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Transversal interface dynamics of a front connecting a stripe
pattern to a uniform state
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Abstract – Interfaces in two-dimensional systems exhibit unexpected complex dynamical
behaviors, the dynamics of a border connecting a stripe pattern and a uniform state is studied.
Numerical simulations of a prototype isotropic model, the subcritical Swift-Hohenberg equation,
show that this interface has transversal spatial periodic structures, zigzag dynamics and complex
coarsening process. Close to a spatial bifurcation, an amended amplitude equation and a one-
dimensional interface model allow us to characterize the dynamics exhibited by this interface.
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Introduction. – Non-equilibrium processes often lead
in nature to pattern formation developing from a homo-
geneous state through the spontaneous breaking of the
symmetries present in the system [1]. In recent decades,
much effort has been devoted to the study of pattern
formation (see review [2] and the references therein) aris-
ing in systems such as chemical reactions, gas discharge
systems, CO2 lasers, liquid crystals, hydrodynamic or
electroconvective instabilities, and granular matter (see
review [3]), to mention a few. A unified description for
the dynamics of spatially periodic structures, developed at
the onset of a bifurcation, is achieved by means of ampli-
tude equations for the critical modes. Such a description
is valid in the case of weak nonlinearities and for a slow
spatial and temporal modulation of the base pattern [2].
As an example, the Newell-Whitehead-Segel equation [4]
describes the dynamics of a stripe pattern formed in a
two-dimensional system. Another ubiquitous phenomenon
in nature is the interface dynamics or front propagation.
The concept of front propagation, emerged in the field
of population dynamics [5–7], has gained growing inter-
est in biology, chemistry, physics, and mathematics (see,
e.g. [8] and references therein). These interfaces connect
two extended states, such as: uniforms states, patterns,
oscillatory, standing waves, spatio-temporal chaotic and
so forth.
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In one-dimensional systems, an interface connect-
ing two uniform stable states, the most favorable
state —for instance energetically— invades the other
one with a constant and unique speed [9,10]. This
speed is zero, that is the front is motionless, at the
Maxwell point [11]. The above picture changes, when one
considers an interface connecting a pattern state and a
uniform one or two patterns. Due to spatial translation
symmetry breaking, the interface is motionless in a
range of parameters, the pinning range [11–13]. This
behavior is called locking phenomenon or pinning effect.
In bidimensional dynamical systems, few experimental
and theoretical studies have been performed on fronts
connecting patterns and uniform states [14–17].
The aim of this letter is to study the dynamical behav-

iors of a front connecting a stripe pattern to a uniform
state. Numerical simulations of a prototype model —the
isotropic Swift-Hohenberg equation— show that the lock-
ing phenomenon of a flat interface persists. However, this
flat interface is nonlinearly transversely unstable, that is, a
finite perturbation of this interface leads to the appearance
of an initial wave number which is subsequently replaced
by zigzag dynamics, which presents a complex coarsening.
Increasing the longitudinal interface size, the flat inter-
face exhibits a transversal spatial instability, which orig-
inates a periodical structure at the interface. We have
termed these interfaces embroideries. In order to explain
these behaviors in an unified manner, we make use of the
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amended Newell-Whitehead-Segel equation and prototype
one-dimensional model for the interface, which describe
properly the dynamics observed on the interface connect-
ing a stripe pattern with a uniform state.

The model. – A simple isotropic model which exhibits
coexistence between a uniform state and a stripe pattern
is (the subcritical Swift-Hohenberg equation [2])

∂tu= εu+ νu
3−u5− (�∇2+ q2)2u, (1)

where u(x, t) is an order parameter, ε is the bifurca-
tion parameter, q is the wave number of the stripe
pattern, ν the control parameter of the type of bifurca-
tion (supercritical or subcritical), and �∇2 is the Lapla-
cian operator. The model (1) describes the confluence
of a stationary and a spatial subcritical bifurcations
with reflection symmetry (u→−u), when the parame-
ters scale as u∼ ε1/4, ν ∼ ε1/2, q∼ ε1/4, ∂t ∼ ε and �∇∼
ε1/4 (ε� 1). The above model is often employed in
the description of patterns observed in Rayleigh-Benard
convection [2]. For small and negative ε and −9ν2/40≡
εsn < ε< 0, the system exhibits coexistence between a
uniform state u(x, y, t) = 0 and a stripe pattern u(x, y, t) =
√
ν
(√
2(1+

√
1+40ε/9ν) cos(�q ·�r)

)
+ o(ν5/2), where �q is

an arbitrary vector with modulus q. For ε= εsn the model
has a saddle-node bifurcation that give rises to stable and
unstable patterns. For ε= 0 the uniform state becomes
unstable. When one considers the above model in one
spatial dimension, it is well known that in the coexistence
region (εsn < ε< 0) the model exhibits a front connecting
a spatially periodic solution and uniform state. For ε close
to 0 (εsn), the pattern (uniform) state invades the uniform
(pattern) state, i.e. the system displays front propagation.
The front is motionless at the interval ε− < ε< ε+, the
pining range [11]. Note that, in this range, the state which
is energetically more favorable does not invade the less
favorable one. It is important to note that the interface
has two characteristic lengths, the pattern length 2π/q
and the interface size, which is represented by λ in the
inset of fig. 1. Decreasing ν the interface size increases.

Numerical results. – In two spatial dimension the
above scenario changes drastically. If one considers a
similar parameters setup (εsn < ε− < ε< ε+ < 0), the
flat interface of model (1) exhibits locking phenomenon
(cf. fig. 1a). However, when the longitudinal interface
size λ is increased the interface suffers a supercriti-
cal transversal spatial instability and it gives rise to
transversal periodic structures. The typical observed
structures are depicted in fig. 1. We term these periodical
structures at the interface embroidery. The embroidery
size is proportional to the longitudinal interface size. The
embroideries are consequence of two facts: the spatial
isotropy and the interaction of enveloped variation with
the underlying pattern (pinning effect). Seeing that
at the interface the stripe pattern can develop in any
direction as a consequence of the isotropy, however the
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Fig. 1: Flat and embroideries interfaces: density plot of the field
u of model (1) at the pinning range. The following parameters
have been chosen: q= 0.7, a) ε=−0.17, ν = 1.0, b) ε=−0.0423,
ν = 0.5, and c) ε=−0.00675, ν = 0.2. The inset figure is a
longitudinal profile of the interface and λ is the interface size.
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Fig. 2: Localized stripe: density plot of the field u of model (1).
The following parameters have been chosen: ε=−0.0423,
ν = 0.5 and q= 0.7.

interaction of enveloped variation with the underlying
pattern freezes the growth of these unstable modes, as we
shall see with the amended amplitude equation. Based
on the 1D theory of front interaction which predicts a
family of localized patterns [18], one expects to find a
family of localized stripes, that is, the localized stripes are
the transversal expansion of 1D localized patterns. The
typical stable localized states observed in model (1) are
illustrated in fig. 2. It is important to note that, localized
stripe patterns with flat interfaces have been observed in
ref. [19].
Numerically, we observe that in a finite region of

parameters the embroidery interface is linearly stable,
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a)                                         b)
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Fig. 3: Nonlinear instability: temporal evolution of model (1)
with time running from left to right, demonstrating that the
embroidery interface is stable and nonlinear unstable. The
following parameters have been chosen: ε=−0.0423, ν = 0.5
and q= 0.7.

i.e. this interface with a small initial perturbation evolves
to the interface without perturbations. However, when
we consider a large perturbation the interface does
not evolve to the interface without perturbation. This
interface exhibits a nonlinear zigzag instability, which
is characterized by a transversal instability without a
well-defined wavelength. In spite of this, initially this
instability has a well-defined wave number close to 2π/q,
later on, the sinusoidal interface becomes an angled line
composed of pieces of interface turned with well-defined
angles, zig-facet or zag-facet. It is important to note that
the flat interface —in the regime of parameters where it
is linearly stable— exhibits the same behavior, that is,
a finite initial perturbation of the flat interface gives rise
to a zigzag dynamics. In order to illustrate this nonlinear
instability, fig. 3a shows two embroidery interfaces, one
with a initial small perturbation (left interface) and
the other with a finite one. After a finite time, the
interface with initial small perturbation evolves to an
embroidery interface. While the right interface develops
a zigzag structure and the pattern propagates over the
uniform state (cf. fig. 3b). Hence, the flat and embroidery
interfaces are nonlinearly transversely unstable.
In the zigzag interface, two adjacent facets whose

orientations are opposite, are connected by a region of
strong curvature that we term a corner. The dynamics
shown by the zigzag interface consists then in reassembling
domains of even orientation, the angle facets staying
unchanged, which is a coarsening dynamics. This process
occurs due to annihilations of corners and without a
characteristic length scale. Actually, the averaged domain
size increases regularly in time. Simultaneously to this
coarsening process, the zigzag interface propagates from

t1                   t2                   t3
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Fig. 4: Coarsening process: temporal evolution of model (1)
with time running from left to right, demonstrating that the
flat interface with finite initial perturbation evolves to a zigzag
interface without a characteristic length scale. The following
parameters have been chosen: ε=−0.16, ν = 1.0 and q= 0.9.

one extended state to the other one. Figure 4 depicts the
typical coarsening process observed at the interfaces.

The amended amplitude equation. – To explain
the dynamics exhibited by the interfaces of model (1) in a
unified framework, close to the spatial bifurcation (ε� 1,
and ν ∼ ε1/2), we can introduce the ansatz

u(x, y, t) = a0A

(
X =

x

l0
, Y =

y√
l0
, τ =

t

t0

)
eiqx

−5a
5
0|A|2A3
8q2

ei3qx− a
5
0A
5

24q2
ei5qx+ · · ·+c.c.,

(2)

where a0≡
√
3ν/10ε1/4, l0=2q

√
10/3
√|ε|, t0=10/9ν2|ε|,

and A(X,Y, τ) is the envelope of the pattern that describes
the front solution (when the envelope is uniform and not
null the initial model (1) has an stripe pattern in the
x-direction), the “· · ·” stands for the high-order terms
in the envelope A, c.c. means complex conjugate, and
{X,Y, τ} are slow variables. In this ansatz (2), we consider
that q is of order one or larger than the other parameters.
Introducing the above ansatz in eq. (1), we find the
following solvability condition for the envelope (Amended
subcritical Newell-Whitehead-Segel equation):

∂τA=

{
ε+ |A|2− |A|4+

(
∂X − i∂Y Y

2q

)2}
A+ ηA3eiκx,

(3)

where ε≡−10ε/9ν2, κ= 2√10q/3ν√ε, and η≡ 1/3 for
model (1). Using the above scaling the terms inside brack-
ets are order ε [20], and the last term is exponentially
small which is regularly neglected in the multiple scaling

28002-p3



Marcel G. Clerc et al.

approach. However, to account for the coupling between
the large scale envelope and the small scale underlay-
ing the stripe state, we consider η as free parameter
and κ a finite number. Notice that, considering other
solvability conditions for the envelope, one can obtain
diverse small exponential terms for eq. (3) of the form
AnĀmeiq(n−1−m)x. For the sake of simplicity we have
consider the dominant one in A, which correspond to
the last term in eq. (3). Nevertheless, we expect that
these entire exponential small terms have qualitatively
the same effect in the dynamics. When the term propor-
tional to spatial forcing is zero (η→ 0), the above model
is the Newell-Whitehead-Segel amplitude equation, which
has been used deeply to explain the appearance of stripe
pattern [2]. Nevertheless, this model does not account
for the locking phenomenon [11]. The inclusion of spatial
forcing terms in the amplitude equations in 1D allows
understanding the locking phenomenon, the pinning range
and localized structures [12,13,18]. In the extreme limit,
η→ 0, it is straightforward to show that model (3) has
a front solution connecting two homogeneous states, 0
and
(
1+
√
1+4ε

)
/2, when ε < 0. Which accounts for the

connection between the stripe pattern and the uniform
state. These two homogeneous states are energetically
equivalent at εM =−3/16 —the Maxwell point— and it
has the form

A=

√
3/4

1+ e±
√
3/4(X−P )

eiθ, (4)

where P stands for the position of flat interface, and θ
is an arbitrary phase. This flat interface is transversally
unstable and it gives rise to a complex coarsening process,
zigzag instability. Numerically we have computed the
growth rate of each mode with wave number k of the flat
interface —spectrum. Figure 5a depicts this instability
and the spectrum of the flat interface. Note that although
the numerical simulations have been done at the Maxwell
point, the interface propagates from a state that represents
the stripe to a uniform one. When η is small the non-null
uniform solution becomes a stripe state in the y-direction
(cf. fig. 5b). The zigzag dynamics exhibited by the inter-
face disappears and is replaced by a transversal periodic
structure, embroidery (cf. fig. 5b). Hence, these transversal
embroidery structures are a consequence of the interaction
of the spatial forcing —generated by underlying pattern—
with the transversal instability of the Newell-Whitehead-
Segel model. Changing ε the embroidery interface is
motionless in a range of parameter of ε, the pinning
range. Figure 5b shows the typical motionless embroidery
interface observed in model (3) and the respective spec-
trum of the flat interface. Increasing η the embroidery
interface becomes a flat interface and the amplitude of the
stripes increase. Figure 5c shows the stable flat interface
and its respective spectrum. The flat and embroidery
interfaces exhibited by the amended amplitude equation
are nonlinear unstable, that is, a finite perturbation of

Fig. 5: Interface dynamics: Numerical simulation of amplitude
eq. (3) at the Maxwell point (ε=−3/16), q= 2.6 and κ= 5.2,
a) zigzag dynamics, η= 0.0, b) embroidery, η= 0.1, and c) flat
interface, η= 0.2. The inset figures are the spectrum of the
respective interface.

these interfaces give rise to a zigzag dynamics. Therefore,
the dynamics exhibited by the universal model (3) is
similar to those shown by the prototype model (1).

Phenomenological 1D model. – The model (3)
seems simpler than eq. (1), however, the analytical descrip-
tion of the interfaces in these model is a thorny task.
A standard method to grasp the dynamics exhibited by
the interface of the precedent models is to derive a one-
dimensional equation for it. This method consists in using
as an ansatz, the front solution (5) plus a small correction,
that is

A=

{√
3/4

1+ e±
√
3/4(X−P (Y,τ))

+w0(X −P, Y )
}
eiθ, (5)

where the continuous parameter P is promoted to a
field (P (Y, τ)), w0 is a small complex correction function,
which is of the order of the spatial variation of the
position of the interface (w0 ∼ ∂Y Y P ) [21–24]. However,
we cannot use this weakly nonlinear method because the
more unstable transversal mode has a finite wave number
(q). This type of method requires that unstable modes
have small wave number. To understand the mechanism
of the different structures observed at the interface, and
based on symmetry arguments for the interface [21–24]
and on the effect of spatial forcing term [12,13], we
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Fig. 6: Horm solution: density plot of the field u of model (1)
with ε=−0.16729, q= 0.7, and ν = 1.0. The inset figures are
the horm solution obtained from model (6) with ε=−0.5,
α= 0.001, κ= 0.1, ∆= 0 and Q= 1.

propose the following phenomenological equation for the
position of the interface (convective and forced Cahn-
Hilliard equation):

∂τP = εPY Y +P
2
Y PY Y −PY Y Y Y +αP 2Y −κ sin(QP )+∆;

(6)
this model has the equilibria Pn = nπ/Q, n= 0, ±1,
±2, . . .. The equilibria P2m as a function of forcing κ
have a spectrum similar to those shown in fig. 5. For
large κ, these equilibria are stable, i.e. this model has
a family of stable flat interfaces. Decreasing κ these
flat interfaces become unstable and give rise to spatial
periodical state, embroideries. Finally, for small {α, κ}
this model exhibits a zigzag instability characterized by
logarithmic and power law for the coarsening. Hence,
the one-dimensional model (6) presents qualitative similar
dynamics to those shown by models (1) and (3). In
the coexistence region of uniform states, one expects
to find stable localized horm solution [7], and then we
expect to find a localized horm state at the interface.
Figure 6 illustrates the typical stable horm solutions of
one-dimensional model (6) and the prototype model (1).
The study of the effect of the forcing on zigzag dynamics
of above model is in progress.

Summary. – Isotropic systems which have coexistence
between stable stripe pattern and uniform states can
exhibit interfaces connecting these states. These interfaces
present a rich and unexpect transversal dynamics like
transversal spatial instability, nonlinear zigzag instability
and localized states. Recently in ref. [25], it is shown
that in anisotropic systems the flat interface linking rolls
pattern with uniform one is transversal stable. Hence,
the wealthy transversal dynamics is a consequence of the
spatial isotropy and the pinning effect.

Although the prototype model under study eq. (1) is
variational—the dynamical evolution of this model has
the tendency to minimize its Lyapunov functional—the
interface dynamic exhibited by this model is robust. Since,
this interface dynamics is well described by the amended
amplitude equation, which is valid close to the spatial
instability. Hence, we expect that a system that exhibits a
coexistence between a stripe pattern and a homogeneous
state should present a rich interface dynamics.
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