these intriguing observations have inspired many
theoretical works on the origin of localized struc-
tures. Most of them are based onto a one-dimensional
geometrical description, in which localized structures are
understood as the homoclinic orbits in the Poincaré sec-
tion of the corresponding spatial-reversible dynamical sys-
tem [24–26]. In this framework, localized structures are
predicted to exist in parameter regions where the system
exhibits bistability between a pattern and an uniform sta-
ble state. Localized spatial states are, thus, understood
as macroscopic particle-like objects realizing the spatial
connection between two metastable states and appearing
close to the pinning range of the front solution [27]. In-
side the pinning range, the bifurcation diagram displays
a snaking shape with an infinite sequence of saddle-node
bifurcations, each bifurcation creating a cell of the local-
ized pattern solution [25]. Extensions of the same scenario
have been given in later papers [28–30]. More recently, lo-
calized structures have been described in terms of front
interactions [31] and their existence has been generalized
to the case when the homoclinic orbits connect two pat-
tern states, thus leading to localized peaks [32].

The experimental verification of all the theoretical de-
scriptions needs the bistability, either between two pat-
terns or between a pattern and a uniform state. However,



44 The European Physical Journal D

as a consequence of the slanted homoclinic snaking bi-
furcation diagram [33,34], localized structures can be ob-
served even outside the bistability region. In fact, the ex-
perimental observations show that a reduced number of
localized structures survive outside, and even far from,
the bistability region [35]. Experimentally, the main chal-
lenge is the control of localized structures, which resorts
to the ability of mastering the bistability, that is, select-
ing the type of metastable states, controlling the width
of the bistable region and the pinning range. However,
managing the bistability of self-organizing patterns is a
very complex task, which also lacks theoretical supports
whenever we deal with systems with more than one spatial
dimension.

The aim of this manuscript is to show that bistability
together with spatial forcing provide an adequate frame-
work where to study and control localized structures. The-
oretically, we introduce a prototype model for a spatially
bistable forced system – a dissipative forced φ4 model –
with different moderate forcings, such as square or hexag-
onal grids, that exhibits a family of localized structures.
We show that, by changing the forcing parameters, we can
control the bistability between the different self-organizing
patterns. Experimentally, based on an optical feedback
with spatially amplitude-modulated beam, we set-up a
two-dimensional forced experiment in a nematic liquid
crystal cell. By changing the forcing parameters, the sys-
tem exhibits a family of localized structures. The exper-
imental findings are confirmed by numerical simulations
for the average liquid crystal tilt angle.

The paper is organized as follows. Section 2 presents a
phenomenological bistable model with spatial forcing and
the numerically calculated localized structures that can be
obtained for different forcing parameters. In Section 3 we
present the experimental set-up, that is based on a liquid
crystal light valve LCLV with optical feedback, and the
theoretical description of the full model for the spatially
forced LCLV. In Section 4 are reported the localized struc-
tures observed in the experiment under different forcing
conditions. Finally, Section 5 presents the conclusions and
further perspectives.

2 Theoretical description: a simple bistable
model with spatial forcing

In order to have a simple model that exhibits bistabil-
ity in two-dimensional spatial dynamical systems, let us
introduce the dissipative φ4 model

∂tu = η + μu − u3 + ∇2
⊥u, (1)

where u(x, t) is a scalar field, μ is the bifurcation param-
eter, η accounts for the asymmetry between the two ho-
mogeneous states and ∇2

⊥ ≡ ∂xx + ∂yy is the transverse
Laplacian operator. From the bifurcation viewpoint, the
above model describes an extended imperfect pitchfork
bifurcation [37]. The above equation can read as

∂tu = −δF
δu

, (2)

Fig. 1. Front propagation of the dissipative φ4 model equa-
tion (1), by η = 0.1 and μ = 1. The dashed circle represents
the nucleation barrier.

where

F = −
∫ [

ηu + μu2/2 − u4/4 − (∇⊥u)2 /2
]
dxdy (3)

is a Lyapunov function. Hence, the dynamics of model (1)
is characterized by the minimization of F. Inside the curve
η2 = 2(μ/3)3 in {η, μ}-space, the system exhibits three
uniform states, two stable and one unstable, and outside
this curve there is only one stable state. Therefore, the sys-
tem has a bistability region inside the η2 = 2(μ/3)3 curve
and undergoes a saddle-node bifurcation at the bound-
aries. The origin of the {η, μ}-space is a point of nascent
bistability [36] or a cusp point [37].

In the bistability region, the model (1) shows front so-
lutions connecting the two stable states. A flat front solu-
tion is motionless at the Maxwell Point, where both states
have the same energy [38]. For model (1), the Maxwell
point corresponds to η = 0. Hence near the Maxwell point
but not in this, one could expect to find a localized struc-
ture of huge size, as a consequence of the balance between
front propagation and interface tension [39]. However, the
equilibrium between these two effects is unstable, which
corresponds to the nucleation barrier between the uniform
states. In Figure 1 the nucleation barrier is represented by
a dashed circle for η > 0. A circle as initial condition with
radius larger (smaller) than the radius of the nucleation
barrier will propagate outward (inward), as indicated by
the arrows. Based on these simple energy considerations,
it is straightforward to deduce that the dissipative φ4

model (1) does not have stable localized structure solu-
tions. However, introduction of spatial modulations can
lead to stabilize localized structures through the front pin-
ning effect [27]. Our goal is to show that the inclusion of
spatial forcing can screening curvature effects and then
give rise to new mechanisms of localized structures.

Recently, we have shown that a spatial forcing can
freeze the front propagation in one-dimensional spatial
system [40]. Here, in order to stop the front propagation,
we consider the following two-dimensional spatially forced
model

∂tu = η + μu − u3 + ∇2u + a cos(kx) + b cos (ky) , (4)

where {a, b} and k are, respectively, the amplitudes and
wave number of the spatial forcing. For small, and iden-
tical, forcing amplitudes (a = b), the uniform stable state
of the dissipative forced φ4 model (1) becomes a square
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Fig. 2. Equilibrium states of the spatially forced dissipative
φ4 model equation (4), by η = 0.01, μ = 1 and a = 1.0;
(a) uniform state, (b), (c) and (d) localizes structures.

pattern with amplitude proportional to a (cf. Fig. 2a).
Hence, in the bistability region, the above spatially forced
equation is a bi-pattern system [41] with square symme-
try, that is, a system that presents bistability between two
spatially modulated states.

For η > 0 and small value of the amplitude a, the
front propagates with a periodic speed. By increasing the
amplitude a, and for a finite value, the propagative front
becomes motionless and gives rise to a pinning range. This
is consequence of the spatial symmetry breaking, because
in order to propagate the front has to cross a periodic
nucleation barrier. Hence, in the bistability region of the
forced system, we observe front solutions and localized
states between the two square patterns (cf. Fig. 2). As a
consequence of the interplay between the envelope vari-
ations and the wave number of the underlying pattern,
the front solutions are motionless in a region of parame-
ters. Close to this region, we expect to observe a family
of localized states [31,42]. In Figure 2 are shown the typ-
ical square patterns observed and the localized structures
induced by the spatial forcing. As it is depicted in Fig-
ure 2, depending of the initial conditions one can observe
different size and shape of the localized states.

To figure out the pinning mechanism that give rise to
the localized structures, let us shed some light on the rea-
son why a flat interface is pinned. At the Maxwell point
(η = 0), the unforced model (1) has a flat motionless in-
terface (kink solution)

uk(x, y, t) =
√

ε tanh
[
(x − P )/

√
ε/2
]
,

where P accounts for the position of the interface. In the
limit of small forcing (a � 1) and η � 1. This is a kink
solution because this links two symmetric states [1]. We
can consider the following Ansatz for the front solution

u(x, y, t) =
√

ε tanh
[
(x − P (y, t))/

√
ε/2
]
+W (x, P ), (5)

where P is promoted to a field that describes the inter-
face dynamics, and W is a small correction function. In-
troducing the above Ansatz in the spatially forced model

Fig. 3. Front solution of the spatially forced dissipative φ4

model equation (4), by η = 0.01, μ = 1 and a = 1.0.

equation (4), and by linearizing in W , one obtains

LW = η + a [cos(kx) + cos(ky)] + ∂zuk∂tP

+ ∂zzuk (∂yP )2 − ∂zuk∂yyP, (6)

where z ≡ x − P (y, t) is the moving coordinate and
L ≡(ε − 3u2

k + ∂2
x) is a linear operator. Introducing the

inner product 〈f | g〉 =
∫∞
−∞ fg dx, the linear operator L

is self-adjoint (L = L†) and ∂zuk is the only element of the
kernel of L, which is related to the Goldstone mode of the
translation invariance [1]. Hence, the above equation has
solution if the interface field P (y, t) satisfies the following
solvability condition (Fredholm alternative [1])

∂tP = − 3η√
2ε

+ γ cos(kP ) − 3a√
2ε

cos (ky) + ∂yyP, (7)

where γ ≡ a
∫∞
−∞ ∂zuk cos(kz)dz/

∫√
ε

−√
ε ∂zukduk. The first

term on the right hand side describes the drift force related
to the difference of energy between the two metastable
states, the second and the third terms account for the in-
teraction of the interface and the spatial forcing in the
longitudinal, respectively, transversal direction of the in-
terface. The last term accounts for the effects of curvature,
i.e. as the speed of the front is affected by the curvature of
the interface. Effects of nonlinear curvature are neglected
in the scaling of validity of equation (7). It is important to
note that a similar interface equation, was derived in the
case of a front connecting a roll pattern with an uniform
state [43].

Hence, equation (7) describes the dynamics of a flat
interface between two stable solutions, which, in spatially
periodic media, becomes unstable and develops a small
amplitude modulation along the transverse direction, as
depicted in Figure 3. This phenomenon is due to the forc-
ing term proportional to a. The parameter G ≡ 3η/γ

√
2ε

stands for the balance between the drift, due to the sym-
metry breaking, and the periodic force induced by the
spatial forcing. When G is larger than one, the front
propagates along the longitudinal direction with a peri-
odic motion. For |G| ≤ 1, the system exhibits an infinity
of equilibria that represent the different equilibrium po-
sitions of the interface. When |G| < 1 the interface is
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Fig. 4. Localized structures of the spatially forced dissipative φ4 model equation (8) with hexagonal (upper row) and honeycomb
(lower row) symmetry; (a) background state, (b), (c), (d) stable localized structures built from different initial conditions by
η = 0.01, μ = 0.5, and a = b = c = 0.5; (e) background state, (f), (g), (h) stable localized structures built from different initial
conditions by η = 0.01, μ = 0.5, and a = b = −c = 0.5.

motionless and the system exhibit a large pining range.
Thus, equation (7) allows a qualitative understanding of
how each piece of a localized structure is held. Further-
more, the interaction of two interfaces propagating from
opposite directions can also be included in the model via
a term that decreases exponentially with the distance be-
tween the interfaces. It is important to note that the pre-
vious analytical result is valid near the Maxwell and for
small spatial forcing, but the mechanisms involved in this
limit are qualitatively valid away from the region of valid-
ity of this result. Numerical simulations and experimental
results show a good qualitative agreement.

Even though the above analysis does not provide a
rigorous derivation for two-dimensional localized struc-
tures, we would like to stress that controlling and man-
aging the pinning phenomenon, as it can be realized in
spatially forced systems, constitutes a powerful qualita-
tive approach. For example, such an approach allows us to
easily construct, both numerically and experimentally, an
infinite family of arbitrarily shaped localized structures,
each of them resulting from the superposition or interac-
tion between two different interfaces pinned over the spa-
tially forced state. To illustrate the pinning phenomenon
and the generation of localized states with different shapes
depending on the supporting pattern, let us consider, for
example, the dissipative forced φ4 model with an hexago-
nal type forcing

∂tu = η + μu − u3 + ∇2u + a cos(kx)

+ b cos

(
k

x −√
3y

2

)
+ c cos

(
k

x +
√

3y

2

)
, (8)

where {a, b, c} and k are the amplitudes and wave number
of the spatial forcing. For small identical forcing ampli-
tudes (a = b = c) or anti-symmetrical ones (b = c = −a),
the uniform stable state becomes an hexagonal or, respec-
tively, honeycomb pattern with amplitude proportional
to a. Hence, in the bistability region, the above spatially

forced equation is a bi-pattern system with hexagonal
symmetry.

In Figure 4 are shown the typical hexagonal patterns
observed and the interfaces between them. As in the case
of the square forcing, we expect, also in the hexagonally
forced system, a family of localized structures to result
as a consequence of the pinning phenomenon. Indeed, by
changing the initial conditions, we observe different sta-
ble localized states. A few examples of them are shown
in Figure 4. To summarize, the spatial forcing allows us
to stabilize and to create a family of arbitrarily shaped-
localized structures, where the size and the shape of the
interface is led by the form of the spatial forcing. Note that
pinning of localized structures on periodic arrays has also
been reported for a fixed grid in asymmetric vortex [44].
We note that if one considers a sufficiently large amplitude
forcing the curvature effects are negligible. Therefore the
dynamics of the interface is dominated by typical effects
of one-dimensional systems.

3 Experimental set-up

The experimental set-up used for the generation of local-
ized structures in two-dimensional spatially periodic me-
dia is a LCLV with optical feedback. A schematic picture
of the experiment is given in Figure 5.

The LCLV with optical feedback is a system charac-
terized by very rich dynamics, enabling the observation
of different types of spatial structures and symmetries de-
pending on the various experimental configurations [45].
In the present experiment, we fix bistability between dif-
ferent homogenous states, which is realized by introducing
polarization interference and zero length of diffraction in
the feedback loop [46]. Moreover, we introduce the spa-
tial forcing by using a spatial light modulator SLM, able
to produce both phase and amplitude modulations on the
input beam profile [47].
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Fig. 5. (Color online) Schematic experimental set-up. L are
lenses of the same focal length, f = 250 mm; PBS polariz-
ing beam-splitter; SLM spatial light modulator; PC personal
computer; M mirror; FB fiber bundle.

The LCLV consists of a thin film of a nematic liq-
uid crystal, LC, interposed between a glass plate and a
photoconductive material on which a dielectric mirror is
deposed. The inner surfaces of the cell are prepared for
planar anchoring of the liquid crystals (nematic director
parallel to the confining walls) [48]. Thanks to transparent
electrodes, a voltage can be applied across the LC layer
and all the molecules tend to orient along the same average
direction defined by the applied electric field. When a light
beam impinges on the photoconductive side of the valve,
because of the photo-induced charges the effective voltage
across the LC layer increases, leading to a further reori-
entation of the liquid crystal molecules. Because of the
LC birefringence, the molecular reorientation produces a
refractive index change for the beam passing through the
LC layer, hence a phase variation, and the LCLV as a
whole acts as a Kerr like medium, providing for the re-
flected beam a phase shift ϕ = kdn2Iw proportional to
the “write” intensity Iw incident onto the photoconduc-
tor. Here k is the optical wave number, d the thickness
of the nematic layer and n2 = n2(V0) the equivalent non
linear coefficient of the LCLV.

The LCLV is illuminated by an expanded He-Ne laser
beam (λ = 632.8 nm), 3 cm transverse diameter, linearly
polarized along the vertical direction. Once shone onto
the LCLV, the beam is reflected back by the dielectric
mirror deposed on the rear side of the cell and, thus, sent
in the feedback loop. A polarizing beam-splitter, PBS, a
mirror, M, and an optical fiber bundle, FB, are used to
close the loop and to send the beam back to the photo-
conductive side of the LCLV. The liquid crystal director
is oriented at 45◦. The PBS introduces polarization in-
terference between the ordinary and extraordinary waves
propagating in the loop, thus providing bistability be-
tween differently orientated states of the liquid crystal
molecules [45]. This, together with the diffraction-free sit-
uation, are the main ingredients necessary to get bista-
bility between homogeneous states, hence, normal fronts
connecting spatially uniform extended states [46]. These
fronts correspond to different average orientations of the
liquid crystal molecules and appear in the transverse di-
rection of the beam propagation as moving interfaces be-
tween different levels of the light intensity.

In the feedback loop, a self-imaging configuration is
obtained by using two lenses of the same f = 25 cm fo-
cal length, placed in such a way that the rear side and
the front side of the LCLV are conjugate planes. A spa-
tial light modulator, SLM, is placed on the optical path
of the input beam and a third lens of the same f = 25 cm
focal length, provides a 1:1 imaging of the SLM onto the
front side of the LCLV. The SLM is a liquid crystal dis-
play, one inch diagonal size, with a 1024×768 pixels, each
coded in 8 bits of intensity level, interfaced with a per-
sonal computer, PC. By using a dedicated software, inten-
sity masks are produced and sent to the SLM, which acts
as a programmable filter able to impose arbitrary spatial
modulations on the input beam profile. Two-dimensional
intensity forcings are introduced in order to generate and
control localized structures of different symmetry and size.

3.1 Theoretical description of the spatial forcing
in the LCLV with optical feedback

The model describing the evolution of the average orien-
tation angle θ of the liquid-crystal molecules, as originally
developed in [36], consists in a diffusive and relaxation
equation for the average liquid crystal tilt angle θ(x, t),
0 ≤ θ ≤ π/2, coupled with an equation for the feedback
light intensity Iw [45]. In the case of zero diffraction length
in the feedback loop, the equation for Iw can easily be
solved, and the full model for the LCLV with optical feed-
back reads as

τ∂tθ = l2∇2
⊥θ − θ +

⎧⎨
⎩

0, VLC < VFT

π
2

(
1 −

√
VF T

VLC(θ)

)
, VLC ≥ VFT

(9)
where τ = 30 ms is the liquid cristal relaxation time,
l = 30 μm the electric coherence length, ∇2

⊥ the trans-
verse Laplacian and VLC(θ) ≡ ΓV0 + αIw the effective
voltage applied to the liquid crystals, with VFT = 3.2 Vrms

the threshold for the Fréedericksz transition, Γ ∼ 0.3
the overall impedance of the LCLV dielectric layers and
α ∼ 5.5 V cm2/mW a phenomenological parameter sum-
marizing, in the linear approximation, the response of the
photoconductor. The light intensity reaching the photo-
conductor is Iw = Iin[1 − cos(Δϕ)], where Δϕ = β cos2 θ
is the overall phase shift experienced by the light travers-
ing the LC layer, β = 2kdΔn with d = 15 μm the thickness
of the nematic layer, Δn = 0.2 the LC birefringence and
k = 2π/λ with λ = 632.8 nm.

Close to the point of nascent bistability, Iin ≡ Ic, V0 ≡
Vc and θ ≡ θ0, and considering a spatially modulated
intensity Iin = Ic + B[cos(2πx/p) + cos(2πx/p)], we can
reduce the full θ model to a forced dissipative φ4-model
that reads as

τ∂tφ = η+μφ−φ3+ l2∇2
⊥φ+a

[
cos
(

2πx

p

)
+cos

(
2πy

p

)]
,

(10)
where p is the wavelength of the spatial modulation and
φ is the order parameter, which is related to the average
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Fig. 6. Numerical simulations of the average liquid crystal tilt angle model equation (9) by VF T = 3.2, Ic = 0.75, β = 59,
a = 0.1 and p = 0.8; (a) background state, (b) front between the background and the upper state, (c) and (d) examples of
stable localized structures.

Fig. 7. Localized structures observed in the experiment for a square grid modulation of the input beam; A = 190, B = 30,
p = 150 μm: (a) intensity mask delivered by the SLM; (b) front between the background and the upper state, V0 = 5.6 V; (c)
and (d) examples of localized structures, (c) V0 = 5.4 V and (d) V0 = 5.3 V.

director tilt by the expression

θ ≈ θ0 + φ/
(
2β cos 2θ0 cot

(
β cos2 θ0

)

+
(
4 + β2 sin 2θ0

)
/3 − 2/ (π/2 − θ0)

2
)1/2

.

The various coefficient η, ε, b and c can be calculated
with respect to the different experimental parameters and
read as

η ≡ 2α

π2VFT

[
1 − cos

(
β cos2 θ0

)]
(π/2 − θ0)

3

× [ΓIin − ΓIc + α
(
1 − cos

(
β cos2 θ0

)
(V0 − Vc)

)]
,

μ ≡ 12
π2 VFT

[
(π/2 − θ0)

2 (V0 − Vc)
]

+
12

π2 VFT

×
[(

π2 VFT

12
− (π/2 − θ0)

2

)
(Iin − Ic) /Ic

]
,

a ≡ 2αB

π2Γ VFT

[
1 − cos

(
β cos2 θ0

)]
(π/2 − θ0)

3 .

Numerical simulations of the full LCLV model equa-
tion (9) exhibit qualitatively the same types of localized
structures shown by the dissipative forced φ4 model. In
Figure 6 are depicted the typical background state, the
front solution between this state and the upper state, and
a few examples of localized structures obtained from the
integration of equation (9).

4 Experimental results

To confront theoretical results with experiments, two di-
mensional spatial modulations have been imposed in the
LCLV system by suitable intensity profiles of the input
beam. At this purpose, starting from fronts connecting
two homogeneous states, appropriate spatial modulations
have been introduced on the input beam profile via the
SLM, as described in the previous section. Both square
and hexagonal grids have been used to produce fronts in
two-dimensional spatially modulated media as well as to
generate and control localized structures in the range of
parameters where fronts can be pinned.

Let us first consider localized states over a square grid.
Suitable intensity distributions are generated through the
SLM, so that the input intensity takes the following ex-
pression,

I(x, y) = A + B [cos (k x) + cos (k y)] ,

with x the horizontal direction, y the vertical one and
k = 2π/p, where p is the wavelength of the modulation.
Here the intensity is expressed in gray levels, from 0 and
255, as delivered by the SLM. For an uniform mask of 185
gray value the input intensity is Iin = 0.84 μW/cm2. A
typical square intensity mask is displayed in Figure 7a,
for grid parameters A = 190, B = 30 and p = 150 μm. In
Figure 7b is shown an interface between the square mod-
ulated background and the upper state observed in the
pinning range of the front, V0 = 5.6 V, whereas Figure 7c
and 7d display examples of stable localized structures ob-
tained for V0 = 5.4 V and V0 = 5.3 V, respectively, and
same forcing parameters.
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Fig. 8. (Color online) Localized structures experimentally observed over a square grid for different initial conditions: (a) square
shaped localized domain comprising 16 cells of the underlying grid; (b) 6 cells localized structure obtained from selective
erasing individual cells of the large square domain; (c) “F” shaped localized domain and two single-cell localized structures.
Experimental parameters are V0 = 5.7 V, A = 180, B = 15 and p = 100 μm.

Then, in order to put into evidence the control and
managing of two-dimensional localized structures of arbi-
trary shape through the pinning phenomenon, we have
proceeded in the following way. By using the SLM, a
square shaped initial condition of 255 gray level over a
square grid background is switched on and then off, for a
fixed voltage V0 inside the pinning range. Figure 8a shows
the stable localized square domain obtained and having
the same size of the initial condition. This localized state
consists of 16 cells of the underlying square grid. By using
the cursor of the computer driving the SLM, it is possible
to apply locally a small perturbation that, because of the
bistable behavior of the system, allows us to selectively
erase individual cells of the localized domain. With this
procedure, we can stabilize localized structures of different
shapes. As an example, in Figure 8b it is shown a localized
domain comprising 6 cells of the underlying square grid.
For the same experimental parameters another example of
localized states is displayed by Figure 8c, where one can
distinguish a structure having the shape of a “F” letter as
well as two single-cell localized structures.

It is worth noting that for a given voltage V0 in the
left part in the pinning range, there is a maximum size
for the domain that one can stabilize. Starting from this
maximum domain size, smaller ones can be stabilized by
applying the erasing process previously described. When
increasing V0, thus approaching the right border of the
pinning range, one tends to deal with domains more dif-

Fig. 9. Fronts over a square grid; (a) initial state, (b) new
state resulting from selective erasing of the pattern cells. Ex-
perimental parameters are V0 = 5.8 V, A = 180, B = 15,
p = 100 μm.

ficult to stabilize as the system is getting nearer to the
depinning transition, and so closer to the upper front so-
lution [40]. Moreover, if instead of using a localized initial
condition one uses an extended one, it is possible to get
extended modulated front, as displayed in Figure 9a. By
displacing the cursor on the intensity mask we can per-
form a selective erasing of the pattern cells and get a new
state as depicted in Figure 9b.

We can proceed in a similar way by replacing the
square modulation with an hexagonal grid and, thus,
generate localized states over an hexagonally modulated
medium. Suitable intensity profiles of the input beam were
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Fig. 10. (Color online) Front between the two hexagonally
modulated states for V0 = 5.8 V and modulation parameters
A = 187.5, B = 7.5, p = 130 μm. In the inset it is shown the
corresponding hexagonal mask displayed on the SLM.

produced in the form

I(x, y) = A + B

[
cos (k x) + cos

(
1
2
k x +

√
3

2
k y

)]

+ B

[
cos

(
1
2
k x −

√
3

2
k y

)]
,

with k = 2π/p. A front between an hexagonal grid back-
ground and the corresponding upper state is shown in Fig-
ure 10 for V0 = 5.8 V and forcing parameters A = 187.5,
B = 7.5, p = 130 μm, with Iin = 0.84 μW/cm2 for an
uniform mask of 185 gray value.

For the same applied voltage V0 = 5.8 V, and for
the same forcing parameters as above, different localized
states can be stabilized starting from appropriate initial
conditions. As shown in Figure 11, we observe localized
structures with different size, going from 1 to 11 cells of
the underlying hexagonal grid. To produce them, we start
from a stable domain generated starting from a circular
initial condition and, by using the SLM, we apply the same
erasing process as described above for the square grid.
This way, it is possible to selectively erase the peripheric
cells of the stable domain and to stabilize smaller states,
down to a single-cell localized structures, as depicted in
Figure 11.

A generalization of the above description can be made
by considering intensity masks with more complex sym-
metry, like quasi-crystal patterns or super-lattices. This
could be implemented by using a generalized formula

I(x, y) = A + BΣi [cos (ki · r)] ,

with r = (x, y) and Σiki = 0. Localized structures with
complex symmetries are expected to arise in such systems
and further investigations in this direction are in progress.

Fig. 11. Localized states over an hexagonally modulated
medium for V0 = 5.8 V and modulation parameters A = 187.5,
B = 7.5, p = 130 μm; (a) 11 cells, (b) 5 cells, (c) 4 cells, (d) 3
cells, (e) 2 cells and (d) single-cell localized structure.

5 Conclusions

We have shown that an optical system characterized by a
robust bistability range between homogeneous or uniform
states allows achieving a high level of control and manag-
ing of localized structures by means of a two-dimensional
spatial forcing. By using an experimental set-up based on
a liquid crystal cell with optical feedback, we have shown
that it is possible to stabilize a large set of localized struc-
tures with arbitrary shape and size and that these features
are controlled by the symmetry and wavelength of the un-
derlying grid. The control of the localized states is ensured
by the mastering of the forcing grid and of its constitutive
parameters. The protocol of writing and erasing the differ-
ent localized structures has been proved over a square and
an hexagonal grid and has been shown to be robust and
reproducible. Numerical simulations of the full model for
the LCLV with optical feedback confirm the experimental
findings.

Close to the points of nascent bistability, we have in-
troduce a dissipative φ4 model as a prototype for spatially
bistable forced systems, and we have shown that with dif-
ferent spatial forcings, such as square or hexagonal grids,
this model exhibits a family of localized structures. The
approach is very general and extension of the same proto-
col to other experimental systems is straightforward. By
introducing spatial modulations with different symmetries
more complex localized structures could be observed and
exploited for more complicated tasks of optical storage
and processing.
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