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1 l’Institut Non Linéaire de Nice (INLN), Centre National de la Recherche Scientifique (CNRS),
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We present a unifying description of localized states observed in systems with coexistence of two spatially periodic states, called
bi-pattern systems. Localized states are pinned over an underlying lattice that is either a self-organized pattern spontaneously
generated by the system itself, or a periodic grid created by a spatial forcing. We show that localized states are generic and
require only the coexistence of two spatially periodic states. Experimentally, these states have been observed in a nonlinear optical
system. At the onset of the spatial bifurcation, a forced one-dimensional amplitude equation is derived for the critical modes,
which accounts for the appearance of localized states. By numerical simulations, we show that localized structures persist on two-
dimensional systems and exhibit different shapes depending on the symmetry of the supporting patterns.
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1. Introduction

Spatial patterns appear spontaneously in out-of-equilibrium
systems and are observed in many different physical contexts
[1]. During the last two decades, spatial pattern formation
has been largely studied, leading to the identification of
various types of spatiotemporal instabilities and symmetry
selection processes in the general frameworks of dynamical
systems and bifurcation theory [2, 3]. Localized structures,
that is, patterns extended over a restricted spatial domain,
have received, in particular, a large interest, and from the
early observations of magnetic domains in ferromagnetic
materials [4], localized states have been successively observed
in such different systems as liquid crystals [5], plasmas [6],
chemical reactions [7], fluid surface waves [8], granular
media [9, 10], and thermal convection [11, 12]. In nonlinear
optics localized structures were first predicted as solitary
waves in bistable optical cavities [13], and successively also
explained in terms of diffractive auto-solitons [14]. Optical
localized structures attract nowadays a lot of interest since
they are potential candidates for optical memories [15].

In one-dimensional systems, localized structures or
localized patterns can be described as homoclinic orbits

passing close to a spatially oscillatory state [1, 16], or to
the ghost of a spatial pattern [17, 18], and converging to an
homogeneous state, whereas domains are seen as heteroclinic
trajectories joining the fixed points of the corresponding
dynamical system [19]. Recently, in a nematic liquid crystal
light valve with optical feedback it has been found exper-
imentally a different type of localized states, appearing as
large amplitude peaks nucleating over a lower amplitude
pattern, therefore called localized peaks [20]. Figure 1 shows
the typical localized peak observed in the light valve with
optical feedback. More recently, similar observations have
been numerically reported in other optical systems, such as in
atomic vapors with optical feedback [21] and in intracavity
photonic crystals [22]. Moreover, localized peaks appear
also in a Newtonian fluid, when nonlinear surface waves
are parametrically excited with two frequencies [23], and in
monoatomic layer deposition [24]. Thus, these examples of
localized states appearing over a patterned background [20–
24] seem to constitute a different universal class of structures
with respect to the localized states that rise up from an
uniform background [1, 4–9, 11–13, 16, 19].

The interplay of localized states with a structured
background is particularly interesting in nonlinear optics,
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Figure 1: A typical experimental profile of a localized peak
observed in the LCLV with optical feedback.

where it opens interesting technical issues on the control
of localized structures, with the possibility of driving their
dynamics and tailoring their interactions [25–28]. Here,
we present a general description of bi-pattern systems, by
which we mean systems that exhibit coexistence between two
distinct pattern states and are, therefore, able to generate
localized peaks. In these systems, localized structures are
pinned over an underlying spatial grid, which can be either
spontaneously created by a self-organized pattern formation
or externally induced by a spatial periodic forcing. We show
that in both cases the observed dynamical behaviors are
qualitatively the same. However, while the features of the
spontaneous pattern formation are difficult to control, the
external forcing has the advantage of providing an easy and
precise way to determine the features of localized structures,
as well as to allow a direct comparison with the theoretical
developments.

On the basis of amplitude equations, a first preliminary
one-dimensional description of localized states observed in
bi-pattern systems was done by the present authors in a
recent Letter [29]. The aim of the present article is to study
and characterize the universal mechanism that is at the
origin of localized states pinned over an underlying lattice.
In order to derive an unifying and simple description of
localized peaks, we develop a theoretical model for one-
dimensional spatially extended systems close to a spatial
bifurcation. The model, which describes coexistence of two
different patterns and stable front solutions between them, is
based on an amplitude equation that includes a spatial para-
metric forcing. This extension with respect to conventional
amplitude equations, allows to describe localized patterns
and to account for the main properties of these solutions.
The model includes the interaction of the slowly varying
envelope with the small scale of the underlying pattern [30],
well-known as the nonadiabatic effect [31, 32].

As examples of bi-pattern systems in two-dimensions,
we consider: a liquid crystal light valve (LCLV) with optical
feedback, which provides our experimental framework, and
a spatially forced subcritical pitchfork as a prototype model.
Both systems show robust existence of localized states, which

exhibit different shapes depending on the symmetry of the
supporting patterns.

The paper is organized as follows. In Section 2 we present
the two example systems, namely the experiment of the LCLV
with optical feedback, and the forced subcritical pitchfork
model, showing the typical localized states appearing in both
systems. Section 3 contains the unified one-dimensional
description of bi-pattern systems, which relies on the deriva-
tion of an amplitude equation amended by the inclusion of
nonadiabatic terms, and Section 4 are the conclusions.

2. Examples of Localized States in
Bi-Pattern Systems

To provide inspiration of localized states in bi-pattern
systems, we shall consider a liquid crystal valve with optical
feedback as an experiment and numerical simulations of a
spatially forced subcritical pitchfork as a prototype model.
In the experiment, the underlying lattice of the bi-pattern
is realized either by letting the systems to spontaneously
generate a self-organized pattern, or by imposing an intensity
grid through a spatial periodic forcing. This last case
compares directly with the model, which is indeed a spatially
forced amplitude equation.

2.1. Experimental Evidence of Localized Peaks. The experi-
mental setup, consisting of a LCLV in an optical feedback
loop, is the same as the one reported in [33]. The LCLV is
composed of a nematic liquid crystal film inserted in between
a glass and a photoconductive plate over which a dielectric
mirror is deposed. The liquid crystal film is planar aligned
(nematic director −→n parallel to the walls), with a thickness
d = 15μm. Transparent electrodes deposited over the glass
plates permit the application of an external voltage V0

across the liquid crystal layer. The photoconductor behaves
like a variable resistance, which decreases for increasing
illumination. The feedback is obtained by sending back onto
the photoconductor the light which has passed through the
liquid-crystal layer and has been reflected by the dielectric
mirror. The light beam experiences a phase shift which
depends on the liquid crystal reorientation and, on its turn,
modulates the effective voltage that locally applies to the
liquid crystals.

The feedback loop is closed by an optical fiber bundle and
is designed in such a way that diffraction and polarization
interference are simultaneously present [33]. The presence
of diffraction leads to the spontaneous generation of self-
organized patterns, which display a typical spatial period
scaling as ∼

√
λL, where λ is the laser wavelength and L is

the optical free propagation length in the feedback loop [34].
On the other hand, the presence of polarization interference
leads to bistability between different spatial states. Setting
L = 0 eliminates diffraction effects, so that in this case the
system exhibits bistability between homogeneous states.

As a first set of experiment, we fix L = −40 mm, so that
the system spontaneously selects the lattices contributing to
the bi-pattern interplay. The voltage applied to the LCLV has
a rms value of V0 = 12.3 V, with a frequency 6 kHz. Note that
the period of the sinusoidal voltage V0 is much shorter than
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Figure 2: Hexagonal patterns and localized peaks observed in the LCLV system for Iin = (a) 0.32, (b) 0.38 and (c) 0.52 mW/cm2. From [20].

the liquid crystal response time and of the typical times for
electroconvection [35], thus, liquid crystals are sensitive only
to the rms value of the applied voltage and perform a static
reorientation. Hydrodynamical effects, such as backflow, are
avoided and the molecular realignment is a pure Fréedericksz
transition [36].

By increasing the input light intensity Iin we observe a
sequence of transitions, as shown by the experimental snap-
shots of Figure 2. First, the homogeneous steady-state looses
stability and develops a pattern of hexagons (Figure 2(a)). By
further increasing Iin, localized peaks of higher amplitude
appear over the hexagonal background (cf. Figures 1 and
2(b)). For higher values of Iin the system exhibits a novel
pattern state, which has a small coexistence region with the
hexagonal pattern [20]. Figure 2(c) shows the pattern state
observed for high Iin.

The theoretical model for the LCLV feedback system
was previously derived in [37] and consists in two coupled
equations, one for the average director tilt θ(−→r , t), 0 ≤ θ ≤
π/2, and one for the feedback light intensity Iw. The equation
for the director reads as

τ∂tθ = l2∇2
⊥θ − θ + f (θ), (1)

where l is the electric coherence length, τ the local relaxation
time and f (θ) a function taking into account the response of
the photoconductor to the feedback intensity Iw: f (θ) = 0
when V ≤ ΓVFT and f (θ) = π/2(1 − √ΓVFT/V) when V >
ΓVFT, with V the voltage that effectively applies to the liquid
crystals

V = ΓV0 + αIw(θ) (2)

and VFT the threshold voltage for the Fréedericksz transition.
Γ is the impedance of the LCLV dielectric layers and α
a phenomenological parameter summarizing, in the linear
approximation, the response of the photoconductor. After a
free propagation length L, the feedback light intensity is given
by

Iw = Iin

4

∣
∣∣ei(Lλ/4π)∇2

⊥
(

1− e−iβcos2θ
)∣∣∣

2
(3)

I(x, y)

y

x

Figure 3: Numerical profile of the intensity showing a localized
peak in the LCLV system.

the diffraction being accounted for by the operator
ei(Lλ/4π)∇2⊥ . Similar relationships between the tilt angle and
the optical intensity distribution have been previously
derived for light diffraction in electroconvective liquid
crystal cells, where far-field diffraction [38] or shadowgraph
methods [39] were employed for pattern visualization, but
without any feedback of light onto the tilt angle. Recently,
electro-hydrodynamic convection in a nematic liquid crystal
cell with a photoconductive electrode has been reported [40].
In such a case, though there was no feedback, the light beam
was acting as an external photocontrol, locally modifying the
voltage applied to the liquid crystal.

We have performed numerical simulations of our model
equations (1), (2), and (3) by taking as values of the
parameters Γ = 0.15, α = 5.5 Vcm2/mW, VFT = 3.0 V,
l = 30μm, λ = 632 nm, L = −40 mm. In Figure 3 is
displayed a numerical intensity profile showing a localized
peak over a hexagonal pattern. By comparing with Figures 1
and 2, we can see that the numerical profile is in a fairly good
agreement with the experimental profile and snapshot for the
light intensity.
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In brief, it exists a large range of parameters within
which the LCLV with optical feedback spontaneously is a bi-
pattern system, exhibiting localized states pinned over a self-
organized lattice generated by the system itself.

2.2. Spatially Forced Subcritical Pitchfork Model. A prototype
model of bistability is the subcritical pitchfork model

∂tu = μu + νu3 − u5 +∇2
⊥u, (4)

where u(x, t) is a scalar field, μ is the bifurcation parameter,
ν characterizes the type of bifurcation, which is subcritical
(supercritical) for positive (negative) ν and ∇2

⊥ ≡ ∂xx + ∂yy .
The steady states of the above model are u0 = 0 and

u±,± = ±
√

ν±
√

ν2 + 4μ, (5)

where u = {0,u±,+} and u = {u±,−} are stable and unstable
uniform states, respectively. Figure 4 depicts the bifurcation
diagram of subcritical pitchfork model (4) and the respective
critical points that characterize the bifurcation, namely the
beginning of the bistability B, the Maxwell point μM and the
transition point T .

In order to have a bi-pattern system, we consider the
following spatially forced model

∂tu = μu + νu3 − u5 +∇2u + a cos(kx)

+ b cos

(

k
x −√3y

2

)

+ c cos

(

k
x +

√
3y

2

)

,
(6)

where {a, b, c} and k are the amplitude and wave number
of the spatial forcing. For small identical forcing amplitudes
(a = b = c) or antisymmetrical one (b = c = −a), the
uniform stable state of the subcritical pitchfork model (4)
becomes a hexagonal or, respectively, honeycomb pattern
with amplitude proportional to a. Hence, in the bistability
region, the above spatially forced equation is a bi-pattern
system with hexagonal symmetry. In Figure 5 are shown
the typical hexagonal patterns observed and the interface
between them.

Hence, in the bi-pattern region we observe front solu-
tions and localized states between the two patterns. As a
consequence of the interplay between the envelope variations
and the wave number of the underlying pattern, the front
solutions are motionless in a region of parameters, so-called
the pinning range. Close to this region we expect to observe
a family of localized states [30, 31]. Figure 6 illustrates a
typical localized state observed in the hexagonally forced
model (6), that appears as a localized peak over a structured
background. In the experiment of the LCLV with feedback, it
has been recently shown that the effect of a hexagonal spatial
forcing induces regular arrays of localized structures [26].

To illustrate that the localized peaks exhibit different
shapes depending on the supporting pattern, we consider the
subcritical pitchfork model with an orthogonal forcing

∂tu = μu + νu3 − u5 +∇2u + a cos(kx) + a sin
(
ky
)
, (7)

B TμM

u0

u+,+

u+,−

μ

Figure 4: Bifurcation diagram of model (4), the continuous and
dashed curves stand for the stable, respectively, unstable uniform
state. B, μM and T stand for beginning of bistability, Maxwell and
transition points.
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Figure 5: Interface between the two hexagonal patterns exhibited
by model (6) with μ = −0.18, ν = 1.0, and a = b = c = 0.02. The
inset figure shows the density plot of the field u(x, t).

where a is the amplitude of the spatial forcing. For small
forcing, the uniform stable states of the subcritical pitchfork
model (4) become square patterns with amplitude propor-
tional to a. Hence, in the bistability region, the above spatially
forced equation is also a bi-pattern system. In Figure 7 is
shown the typical localized states observed in model (7).

2.3. Spatially Forced Experiment: Bi-Patterns and Localized
States. Recently, we have shown in the LCLV experiment that
a spatially periodic grid can be imposed, by means of a spatial
light modulator, on the profile of the input beam [26]. In
such a case, localized structures are pinned over the grid,
which controls their dynamical behavior. Here, we have set
to zero the free propagation length in the feedback loop, that
is, L = 0, hence no spatial scale is spontaneously selected by
the system itself. Then, by using the previous technique, we
have imposed on the input beam a spatial grid of the desired
symmetry and period. In doing so, we are strongly motivated
by the possibility of establishing a direct comparison with the
above model, (6) or (8).

We have imposed on the system either a hexagonal or
a square intensity grid. For both grids, the input intensity
is 1.1 mW/cm2 with an amplitude modulation of approxi-
mately 10%. For the square grid, the spatial period is set
to 130μm whereas for the hexagonal grid it is 150μm. The
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Figure 6: Localized peak observed in the spatially forced model (6)
for a hexagonal forcing, a = b = c = 0.02, and μ = −0.18, ν = 1.0.
The inset figure shows the corresponding density plot of the field
u(x, t).
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Figure 7: Localized peak observed in the spatially forced model (7)
for an orthogonal forcing, a = 0.01, and μ = −0.18, ν = 1.0. The
inset figure shows the corresponding density plot of the field u(x, t).

voltage applied to the LCLV is slightly changed around V0 =
5.5 V, with a fixed frequency of 5 kHz. For this values of
parameters the system is bistable and, being spatially forced
by the intensity grid, it displays bi-patterns an localized
states. By setting a specific initial condition, we can select
either to induce an interface between the two patterns or to
create localized peaks.

As examples of bi-patterns, we show in Figures 8(a)
and 8(b) the interface between a high and a low amplitude
pattern obtained with (a) a square and (b) a hexagonal grid,
respectively. For the same grids, but changing the initial
conditions, we can easily induce localized peaks. An example
of localized peak is shown in Figure 9 for a square grid.

We can notice a good qualitative agreement between
the experimental profiles and those obtained by numerical
simulation of the spatially forced models (6) and (7), for
a hexagonal and a square forcing, respectively. Moreover,
the qualitative behavior of the spatially forced systems, both
the experiment and the model, is very similar to the one
displayed, in a certain range of parameters, by the unforced
system with diffraction playing the role of forcing. Indeed, in
the region of parameters where the unforced system displays
localized peaks, the qualitative dynamical features are very
closely the same as those displayed by the forced systems.
However, when the input intensity is increased, the unforced

I
(g

ra
y

le
ve

ls
)

0
50

100
150
200
250

y
(m

m
)

0.6

0.4

0.2

0

x (mm)0 0.2 0.4 0.6 0.8 1

(a)

I
(g

ra
y

le
ve

ls
)

0
50

100
150
200
250

y (m
m

)

0.6
0.5

0.4
0.3

0.2
0.1

0
x (mm)0 0.2 0.4 0.6 0.8

1 1.2

(b)

Figure 8: Interface between the two patterns observed in the
spatially forced experiment: (a) square grid, (b) hexagonal grid. The
voltage applied to the LCLV is (a) V0 = 5.45 V, (b) V0 = 5.65 V. The
gray levels of the intensity go from zero to 1.1 mW/cm2.

system shows a transition to a spatiotemporal chaotic state,
which is not the case for the spatially forced system.

In conclusion, localized states in bi-pattern systems are
robust phenomena and appear naturally when bistability is
accompanied by a mechanism of spatial periodic forcing.
This can be either externally imposed, or generated by the
system itself in a certain range of parameters. In the next
section we will present an unified description of localized
states in one-dimensional bi-pattern systems.

3. Unified Description

As we have seen, the main ingredient for the appearance of
localized peaks is the coexistence of two spatially periodic
states, and this, in some sense, regardless the way in which
the two patterns have been created. In order to provide
a generic description of such a situation, we consider a a
one-dimensional spatially extended system that exhibits a
sequence of spatial bifurcations as shown in Figure 10, that is,
the primary bifurcation is supercritical while the secondary
one is of subcritical type. Let −→u (x; t) be a vector field that
describes the system under study and satisfies the partial
differential equation

∂t
−→u = −→f (−→u , ∂x, {λi}

)
, (8)
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Figure 10: A typical bifurcation diagram allowing for the appear-
ance of localized peaks: at a certain value of μ a secondary subcritical
bifurcation takes place; dashed lines mark the beginning (end) B1

(B2) of the bistable region and the Maxwell point μM . From [29].

where {λi} is a set of parameters. For a critical value of one
of the parameters, the system exhibits a spatial instability at a
given wave number qc. Close to this spatial instability, we use
the Ansatz

−→u = A(X ,T)eiqcxû + A(X ,T)e−iqcxû + · · · (9)

and the standard amplitude equations reads as [1]

∂TA = μA− ν|A|2A + α|A|4A− |A|6A + ∂XXA, (10)

where μ is the bifurcation parameter and {ν,α} control the
type of the bifurcation (first- or second-order depending on
the sign of these coefficients). Higher-order terms are ruled
out by scaling analysis, since ν ∼ μ2/3, α ∼ μ1/3, |A| ∼ μ1/6,
∂t ∼ μ, ∂x ∼ μ1/2, and μ	 1. Note that this approach is phase
invariant (A → Aeiϕ), but the initial system under study does
not necessarily have this symmetry.

As depicted in Figure 10, for a given range of parameter
values the system shows coexistence between two differ-
ent spatially periodic states, each one corresponding to a
homogeneous state for the amplitude equation. Thus, it

is a bi-pattern system. The coexistence region is B1 <
μ < B2. The extended stationary solution of the amplitude
equation (10), has the form A = R(x)eiθ(x), where R(x)
and θ(x) are the envelope modulus and phase, respectively.
These functions satisfy the relation θ(x) = ∫ ε/R(x)2dx. For
uniform modulus solution (Ro), one has the expression for
the envelope

A = Roe
i(γ/R2

o)X , (11)

with

μ− γ2

R4
o
− νR2

o + αR4
o − R6

o = 0, (12)

and γ is an arbitrary constant related to the initial phase
invariance. It is worth to note that in the case of positive γ, the
wave number of the pattern is modified by the inverse of the
square amplitude R2

0, so that patterns with larger amplitude
have smaller wave number. At variance, when γ is negative
the patterns with larger amplitude have smaller wavelength
[29].

For given values of the parameters, the two stable
uniform stationary states of (10) have the same energy, that
is, the system is at the Maxwell point, where the front between
the two states is motionless [41]. By moving away from the
Maxwell point, the front dynamics is usually characterized
by the motion of the core of the front, which is defined
as the front position with the largest slope. In order to
have a localized states, we consider the interaction of two
of these motionless fronts close to the Maxwell point. As
a consequence of the asymptotic behavior of the front at
infinity, the front interaction is attractive, and has the form
[42]

Δ̇ = −ae−λΔ + δ, (13)

where Δ is the distance between the cores of each front, δ is
the separation from the Maxwell point, which is proportional
to μ − μM , λ characterizes the exponential decay of the front
to a given constant value at infinity, and a is a positive
coefficient that characterizes the properties of the interaction
and is determined by the form of the front. The interaction
law (13) has an unstable fixed point Δ∗ = − ln(δ/a)/λ, which
is the nucleation barrier between the two homogeneous
states. Hence, the conventional amplitude equation, (10),
does not exhibit stable localized states, due to the scale
separation used to derive the amplitude equation. But near
the front’s core, the previous Ansatz is no more valid. Indeed,
in these locations the slowly varying envelope A(X ,T)
shows oscillations of the same (or comparable) size as the
small scale of the underlying pattern. This phenomenon is
denominated as the nonadiabatic effect [30–32].

3.1. Amended Amplitude Equation. In order to take into
account the nonadiabatic effect, we compute the corrections
of the amplitude equation by including the nonresonant
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terms, that is, the solvability condition for the amplitude A
has the form

∂TA =
qc
2π

∫ X+2π/qc

X
f
(
|A|2, ∂XX

)
A + ∂XXAdx

+
N∑

m−n−1 /= 1

gmnqc
2π

∫ X+2π/qc

X
AmA

n
e−(iqc(1+n−m)x/√μ)dx,

(14)

with f (|A|2) = μ− ν|A|2 + α|A|4 − |A|6 + O(|A|8,A∂XXA),
O(|A|8,A∂XXA) stands for high order terms, m,n ≥ 0, gmn

are real numbers of order one and N is the degree of highest
nonlinearity. The resonant terms are obtained by imposing a
solvability condition, where one assumes that there is a scale
separation between the spatial variation of the envelope and
that of the underlying pattern, that is, the spatial variation
of the envelope is large enough with respect to the pattern
wavelength (∂XA 	 qcA). Hence in this limit, we can
approach

qc
2π

∫ X+2π/qc

X
f
(
|A|2

)
Adx ≈ f

(
|A|2

)
A,

qc
2π

∫ X+2π/qc

X
AmA

n
e−(iqc(1+n−m)x/√μ)dx ≈ 0.

(15)

However, the above assumption is often not satisfied close
to the front core. To take into account this coupling, we can
compute the integral of the solvability condition with the
stationary phase method, thus

qc
2π

∫ X+2π/qc

X
AmA

n
e−(iqc(1+n−m)x)/√μdx

≈
√
μ

iqc(m− n− 1)
AmA

n
e−(iqc(1+n−m)/√μ)x

2π/qc

∣
∣
∣
∣∣

X+2π/qc

X

≈
√
μ∂X

[
AmA

n
]

iqc(m− n− 1)
e−(iqc(1+n−m)/

√
μ)X ,

(16)

which allows us to take into account the effect of nonresonant
terms. Finally, the amended amplitude equation reads as [43]

∂TA = μA− ν|A|2A + α|A|4A− |A|6A + ∂XXA

+
√
μ

N∑

m,n≥0

gmn

∂X
[
AmA

n
]

iqc(m− n− 1)
e−i(qc(1+n−m)/√μ)X ,

(17)

where gmn are real numbers of order one and N is the degree
of highest nonlinearity. Hence, the resulting amplitude equa-
tion is parametrically forced in space by the nonresonant
terms, which are higher order terms with the asymptotic
scaling under consideration. It is important to remark that
the nonresonant terms do not change the uniform states,
because these terms are proportional to the spatial derivative
of the envelope. Notice that the Ansatz for −→u satisfies the

symmetries {x → −x,A → A}, and {x → x + xo,A →
Aeiqcxo}, thus restoring the original symmetry, while the
spatial translation and phase invariance are independent
symmetries of (10). Recently, we have derived a phenomeno-
logical model in which the spatial forcing has an amplitude
proportional to a polynomial development of the slowly
varying amplitude [29]. In this case, the nonadiabatic effect is
overestimated since the nonresonant terms are proportional
to √μ, however the qualitative dynamics of both models are
very similar.

To illustrate the effect of nonresonant terms we keep the
leading term n = 0 and m = 2. Then the forced amplitude
equation takes the form

∂TA = μA− ν|A|2A + α|A|4A− |A|6A + ∂XXA

+
√
μη

A∂XA

iqc
ei(qc/

√
μ)X .

(18)

The slowly varying amplitude is now spatially forced with
a frequency qc/2π

√
μ and an amplitude proportional to

η ≡ g02. As a consequence of the spatial forcing, the
front solution between the spatially periodic states exhibits
a pinning range, that is, the front is motionless for a range
of parameters around the Maxwell point. We have to note
that the amplitude of the forcing is proportional to the
gradient of the slowly varying amplitude, ∂XA, thus the
forcing is effective at the interfaces, where the amplitude
changes rapidly, and zero elsewhere.

In order to obtain the change of the front interaction as a
result of the spatial forcing, we consider the front solution of
the resonant equation

A±(x − xo) = R±(x − xo)ei
∫
ε/R2

±,dx (19)

where R±(x − xo) satisfies

μR− νR3 + αR5 − R7 + ∂xxR− ε2

R3
= 0, (20)

xo is the position of the front core and the lower index + (−)
corresponds to a front monotonically rising (decreasing).
As the nonresonant term is a rapid spatial oscillation, we
consider this term as perturbative-type and use the Anstaz

A = A+(x − x1(t)) + A−(x − x2(t))

− (Ao,+ − Ao,−
)

+ δWeiδϕ
(21)

in (18), where Ao,± = Ro,±eiεx/R
2
o,± , and {δW , δϕ} are small

functions, and Ro,± are the stable equilibrium states of
the resonant amplitude equation (10) and Ro,+ > Ro,−.
After straightforward calculations, we obtain the following
solvability condition for the δW function (front interaction
law)

Δ̇ = −ae−λΔ + δ + γ cos

(
qc√
μ
Δ

)

, (22)
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|A| |A|

|A|

Δ
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Figure 11: Oscillatory interaction force between two front solu-
tions. The inset figures are the stable localized patterns observed at
the Maxwell points (black dots), where the interaction changes its
sign.

with

a =−2〈3μR2
+ − 5νR4

+ + 7αR6
+ − 3εR−4

+ | ∂xR+〉
〈∂xR+ | ∂xR+〉

,

δ =F(R+)− F(R−)
〈∂xR+ | ∂xR+〉

,

γ ≈
√
μη
〈
∂xR2

+ | R+ sin
((

qc/
√
μ
)
x
)〉

qc〈∂xR+ | ∂xR+〉
,

(23)

where

F(R) = μR2

2
− νR4

4
+
αR6

6
− R8

8
+

2ε2

R2
, (24)

and 〈 f | g〉 ≡ ∫∞−∞ f (x)g(x)dx.
As a consequence of the spatial forcing the front inter-

action law close to the pinning range, (22), has an extra
term and now alternates between attractive and repulsive
forces. It is important to remark that √μγ is a parameter
exponentially small, proportional to η, and is of order δ,
that is, the source of the periodical force is the spatial
forcing in the (18). Therefore, close to the Maxwell point the
system exhibits a family of equilibrium points, dΔ/dt = 0.
Each equilibrium point correspond to a localized solution
nucleating over a pattern state. These solutions correspond
to localized patterns. The lengths of localized patterns are
multiple of a basic length, corresponding to the shortest
localized state. These shortest states are the localized-peaks,
corresponding to the experimental observations reported in
[20]. In Figure 11, it is depicted the front interaction law and
the family of equilibrium points.

Due to the oscillatory nature of the front interaction,
which alternates between attractive and repulsive forces (cf.
Figure 11), we can deduce the dynamical evolution and
bifurcation diagram of localized patterns. By decreasing δ or
increasing η, the family of localized patterns disappears by
successive saddle-node bifurcations and only localized peaks
survive.

4. Conclusions

Bi-pattern systems are spatially extended systems that display
coexistence of two pattern states. They exhibit a rich variety
of localized solutions, in particular, localized peaks are
pinned over a spatial grid, that can be either spontaneously
generated by the system itself, or externally imposed. These
localized states are of particular interest in nonlinear optics,
where they constitute the elementary pixels of optical
memories. The interplay with a structured background
open new technical perspectives on the control of their
dynamics. We have derived an unified and simple description
of localized peaks in one-dimensional spatially extended
systems close to a spatial bifurcation. This model allows us
to understand the mechanism underlying the formation of
localized states, which is based on the coupling between the
spatial variations of the envelope and the wavelength of the
background pattern. In two-dimensions, we show that these
localized states persist and exhibit different shapes depending
on the symmetry of the supporting patterns. However, a
natural extension of the front interaction law, for instance an
interface tension, is not yet available. Work in this direction
is in progress.
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[21] Y. A. Logvin, B. Schäpers, and T. Ackemann, “Stationary and
drifting localized structures near a multiple bifurcation point,”
Physical Review E, vol. 61, no. 4, pp. 4622–4625, 2000.

[22] D. Gomila and G.-L. Oppo, “Subcritical patterns and dissi-
pative solitons due to intracavity photonic crystals,” Physical
Review A, vol. 76, no. 4, Article ID 043823, 7 pages, 2007.

[23] H. Arbell and J. Fineberg, “Temporally harmonic oscillons in
Newtonian fluids,” Physical Review Letters, vol. 85, no. 4, pp.
756–759, 2000.

[24] M. G. Clerc, E. Tirapegui, and M. Trejo, “Pattern formation
and localized structures in monoatomic layer deposition,” The
European Physical Journal, vol. 146, no. 1, pp. 407–425, 2007.

[25] P. L. Ramazza, E. Benkler, U. Bortolozzo, S. Boccaletti, S.
Ducci, and F. T. Arecchi, “Tailoring the profile and interactions
of optical localized structures,” Physical Review E, vol. 65, no.
6, Article ID 066204, 4 pages, 2002.

[26] U. Bortolozzo and S. Residori, “Storage of localized structure
matrices in nematic liquid crystals,” Physical Review Letters,
vol. 96, no. 3, Article ID 037801, 4 pages, 2006.

[27] F. Pedaci, S. Barland, E. Caboche, et al., “All-optical delay line
using semiconductor cavity solitons,” Applied Physics Letters,
vol. 92, no. 1, Article ID 011101, 3 pages, 2008.

[28] C. Cleff, B. Gütlich, and C. Denz, “Gradient induced motion
control of drifting solitary structures in a nonlinear optical
single feedback experiment,” Physical Review Letters, vol. 100,
no. 23, Article ID 233902, 4 pages, 2008.

[29] U. Bortolozzo, M. G. Clerc, C. Falcon, S. Residori, and R. G.
Rojas, “Localized states in bistable pattern-forming systems,”
Physical Review Letters, vol. 96, no. 21, Article ID 214501, 4
pages, 2006.

[30] M. G. Clerc and C. Falcon, “Localized patterns and hole
solutions in one-dimensional extended systems,” Physica A,
vol. 356, no. 1, pp. 48–53, 2005.

[31] D. Bensimon, B. I. Shraiman, and V. Croquette, “Nonadiabatic
effects in convection,” Physical Review A, vol. 38, no. 10, pp.
5461–5464, 1988.

[32] Y. Pomeau, “Front motion, metastability and subcritical
bifurcations in hydrodynamics,” Physica D, vol. 23, no. 1–3,
pp. 3–11, 1986.

[33] S. Residori, “Patterns, fronts and structures in a liquid-crystal-
light-valve with optical feedback,” Physics Reports, vol. 416, no.
5-6, pp. 201–272, 2005.

[34] E. Pampaloni, S. Residori, and F. T. Arecchi, “Roll-hexagon
transition in a Kerr-like experiment,” Europhysics Letters, vol.
24, no. 8, pp. 647–652, 1993.

[35] L. Kramer and W. Pesch, “Electrohydrodynamic instabilities
in nematic liquid crystals in pattern formation in liquid
crystals,” in Pattern Formation in Liquid Crystals, A. Buka and
L. Kramer, Eds., pp. 221–255, Springer, New York, NY, USA,
1996.

[36] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals,
Oxford Science, Clarendon Press, Oxford, UK, 2nd edition,
1993.

[37] M. G. Clerc, A. Petrossian, and S. Residori, “Bouncing
localized structures in a liquid-crystal light-valve experiment,”
Physical Review E, vol. 71, no. 1, Article ID 015205, 4 pages,
2005.

[38] T. O. Carroll, “Liquid-crystal diffraction grating,” Journal of
Applied Physics, vol. 43, no. 3, pp. 767–770, 1972.

[39] S. Rasenat, G. Hartung, B. L. Winkler, and I. Rehberg, “The
shadowgraph method in convection experiments,” Experi-
ments in Fluids, vol. 7, no. 6, pp. 412–420, 1989.

[40] M. Henriot, J. Burguete, and R. Ribotta, “Entrainment of a
spatially extended nonlinear structure under selective forcing,”
Physical Review Letters, vol. 91, no. 10, Article ID 104501, 4
pages, 2003.

[41] P. Collet and J. P. Eckmann, Instabilities and Fronts in Extended
Systems, Princeton University Press, Princeton, NJ, USA, 1990.

[42] K. Kawasaki and T. Ohta, “Kink dynamics in one-dimensional
nonlinear systems,” Physica A, vol. 116, no. 3, pp. 573–593,
1982.

[43] M. G. Clerc, S. Coulibaly, D. Escaff, C. Falcón, C. Fernandez,
and R. G. Rojas, in preparation.


	1Call for Papers4pt
	Lead Guest Editor
	Guest Editors



