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Localized states beyond the asymptotic parametrically driven amplitude equation
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'We study theoretically a family of localized states which asymptotically connect a uniform oscillatory state
in the magnetization of an easy-plane ferromagnetic spin chain when an oscillatory magnetic field is applied
and in a parametrically driven damped pendula chain. The conventional approach to these systems, the para-
metrically driven damped nonlinear Schrodinger equation, does not account for these states. Adding higher
order terms to this model we were able to obtain these localized structures.
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Recently, emerging macroscopic particle-type solutions or
localized states in dissipative systems have been observed in
different fields, such as domains in magnetic materials, chiral
bubbles in liquid crystals, current filaments in gas discharge,
spots in chemical reactions, localized states in fluid surface
waves, oscillons in granular media, isolated states in thermal
convection, solitary waves in nonlinear optics, among others.
In one-dimensional systems, localized states can be de-
scribed as spatial trajectories that connect one steady state
with itself, that means, they are homoclinic orbits from the
dynamical system point of view (see Ref. [1], and references
therein), while domains or walls are seen as spatial trajecto-
ries joining two different steady states—heteroclinic
curves—of the corresponding spatial dynamical system [2].
For quasireversible systems—time reversible systems per-
turbed with injection and dissipation of energy [3]—the pro-
totypical model that exhibits localized structures is the para-
metrically driven damped nonlinear Schrodinger equation
[4]. This model has been derived in several contexts to de-
scribe pattern and localized structures, such as the vertically
oscillating layer of water [5], nonlinear lattices [6], optical
fibers [7], Kerr-type optical parametric oscillators [8], mag-
netization in an easy-plane ferromagnetic exposed to an os-
cillatory magnetic field [9], and a parametrically driven
damped chain of pendula [10]. However, this equation is not
sufficient to describe a family of localized states that link
asymptotically uniform oscillations. Indeed in parameter
space of the parametrically driven damped nonlinear
Schrodinger equation, we have observed numerically both in
vertically driven damped pendula chain and easy-plane fer-
romagnetic spin chain exposed to an oscillatory magnetic,
families of particle type solutions unexpected inside the Ar-
nold tongue.

The aim of this work is to theoretically study a family of
localized states that asymptotically connect a uniform oscil-
latory state in a magnetic wire forced with a transversal os-
cillatory magnetic field and in a parametrically driven
damped pendula chain. These localized states are not con-
tained in the conventional approach to these systems, the
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parametrically driven damped nonlinear Schrédinger equa-
tion. Adding in this model the higher order term, we are able
to explain these localized states, the stable uniform homoge-
neous oscillations, and the kink solution between them.
Hence, using this amended amplitude equations we recover
the original dynamical behavior of these systems.

A one-dimensional easy-plane ferromagnetic such as
(CH3)4,NMnCl; (TMMC) or NiggFe,, is described by the
well-known Landau-Lifshitz-Gilbert equation, which in di-
mensionless form may be written as [9,11,12]

IM=MXM,_, - BM-2)(MX 2 +MXH-aM X M,
(1)

where M stands for the unit vector of the magnetization,
B>0 is the easy-plane anisotropy constant, Z=(0,0,1) de-
notes the unit vector along the hard axis, and « is the relax-
ation constant. Let us consider an external magnetic field
H=(H,+h, sin wt)X, which has both a constant and a para-
metric forcing with amplitude /4 and fixed frequency w. No-
tice that, when B> H, the above Landau-Lifshitz-Gilbert
equation can be reduced to the quasireversible sine-Gordon
equation [13]

(z,1) = — [wg + 7y sin(ot) Jsin(6) — w6+ kd..0, (2)

where 6(z,t) is the azimuthal angle in the easy plane, wé
=H,B, y=hy/B, pu=a/B, and k= 3"'. The magnetization
is related to 6 by [13]

M ={cos 6 cos(8/23),sin 0 cos(6/28),sin(6/23)}.

The model (2) also describes in the continuum limit a verti-
cally driven damped chain of pendula, where 6(z,?) is the
angle formed by the pendulum and the vertical axis in the z
position at time #; w, is pendulum natural frequency,
{w,k,y,w} are the damping, elastic coupling, amplitude, and
frequency of the parametric forcing, respectively. We remark
that, the pendula chain has the trivial reflection symmetry
6——6 that corresponds to reflection invariance of
the Landau-Lifshitz-Gilbert equation given by M
=M M,.M,))—(M,,-M,,-M,).

A simple homogeneous state of Eq. (2) is #=0, which
represents an uniform vertical oscillation of pendula and an
homogeneous magnetization M=x in the Landau-Lifshitz-
Gilbert model (1). When the pendula chain is forced close to
the double of the natural frequency w=2(wy+ v), where 2v is
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FIG. 1. Spatiotemporal diagram of 6 of the parametrically
driven damped pendula chain (2) inside Arnold’s tongue for wy=1,
v=0.28, v=-0.02, and ©=0.01. The gray color is proportional to 6.
(a) Homogeneous oscillation, (b) kink state between two homog-
enous oscillation, and (c) localized state. The insets represent an
instantaneous 6 profile.

the detuning parameter, the vertical solution becomes un-
stable at u’+ 7=+ for small {u,y, v} —Arnold’s tongue.
This bifurcation gives rise to a uniform attractive periodic
solution parametric resonance [14], so the pendula chain os-
cillates uniformly [6(r+T)=6(r), where T=2m/w,]. The
simulation shown in Figure 1(a)[18] shows the characteristic
uniform oscillation observed inside Arnold’s tongue for Eq.
(2). This uniform oscillation gives an account of a uniform or
synchronized precession motion of the magnetization around
the easy axis & in the yz plane with frequency VHy(B8+H,),
where this frequency is in units of the gyrofrequency. Figure
2(a) illustrates a uniform precession for the corresponding
magnetization field.

Due to the reflection symmetry, there is another uniform
oscillation solution out of phase in 7. Hence, we can expect
to find solutions that link these two uniform oscillations—
kink or wall solutions. Figure 1(b) depicts the wall solution
obtained by Eq. (2). Thus, the magnetic system has walls that
segregates two synchronized precessions shifted in 7. Fig-
ures 2(b) and 3(b) describe the typical wall for parametri-
cally driven magnetic system and the M, component
observed in the Landau-Lifshitz-Gilbert model (1), respec-
tively. As can be observed, these kink solutions have spatial
damping oscillation or oscillatory tails [see the inset Fig.
1(b) or Fig. 3(b)]. When wall solutions have this spatial be-
havior, it is well known that the nature of the kink and anti-

FIG. 2. (Color online) Schematic representation of the different
states exhibited by the Landau-Lifshitz-Gilbert Eq. (1). (a) The ho-
mogeneous precession and (b) kink state that links two uniform
precessions.
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FIG. 3. Spatiotemporal diagram of the M, component of mag-
netization obtained from the Landau-Lifshitz-Gilbert Eq. (1) inside
Arnold’s tongue for 8=20, Hy=1, hy=0.57, o=2[VHy(Hy+B)+v],
v=-0.057, and @=0.05. The gray color is proportional to 6. (a)
Homogeneous state, (b) kink state between two synchronized pre-
cessions shifted by r, (c) and (d) are localized states. The insets
represent an instantaneous distributions of spins over the chain and
projection of the M,, component.

kink interactions alternates between attractive and repulsive
[15]. Therefore, we expect to find a family of localized states
with thicknesses that are roughly multiples of the character-
istic length of the damped spatial oscillation present in the
kink solution. Figures 1(c) and 3(d) show the shortest local-
ized state observed in the pendula chain and those observed
in the Landau-Lifshitz-Gilbert equation, respectively. This
localized state represents a defect in the synchronized pre-
cession, in which the magnetization, at the core of the defect,
has a precession shifted in 7. Consequently, the magnetic
system has a family of novel oscillatory localized states.

To study this intriguing family of localized states exhib-
ited by the above systems, it is necessary to consider the
quasi-reversible limit of these systems, corresponding to
weak values of both forcing and damping parameters [3]. In
the case of this magnetic model, the limit holds when h
~ « are small with respect to the constant field H,,. Thus, the
analog pendula chain is described by the perturbed sine-
Gordon equation with y~ u~ v~ € for the pendula chain,
where € is an arbitrary small parameter e<<1. We introduce
in Eq. (2) for the pendula chain the ansatz

0(2, [) = 2 A [ iA(g’ T)ei(w0+v)t
o
i A3(§’ T) l’y
_2\/:0{ s Tlew Y

0

iye
e 3
8w

+c.c. + h.o.t., (3)

|A(§, 7')|2A(§, 7_) e3i(w0+v)t

where 7=¢t, {=V2ew,/kz are slow variables, in Eq. (2). Af-
ter straightforward calculation the amplitude A satisfies

JA=—ivA—ilAPA-iTA-pA+yA+hot.  (4)

The explicit terms of above equation are of order €% and the
higher order terms (h.o.t.) are at least of order €'2. Hence,
close to the parametric instability the dynamics, asymptoti-
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cally, is driven by Eq. (4), a well-known situation as para-
metrically driven damped nonlinear Schrédinger equation.
This model has been used intensively to describe patterns
and solitons in several systems such as: Vertically oscillating
layer of water [5], localized structures in nonlinear lattices
[6], light pulses in optical fibers [7], and the Kerr-type opti-
cal parametric oscillator [8].

In the quasireversible limit, the amplitude of small oscil-
lation of the magnetic model (1) is approached by the para-
metrically driven damped nonlinear Schrodinger equation
[9], where the natural frequency for the Landau-Lifshitz-
Gilbert model is Q=yHy(Hy+ ). The parametrically driven
damped nonlinear Schrodinger equation has the homoge-
neous state A=0, which represents 6(z,)=0 and M(z,7) =%,
respectively. Inside the Arnold’s tongue this model also has
the uniform state A= *[1+iV(y—pu)/(y+u)]xy, where x
= \(y+u)(—v+\y*—u?)/2y. These three states merge to-
gether through a pitchfork bifurcation at y?=(v*+ u?), with
u>0. The |A.| represents the amplitude of the homoge-
neous oscillations for the pendula chain and the magnetic
system. However, these uniform states are linear unstable
fixed points for the parametrically driven damped nonlinear
Schrodinger equation. Also, they are marginal for »=0, that
is, whatever perturbations of the form A=A +ay e (a,
<1) satisfies N(k) =0 and there are critical wave numbers
k.= = \—v+2Vy*—u? for which \(k.)=0. At this surface
(v=0), we numerically observe that the uniform state is non-
linearly stable; however, the kink and the localized state
which connect these states are unstable. Hence, the model (4)
does not account for features of homogenous oscillation and
consequently it is unable to describe kinks and families of
localized states observed in the original systems. As all these
states asymptotically converge to the uniform state, the sta-
bility of these particle-type solutions depend of steadiness of
these uniform states.

In order to describe the kink solutions and the family of
localized states exhibited by the pendula chain and the mag-
netic system under study, we are required to consider higher
order terms in the Eq. (4), since these terms may restore the
features of the uniform states and particle type solutions. In
the parameter region where the uniform state |A.| is mar-
ginal (v=0), we expect that any small corrections of the
amplitude equation can render this state linear stable or un-
stable. When we consider the higher order terms the ampli-
tude equation reads

0,A == ivA—iA|AR = iBA - pA + YA + i{é|A|4A
Wy

3y, ,— Ty i —
= S IAPA+ AT = plAPA+ S (v - p2)A - vyA

11 1-
—2i Z&Z‘A+|A|2(9§A +A|(9§A|2+EA((9{A)2]}, (5)

where the terms inside the brackets are order €’>. For small
detuning, we observe numerically that the amended Eq. (5),
has stable uniform solutions close to A, or A_, and in this
parameter region Eq. (5) exhibits stable solutions connecting
these states—kink solutions. Figure 4(a) shows these
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FIG. 4. Localized states exhibited by model (5) for ©=0.05, y
=0.1025, and »=-0.002. (a) Kink solution, (b) and (c) localized
domains, and (d) smallest localized structure.

particle-type solutions. These walls have spatial damping os-
cillation, due to the kink and antikink interactions which al-
ternate between attractive and repulsive [15], we find a fam-
ily of localized states with thickness which are roughly
multiples of the characteristic length of the damping spatial
oscillation. Figure 4 illustrates the typical localized states
observed in model (5). Therefore, the incorporation of higher
order terms in the parametrically driven damped nonlinear
Schrodinger equation can account for particle-type solutions
linking two homogeneous states. We remark that Eq. (4) has
been used in several physical contexts [5-9] neglecting the
higher order terms and disregarding then the possibility of
studying the localized states which connect two uniform os-
cillations.

The parametrically driven damped nonlinear Schrodinger
Eq. (4) includes only cubic nonlinear terms and linear damp-
ing and forcing. In order to understand the validity of this
approach, we have considered the nonlinear terms of lowest
order in Eq. (2), neglecting the fifth order in 6 and also
ignoring the nonlinear terms proportional to . Numerically
this extended parametrically driven nonlinear oscillator does
not exhibit stable kinks and families of localized states link-
ing two uniform oscillations. When we add the nonlinear
terms of the fifth order and the nonlinear parametric forcing
up to order three, the system presents the particle-type solu-
tions which connect the uniform oscillations. So, the para-
metrically driven damped nonlinear Schrodinger Eq. (4) can
account for linear parametrically driven extended cubic os-
cillators.

Kink interactions is the main tool to understand localized
states in one-dimensional systems [16], however in two di-
mensions this interaction is replaced by surface tension [1].
The family of localized structures disappear and only some
localized states survive. To analyze the localized states in
quasi-reversible systems supported by uniform oscillations,
in the 2D situation, we consider the amended amplitude
equation

9.A=—ivA—ilAPPA - iV?A - uA + YA + ialA[*A + y(b|A]PA
+cAd), (6)

where v~ y~u<1 and {a,b,c} are parameters of order 1.
Inside Arnold’s tongue and for small detuning, the above
model has two uniform states close to |A~| and this model
exhibits localized structures. Figure 5 illustrates typical lo-
calized states. Hence, we suggest that quasireversible para-
metrically driven systems in two-dimensions must exhibit
localized states.

In conclusion, we have presented a type of localized states
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FIG. 5. Localized states observed in model (6) for u=0.24, y
=0.80, »=-0.10, a=1.0, and b=1.0.

which link asymptotically homogeneous precession states in
a magnetic wire parametrically driven with a magnetic field
in the transversal direction. The conventional approach of
this system, the parametrically driven damped nonlinear
Schrddinger equation in one dimension has been a successful
model to explain pattern and localized states which connect
uniform states in parametrically driven quasireversible sys-
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tems. However, this model lacks this family of localized
states, which asymptotically connect a uniform oscillatory
state with itself. The improvement of this model by the con-
sideration of higher order terms allow us to recover and to
account for this localized state. Due to the unified description
that we have considered, the same family of localized states
is observed in parametrically driven damped pendula chain.
The study of the dynamics, in particular the permanent com-
plex dynamics [17], and the interaction of these states in one
and two dimensions is in progress.
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