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Abstract. In a liquid crystal light-valve experiment, we report solitary
localized structures appearing outside the bistability range and displaying a
behavior of single independent cells. The transition from an extended pattern
to solitary states is characterized both experimentally and numerically.
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1. Introduction

The concept of soliton as a single coherent structure originates from Hamiltonian systems [1].
The generalization of this concept to dissipative and out of equilibrium systems has led to several
studies in the last few decades, in particular to the definition of localized structures intended
as patterns appearing in a restricted region of space ([2] and reference therein). Localized
structures have been observed in different fields, such as magnetic materials [3], granular media
[4, 5], vibrated fluids [6], electroconvection [7], plasmas [8], chemical reactions [9], nonlinear
optical systems [10, 11], semiconductor microcavities [12], atomic vapors [13] and liquid
crystals [14].

All these observations have inspired many theoretical works on the origin of localized
structures. Most of them are based on a one-dimensional geometrical description, in which
localized structures are understood as the homoclinic orbits in the Poincaré section of the
corresponding spatial-reversible dynamical system [15]–[17]. In this framework, localized
structures are predicted to exist in parameter regions where the system exhibits bistability
between two stable spatial states and are understood as macroscopic particle-like objects
realizing the spatial connection between the two metastable states and appearing close to the
pinning range of the front solution [18]. Inside the pinning range, the bifurcation diagram
displays a snaking shape with an infinite sequence of saddle-node bifurcations, each bifurcation
creating a cell of the localized pattern solution [16]. Extensions of the same scenario have
been given in later papers [19]–[21]. More recently, localized structures have been described
in terms of front interactions [22] and their existence has been generalized to the case when the
homoclinic orbits connect two pattern states, thus leading to localized peaks [23].

Despite the intuitive picture given by the geometrical approaches, the comparison with
the experiments remains hard to establish, the main discrepancy originating from the large
robustness of the one-cell localized structures, which we will call solitary localized structures
(SLS), with respect to the other solutions predicted by the infinite sequence of homoclinic
orbits inside the snaking region. Indeed, several observations in optics [12]–[14], vibrated
granular media [4] or electroconvection [7] indicate that localized structures display more a
character of single objects than that of differently sized patterns, that is, only the single-cell
localized structures appear. Moreover, solitary structures often appear outside the range of
bistability between the homogeneous and the pattern state, which is also confirmed by numerical
simulations, for example on cavity solitons [24].

The theory–experiment discrepancy has been recently addressed and a solution is
proposed, which is based on the inclusion of non-local terms in the modified Swift–Hohenberg
equation [25] and leads to a tilt of the snaking bifurcation diagram [26]. Another approach
relies on the development of a local theory, showing that a slanted homoclinic snaking can
in general result from a saddle-node bifurcation of the pattern solution exhibited by a non-
resonant amplitude equation [27]. Recently, the existence of localized solutions outside the
bistability region, and associated tilted snaking diagrams, have been proved rigourously for
two-dimensional Swift–Hohenberg equation [28].

In this paper, we show, both experimentally and numerically, that SLS (one-cell) exist
outside the bistability range and that the transition from the extended pattern to solitary states
takes place through a mechanism of particle collision and annihilation, at difference with the
front propagation predicted to occur at the boundaries of the pinning region. We support our
observations by characterizing the evolution of the probability density functions (PDFs) of the
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light intensity fluctuations for a liquid crystal light valve (LCLV) with optical feedback. We
confirm the results by numerical simulations of a full model derived from first principles.

2. Description of the experiment and derivation of the model from first principles

The experiment consists of an LCLV inserted in an optical feedback loop [29]. The LCLV is
composed of a nematic liquid crystal layer in between a glass wall and a photoconductive plate
over which a dielectric mirror is deposed. The liquid crystals are planar aligned (nematic director
parallel to the confining walls) and the thickness of the layer is 15 µm. Transparent electrodes
covering the cell walls permit the application of an external voltage V0. The photoconductor
behaves like a variable impedance, its resistance decreasing when the intensity is increased.
When a voltage V0 is applied to the valve, the voltage that effectively drops across the liquid
crystals is VLC = 0V0 + α Iw, where Iw is the light intensity impinging on the photoconductor
side of the LCLV and 0, α are phenomenological parameters summarizing, in the linear
approximation, the response of the photoconductor. The input beam, when passing through
the liquid crystal layer, undergoes a phase shift ϕ = β cos2θ , with θ the average tilt angle of the
liquid crystal molecules and β = 2π1nd/λ, where λ is the optical wavelength and 1n = ne − n0

is the liquid crystal birefringence, ne and n0 being, respectively, the extraordinary (parallel to
the liquid crystal director En) and ordinary (perpendicular to En) refractive index. The tilt angle θ

obeys a diffusion relaxation equation [30],

τ∂tθ = l2
∇

2
⊥
θ − θ + f (θ), (1)

where l = 20 µm is the diffusion length summarizing the elastic coupling in the liquid
crystal and the charge diffusion in the photoconductor, τ = 10 ms is the local relaxation time,
f (θ) = π/2(1 −

√
VFT/VLC) accounts for the response of the LCLV and VFT = 1.05 V is the

Fréedericksz transition voltage [31]. The optical feedback is obtained by sending back onto the
photoconductor the light that has passed through the liquid crystals and has been reflected by
the LCLV. After free propagation and polarization interference, the light intensity arriving at the
photoconductor is

Iw =
Iin

4
| ei(Lλ/4π)∇2

⊥ · (1 − eiβ cos2 θ)|2, (2)

where Iin is the input intensity and L is the free propagation length in the optical feedback loop.
equations (1) and (2) constitute the full model equations for our system.

3. Characterization of the transition from an extended pattern to SLS

In the experiment, we fix the free propagation length to L = 8 cm. As control parameters, we
change the applied voltage V0 and the input light intensity Iin. By varying either V0 or Iin we
observe different dynamical regimes. The transition from an extended hexagonal (HEX) pattern
to SLS occurs in a wide range of the V0, Iin parameters. This type of transition has been studied
in the framework of passive diffractive resonator [32]. Figure 1 shows the region of existence
of SLS in V0 − Iin plane. Dots are experimental points obtained by detecting the pattern change
when varying the voltage V0 for each value of the input intensity Iin.
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Figure 1. Phase diagram in the Iin − V0 plane of the LCLV experiment. Lines
are numerically calculated, dots are the experimental points. The dashed line
delimits the region of bistability between the homogeneous steady state (HSS)
and the pattern (HEX) state.

Curves in figure 1 are numerically calculated from the model equations (1) and (2) by
fixing the parameters in the region of existence of SLS and then switching on a single localized
structure by a triggering pulse. The voltage is increased until the transition toward hexagons
occurs, or is decreased until the HSS is reached. The same procedure is repeated starting
from the extended pattern and by decreasing the voltage until the homogeneous solution is
approached. The continuous lines mark the boundaries of the region of existence of SLS.
The dashed line delimits the region of bistability between the HSS and the HEX state. This
region is very narrow and in the experiment is masked by the liquid crystal inhomogeneities.
Note also that for input intensity Iin > 0.8 mW cm−2 a transition from hexagons to space-
time chaos occurs and for voltage V0 6 13.05 V we observe the formation of triangular
localized structures [33]. In this case the transition to extended pattern shows a more complex
scenario [34], that will not be discussed here.

Experimentally, the boundary between HSS and SLS is found by applying a local
perturbation at the HSS state and by checking if one or more solitary structures remain after
removing the perturbation. On the other side, the boundary between the HEX and the SLS is
determined by starting with V0 in the HEX region and then decreasing it to the SLS region. We
show in figure 2 three typical instantaneous snapshots recorded for Iin = 0.38 mW cm−2 and by
changing the rms value of V0 from 13.30 to 13.22 V. We first observe an hexagonal pattern
(figure 2(a)). When decreasing the voltage, a transition takes place and the system evolves
toward a final distribution of SLS appearing in random space positions (figure 2(c)). During
the transition, the solitary structures interact with each other (figure 2(b)), displaying a gas-like
behavior characterized by continuous collisions between the particles. At difference with a real
gas, the collisions may lead to particle annihilation, so that in the course of time the number of
particles is not conserved.

After a transient, which lasts for a few seconds, a final frozen configuration of SLS is
reached, where the particles remain fixed in their position and interactions become negligible.
Starting from different initial conditions, different final frozen configurations are observed,
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Figure 2. Experimental PDF (left) and instantaneous snapshots (right) showing
the transition from (a) a HEX pattern to (c) a frozen configuration of SLS,
through (b) a transient characterized by particle interaction and annihilation.

so that we can identify the state of figure 2(c) as one with a large configurational entropy,
in the sense defined in [35]. Note that SLS always remain individuals and do not form a
pattern, as can be remarked by the empty space between them. We can also note in figure 2(b)
(at difference with figure 2(a)) the presence of oscillatory rings around each individual
cell, these rings being due to the diffraction of a single spot over the uniform background
and being absent in a pattern, or in a patch of pattern as it would result if the transition
would occur through the propagation of a front expanding from differently sized localized
patterns.

In order to characterize the observed dynamical states, we have recorded long-time movies
and from each movie we have extracted the PDF of the light intensity fluctuations δ I = I − 〈I 〉,
where I is the intensity of each pixel and 〈I 〉 is the average intensity distribution, which is
calculated by averaging pixel by pixel over the entire stack of images. The results are shown
in the left part of figure 2. The HEX state and the frozen configuration of SLS are almost
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Figure 3. Experimental profiles recorded during a two-particle collision.

(a) (b)

Figure 4. Experimental snapshots showing the transition from the SLS (state 1)
to the HEX pattern (state 2); (a) V0 = 13.22 V, (b) V0 = 13.30 V: successive
frames correspond to successive instant times with a time step of 0.4 s; Iin =

0.45 mW cm−2. An animation of this figure is available from stacks.iop.org/
NJP/11/093037/mmedia.

stationary states and the PDFs are given by fluctuations of the particles around their equilibrium
positions. In the HEX state, the PDF is larger because of slow sliding and gliding of differently
oriented domains, whereas for the frozen gas only the fluctuations due to inhomogeneities and
noise naturally present in the system are influencing the stationary state. The transition from
hexagons to solitary structures is characterized by an abrupt change of the PDF that becomes
strongly asymmetric acquiring a high tail at large intensity fluctuations (figure 2(b)). These
large fluctuations correspond to events of particle annihilations, when high intensity pulses are
produced during the collisions of two particles.

In figure 3 is displayed a set of experimental profiles recorded during an event of two-
particle collision. It can be seen that a high intensity pulse is produced when the two particles
collide and that after the collision one particle has been annihilated.

On the other side, the transition from the SLS (state 1) to the HEX pattern (state 2) occurs
by starting with V0 in the SLS region and then increasing it to the HEX region. Experimentally,
a single localized structure is created in the SLS state by applying a local, and small,
perturbation. In figure 4, we show a set of experimental snapshots recorded during the
transition from a single localized structure to an hexagonal pattern. The input intensity is
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Figure 5. Numerical snapshots showing the evolution of the liquid crystal tilt
angle θ(x, y, t) during the transition 1 → 2 → 1. The spatial scales are identical
in all panels. (a) V0 = 13.22 V with a single localized structure (state 1); (b)
V0 = 13.22 V: successive frames correspond to successive instant times with
a time step of 0.4 s; Iin = 0.45 mW cm−2; (c) final HEX pattern (state 2); (d)
V0 = 13.22 V: successive frames correspond to successive instant times with a
time step of 0.4 s; (e) final state of SLS (state 1). An animation of this figure is
available from stacks.iop.org/NJP/11/093037/mmedia.

Iin = 0.45 mW cm−2 and the voltage is first fixed to V0 = 13.22 V, panel (a). Then, it is increased
to V0 = 13.30 V, panel (b). The successive frames on the same line correspond to successive
instant times with a time step of 0.4 s. We can see that the evolution toward the HEX state takes
place through the nucleation of new cells in random space positions, triggered mainly by the
spatial inhomogeneities of the liquid crystal orientation.

4. Numerical simulations

Numerical simulations of the full model for the LCLV system—equations (1) and (2)—are
performed by a pseudo-spectral method and Runge–Kutta integration and by fixing periodic
boundary conditions. In order to characterize the transition 1 → 2 → 1, as marked in figure 1,
we have performed simulations for either increasing or decreasing the control parameter V0 and
by keeping fixed the input intensity at Iin = 0.45 mW cm−2.

In figure 5, we show the transitions 1 → 2 → 1. In panel (a) the voltage is fixed to
V0 = 13.22 V and a single localized structure is switched on by a triggering intensity pulse
(state 1). Then, the voltage is increased to V0 = 13.22 V, panel (b). The successive frames on
the same line show the evolution toward the final HEX state, panel (c). In panel (d) the voltage
is decreased back to its initial value, V0 = 13.22 V, and the successive frames on the same line
show the evolution toward the final SLS state, panel (e).

Both from the top and the bottom line of the temporal evolution (direct, respectively,
reverse transition from SLS to HEX), we note that the intermediate states are characterized by
a process of filamentation and successive break-up, which can lead either to cells replication
or annihilation. Note that a similar mechanisms of spot self-replication has recently been
described for a Schnakenburg model in a two-dimensional domain [36] and for the spot
deformation and replication in the two-dimensional Belousov–Zhabotinski reaction–diffusion
system [37].

New Journal of Physics 11 (2009) 093037 (http://www.njp.org/)

http://stacks.iop.org/NJP/11/093037/mmedia
http://www.njp.org/


8
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Figure 6. Numerical snapshots showing the evolution of the liquid crystal tilt
angle θ(x, y, t) during the transition from the SLS (state 1) to the HEX pattern
(state 2); (a) and (c) V0 = 13.22 V, (b) and (d) V0 = 13.30 V: on each line
successive frames correspond to successive instant times with a time step of 0.4 s;
Iin = 0.45 mW cm−2. The top line shows the evolution in the absence of noise,
the bottom line shows the evolution in the presence of a spatial noise distribution
with an amplitude less than 4% of the maximum pattern amplitude.

The numerical transition from HEX to SLS displays the same scenario as the one
observed in the experiment, with a transient characterized by particle interactions, collisions
and annihilations. Correspondingly, the PDF of the intensity obtained from the numerical
simulations are in good agreement with the experimental PDFs. As for the SLS to HEX
transition we observe that new cells nucleate spontaneously over concentric rings around the
first cell, while in the experiment this behavior is not observed and localized structures nucleate
instead in random space positions. This different behavior is due to the presence of spatial
inhomogeneities that destroy the radial symmetry of the ring-shaped disturbances around the
first localized structure.

To test the influence of spatial inhomogeneities, we have performed numerical simulations
of the 1 → 2 transitions by adding a small amplitude distribution of spatial noise. The maximum
noise amplitude is kept less than 4% of the maximum pattern amplitude. In figure 6, we show
the first stages of the transition 1 → 2 with and without noise. The top and bottom lines
display numerical snapshots of the liquid crystal tilt angle θ(x, y, t) with and without noise,
respectively. In figures 6(a) and (c) the voltage is fixed to V0 = 13.22 V and a single localized
structure is switched on by a triggering intensity pulse (state 1). Then, in panels (b) and (d)
the voltage is increased to V0 = 13.30 V and the system is let to evolve. On each line, the
successive panels correspond to the temporal evolution for reaching the final hexagonal state
(state 2).

On the top line, we observe that new cells nucleate spontaneously over concentric rings
around the first localized structure. Indeed, in the absence of any external perturbation, the only
triggering signal for the nucleation of new localized structures is the slightly higher intensity of
the rings around the first cell. When the voltage is slightly increased, the intensity on the rings
increases and new cells are nucleated from the ring break-up, thus leading to a pattern with
radial symmetry. Note that a similar behavior of spot nucleation over a ring has recently been
reported for a planar Swift–Hohenberg equation [28]. When a small amplitude spatial noise
is introduced in the simulation, the process of cell replication occurs instead in random space
positions, which correspond to the small disturbances introduced by the noise. In this case, the
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radial symmetry is completely destroyed, in agreement with the experimental observations (see
figure 2). Indeed, in the experiment, due to the presence of spatial inhomogeneities in the liquid
crystals, the structures nucleate in random space positions instead of following a regular path
around the first cell.

5. Conclusions

In conclusion, we have shown that SLS exist outside the bistability range and that the transition
from extended pattern to SLS is characterized by a dynamics of particle interaction and
annihilation. The experimental and numerical observations are in qualitative and quantitative
agreement.
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