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Coarsening dynamics of the one-dimensional Cahn-Hilliard model
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The dynamics of one-dimensional Cahn-Hilliard model is studied. The stationary and particle-type solutions,
the bubbles, are perused as a function of initial conditions, boundary conditions, and system size. We charac-
terize the bubble solutions which are involved in the coarsening dynamics and establish the bifurcation
scenarios of the system. A set of ordinary differential equation permits us to describe the coarsening dynamics
in very good agreement with numerical simulations. We also compare these dynamics with the bubble dynam-
ics deduced from the classical kink interaction computation where our model seems to be more appropriated.
In the case of two bubbles, we deduce analytical expressions for the bubble’s position and the bubble’s width.
Besides, a simple description of the ulterior dynamics is presented.
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. INTRODUCTION aP(X,t) = ePy * P2, (2

Interfacial instabilities and pattern formation have stimu-where the first term of the right hand side stands for a diffu-
lated a great amount of studies during the last deciidetn  sjve effect, if the control parameter is positive. The last
most cases, the interface is a moving boundary separatingrm represents nonlinear advective effects. The dynamics
two different domains. For example, in crystal growth, richexhibited by Eq.(2) is characterized by a spreading of the
morphological instabilities may arise from destabilization of perturbations. When the perturbed interface is almost flat, the
the solidification front, see Reff2] for a specific review and dynamics are governed by the heat equation, since the non-
also Ref.[3] more generally. In the two-dimensional ex- linear term of systen(2) is not dominant. Since the position
tended system, the domains dynamics are described by intesf the interface is arbitrary due to the translational symmetry
face propagation. Its dynamics can be treated as the evolyp— P+P,), the position[P(x,t)] is not a standard order
tion of unidimensional curvelst]; usually, it is characterized parameter, because it is not small in general. Instead, it is
by a nonlocal equation in spa¢é], hence their study is desirable to consider the spatial gradient of the interface po-
difficult in general. When an almost flat interface undergoessition (u=P,), which is a good order parameter in the clas-
an instability, its dynamics become local, as the interfacesjcg| sensey<1, and satisfies the Burgers equat[ai
exhibits slow variation in spadesee, for example, Ref6]). When £ >0, the above model describes the evolution of
As a consequence, one can take into account theRiglk),  stable perturbations of a flat interface in an anisotropic me-
which describes the slowly varying interface position paramdium. This flat interface exhibits a spatial instability when
etrized by the space variableat the instant. Henceforth, s negative. In the case of small(positive or negativg it is
for the sake of simplicity, we consider that the interface isnecessary to take into account higher derivatives and the in-
initially flat. If the system under study is isotropic, the inter- terface is described asymptotically by the new system
face dynamics must be invariant under spatial translation,

since a solid translation of the interfad@— P+P,) does not AP(X,1) = Py P2 = Py (3)
affect the interface dynamics. Thus the interface position
must satisfy an equation of the form which is the well-known Kuramoto-Sivashinsky equation

[8,9]. It has been derived by Sivashinsky to describe the
diffusive instabilities of planar flame fron{®,10] and by
aP(x,) =F(d3P,n=1,...). (1)  Kuramoto within the framework of phase dynamics in
reaction-diffusion systemis].
i i i i , The general above picture is modified when one considers
The isotropic hypothesis also provides a reflection symmetryyra symmetries, in which case the interface dynamics is not
with respect to the direction of the flat interfadangential  jescribed by Eq2). For example, this situation arises for an
direction, x——x), then the interface perturbations are de-jyierface that separates symmetrical domains with energeti-
scribed asymptotically by cally equivalent states, like those observed in a magnetic
domain[11] or in the Ising wall model elegantly exhibited in
liquid crystals[12,13. In all these cases, the interfaces con-
*Permanent address: Institut Non Linéaire de Nice, UMR 66181€cCt two symmetrical states and an extra symmetry appears
CNRS-UNSA, 1361 Route des Lucioles, F-06560 Valbonne,(P— —P) that prohibits the nonlinear advective term in Eq.
France. (2). The interface dynamics becomes described by
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GP(X,1) = Py + aP2Pyy, (4) ‘ | |
where the last term represents the effect of a nonlinear dif 1 |
fusion (a>0) or antidiffusion (a<<0). The above model is :
characterized by diffusive dynami¢s>0), that is, the in- ’ | B
terface tends to reduce its local curvature. This model is alsq | | | |
a continuity equation, which expresses the conservation o | B :
the area under the curv@(x,t). This property is a conse- ' ‘ ;

quence of the fact that if the interface moves over one do
main then it also moves over the other domain, since bot
states are energetically equivalent.

In the case of smalleither positive or negatives, the FIG. 1. Spatiotemporal evolution of the Cahn-Hilliard model in
interface is described asymptotically by the spinodal decomposition regime. Time is running(8p0 time
5 units), system sized.=200, e=-0.5. White color represents0.6
FP(X,1) = Py + 3PPy = Pue () and the black one 0.6.

where the sign of the last term has been chosen in order to
saturate linearly the spatial instability for large wave numberthrough the evolution of these solutions due to their mutual
We remark that the above model is also a continuity equainteractions, and this evolution turns out to be determined in

tion. It is variational, since one can write many cases by ordinary differential equatid@DES [1,27].
The previous scenario is based on the fact that particle type
GP=- f, solutions have Goldstone modes. This means that they have a
6P neutral mode related to a continuous invariance, for example
the spatial translation. Hence the evolution of these solu-
p2 p* p2 tions, when they are sufficiently dilute@paced apart is
F[P]:j dx{«??xﬂ“f*'?xx}, (6)  obtained through the Goldstone modes. Consequently, the

temporal evolution associated to the mutual influence of lo-
where thefree energy Fdepends only on the derivatives of calized structures exhibits slow dynamics.
P(x,t). Introducing the variablei= P, which is a standard These interactions are typically exponential with respect
order parametefu<1), the above equation is transformed to the distance between the defel@8]. The process of the

into the Cahn-Hilliard equatiofil4] appearance and the ulterior evolution of these defects solu-
tions is well known as coarsening dynamics. Then we see
- 3_ _ ., OF[u] that in this way we can have a simplified description with
U= Fy(£U+ U = Uyy) = dyy ) (7) . . .
Su(x) ODE of the physical phenomenons occurring in the system

which is a continuity equation with the Lyapunov functional %;_2};03& and in particular in the Cahn-Hilliard equation

[15], This paper is organized as follows. The dynamical de-
2o W scription and characterization of stationary solutions of the
F[U]Ede SE+Z+_2Y : Cahn-Hilliard equation is addressed in Sec. Il. A great

amount of work has been devoted to the study of the station-

The Cahn-Hilliard equation has been derived in order toary solutions[36—4Q and their bifurcations. We propose
describe the phase separation dynamics in a conservatiiere a unified description for stationary solutions and their
system, such as binary alloyd6], binary liquids [17], bifurcations, which also reproduces these former works. Our
glasseq 18], and polymer solution§19] to mention a few. approach allows us to have a qualitative and quantitative
Note that this model also describes the zigzag instability ununderstanding of the bifurcations scenarios. The dynamics of
dergone by straight rolls in two-dimensional extended sysa diluted gas of bubbles which characterize the coarsening
tems like Rayleigh-Bénard convectif®0] or electroconvec- dynamics is addressed in Sec. Ill. We also compare our re-
tion [21] in fluid systems, and it has been extensively studiedsults with previous work$32-35. The interaction of two
over the last decadd4]. A similar zigzag instability affect- bubbles in a periodic domain is analyzed in great detail. We
ing anisotropic interfaces has recently aroused considerabRimmarize our results and conclude in the last section.
interest in different field§22,23, for example, in gas dis-
charge systemi24], rifts in spreading wax lay€fi25], Ising
wall in smectic, nematic, cholesteric liquid crystals, and lig-
uid crystal electroconvectiofi3,22,23,26 When the diffusion coefficient of the Cahn-Hilliard

A successful strategy to study partial differential equa-model is positive, the perturbation of the flat solution
tions (PDES consists in studying particle or defectlike type [u(x,t)=P,=0] is ruled out by the heat equation and the
solutions[1,27-31,33 which have the property of being lo- modes of largest wave numbers decay faster than the small-
calized in space. If, after some transient, a solution consistest ones.
ing of a certain number of these localized structures is estab- In the case of negative, the flat solution is spatially
lished, one can describe the ulterior dynamics of the systemnstable. By perturbing initially this solution with noise and

II. DESCRIPTION STATIONARY SOLUTIONS
AND THEIR LINEAR STABILITY
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following the ulterior evolution, one can observe initially the Viw
appearance of a periodic pattern with a well-defined wave 1
number weakly modulated: this is trivially deduced from the i v
linear study around the flat solution. Successively, the small-
est bumps merge together forming new larger burfgee 0.5
Fig. 1: this process is well known as spinodal descomposi- w s L s ug
tion [41]. A recent experimental study of an interface be- 7 ‘ \
tween two convective states in electroconvection of liquid -5 ]
crystals showed that, in the coarsening regime, the averag:
separation between the bubbles increases logarithmically ir .
time [13], in agreement with the theoretical prediction 0.5 ¢
[32,42.

In the next sections, we will present an analytical descrip-
tion of the stationary solutions, bifurcation scenarios, and -1
coarsening dynamics observed in the one-dimensional Cahn-
Hilliard equation.

Up

FIG. 2. PotentiaM(u) as a function ofu, for A=0.2.

V(u) + (du)* = E, (9)
, _ . _ where the potential energy i¥(u)=2\u+u?-u*/2 (cf.
The stationary solutions of the one-dimensional CahnFig' 2).

Hilliard equation has been studied in great detail by Novick-
Cohen and co-workef86,37,39,40 We propose in this sec-
tion an alternative study of the stationary inhomogeneous B. Homogeneous solutions and their stability
solution and assess the behavior of these solutions in the _ N
large and small domain size. The existencérmifiltibubble The potential V(u) has three extrema iR“<Ag, Ac
solution is related to the bifurcations of the homogeneous=2/(3v3). We will note themu,<u,=<u and they are
solutions [39]. We refer to bubble solutions as a pair of 9Iven by
kink-antikink profile. From this scheme, stability of the 1 1 2 -
(multi)bubble solution will be found, using a different ap- Uy = - 2\/jsin<—arctam /—2 -1 +—>,
proach than the former workE32—35. Since the Cahn- 3 \3 27\ 6
Hilliard model possesses a Lyapunov functional, the knowl-

A. Stationary bubble solutions

edge of its stationary solution permits us to give a qualitative 1 (1 4 T
picture of the dynamics. It is in this spirit that the coarsening Up = 2\/;5'”(53“13“\/ o2 1 ‘E) '
process is understood as a flow in the PDE phase space that

successively passes near the unstable stationary solution con-

taining n 'bybbles,n—l, until the system is relaxed to_the U= 2\/§co<iarctam /iz _ 1)_
global minimum of the Lyapunov functiondh bubble in 3 3 27\

periodic boundary condition or a kink with zero flux bound-
ary condition) [34,35. From the analysis, it is deduced that
the coarsening dynamics is exponentially slci@].

By appropriate scalings, the bifurcation parameteran
be set equal to-1 when it is negative, and Eq7) is trans-

formed into dw = dofv(= 1+ 3Ud) - dgw].

Note that% < u§'0< 1, and -143<u,<O0. Let us investigate
the linear stability of a homogeneous solutigywith respect

to an inhomogeneous spatial perturbation. This latter, that we
namev (v =u-Up), obeys

AU = dol— U+ % = d,U), (8) In Fourier space, this relation becomes

-2 2y _ 2
with periodic boundary conditions or Neumann type bound- Gvp= P11 = ) = P loy,
ary conditions, i.e., null flux at the boundary. The area undewhereuv, is the amplitude of a harmonic perturbation with a
the u(x,t) field is conserved during the time evolutios, ~spatial frequency. Therefore, if 1-8G=<0, the solution is
=fSu(x,t)dx. Stationary solutions are therefore functions of Stable whatever the perturbing wave number is. Sincand

the aresSand the system size, which can be finite or infinite;Uc are bigger in absolute value than B, the potential
they obey the equation maxima are stable. The stability of the minimwmdepends

on the domain size. If the domain is infinite, thewcan be as
small as possible and the solutiopwill be unstable toward
large wavelength perturbations. It is related to the classical
whereX is an integration constant and dspriori arbitrary.  spinodal decomposition, for which the Cahn-Hilliard model
Due to the symmetry\ — -\ and u— —u, we will suppose has been historically derivgd4]. If the domain is finite, the
without loss of generality that> 0. The above Newton type quantified wave numbgr may be large enough and such that
equation is integrated into U, remains stable. For larger system size, the smallest wave

—u+u-4qu-1=0,
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number 27/L renders this solution unstable whéeh- 3u(2)) L
=p? in terms of the are® (S=u,L) and the system sizk, 14 \
this bifurcation point is ol .
L?: \’382"' 4772, 10 \
\B=-— zsﬂ. (10) gl N
1 (332+ 471_2)3/2 ]
This instability corresponds to a saddle node bifurcation un-
der O2) symmetry due to the space translation symmetry. In 4|
fact, there is a bifurcation occurring for each Fourier mode 5}
which becomes unstable with a spatial frequeney /A, this
occurs when 0.1 0.2 0.3 A
Ly =3 +4n’7?, 5
\B= S+ 27 (11 3

0= PSPt anta?)

This means that the homogeneous solutions hmapesitive
eigenvalues in the rang€;, ; <\ <\B. At the nth bifurcation
point, i.e., forL=L,, the positive eigenvalues are

_( 4i7?
717\ 3+ 4t
Consequently, in the bifurcation diagram, branches of new
solutions are expected to cross the homogeneous branch sc,,

lution at bifurcation points. These new solutions must be
spatially inhomogeneous, since we have already explored all

25

201

2
) (n?-i?, fori=1-n.
15

0.1 02 03 x

the trivial solutions.

C. Inhomogeneous solutions and bubbles

FIG. 3. Period of the solutions that have a fixed a®ea-3 (a)
andS=-30(b). The thin line represents the period of homogeneous
solutions; the lowest curve represents the period,aind the high-
est one, the period af,. The thick line represents the period of the

In this section we determine the inhomogeneous solutiongypple solution. The dashétespectively solidlline represents un-

that take the form of kinks, solutions that connect-at two

stable(respectively stab)esolutions. Stationary solution (stable

different stationary states when the domain is large enouglbubble solutioh, B (unstable bubble solutionandC (stable homo-
The potentiaM(u) must have at least one minimum, and this geneous solutiorare found by the intersection of these curves with

is insured, as it results from the above analysis\%& \2.

With such an assumption, one can write

(U= uy) (U= Up) (U= Ug)(u=Uy)
2 1

(dgu)?= (12
where the roots of,u are real and expressed as function of
and E, and we assume thak <u,<u;<u, as pictured in
Fig. 2. Equation(12) can be directly integrated and we ob-
tain the bubble solution

(Ug = Up)(Ug — Ug)
(Ug = Up) = (Uug — Up)snly|m)?
with y=(1/212)/(Ug=u) (Us=Up) (x=%;) and m=(us~uy)
X (Uz—Uy)/[(uz—uy)(us—uy)]. The function st|n) is a

Jacobi elliptic function[44]. This solution is well known
[36,37] and has as period

U(X)=uy— (13)

B 4\5
V(U - Uy) (U3 — uy)

where the function Km) is the complete elliptic integral of

K(m), (14)

the lineL=17.5.

solution tends to be a homoclinic trajectory, i.e., for
— U, implying m— 1. From the solutior§13) one can explic-
itly obtain the are&s

5= 4V'E[U1K(m) + (Up — upIl(ny,my) ]

V(ug = up)(ug—up)

where n1=(U3_U2)/(U3_U1) and mlz(UZ_U3)(U4_U1)/(U1
—U3)(u,—uy). II(ny,my) is the elliptic integral of the third
kind.

: (15

D. Construction of the solutions

To compute the explicit solution of the problem, one
needs to fix the are& and the system sizk, which are
conserved during temporal evolution. Fixing the two last
guantities permits the inversion of the relatidfig) and(15)
and gives a value foxk and E. These values determine the
dynamical systen{9), and we can now construct its solu-
tions. An example of numerical inversion is shown in Fig. 3

Similar bifurcation diagrams have been derived numeri-

the first kind. The period logarithmically diverges when thecally [45]. From Fig. 3b), it is seen that if the areSis large

046210-4
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2(3u2-1)
— 2U, +2(1 - ud)cost(x - X V3uZ - 1]
(16)

This is a known solution and has been derived in Refs.
[15,36. The above expression can be rewritten in the follow-
ing form:

[3u2-1 V3ui- 1 6
Up(X) = u, + 6‘2 {tan}‘{ ; X=X+
-tan —\'3u§_1<x— —é>
2 X 2 ’

Un(X) = Ug +

17

nucleation solutior in the thick dashed line, and the homogeneouswhere §=2/13u3-larcco[-2u,/y2(1-u2)]. When L is

solutionC (L=17.5, andS=-30).

large enough, the function tabf converges exponentially
to a constant and it is possible to approximate the exact

enough in absolute value, the system is bistable for smafolution (13) with Eq. (17), since the error is exponentially
domain size. In that case, it has as stationary solution themall. The computation of this correction is straightforward,
homogeneous solution and an inhomogeneous one that reput needs a lot of algebraetails of the calculation will be
resents the bubble solution. Note that if the system size is togMitted, and gives

small, there is no bubble solution. At=\,, there is a saddle
bifurcation under @) symmetry(the new solution breaks
the translation invariangeoccurring at the branching point
of the two families of solutions, whose normal form[&7],
for the supercritical bifurcation,

dA

= uA-|A%A.
il A

The point of bifurcation is related to the bifurcation of tie
solution, derived in the previous section,

_og 2+ &
(472 + 3%

In the case of large are@f. Fig. 4), bistability occurs

AP =

between the bubble solutigiand the homogeneous solution
C. Since the system is potential, an extremum solutio
It is related to a nucleation solution whose
codimension-1 stable manifold is the nucleation barrier
(manifold) separating two stable solutions; it is a separatrix
in the functional space. Mathematical properties of this

must exist.

nucleation manifold has been studied in Héf]. This fea-

1-3w)° , e
32( - _u; e—2L\s3u§—l_
a

If 1—3u§1 is different from O, the large domain size approxi-
mation captures very well the solution, since the error is
exponentially small(e"2-V1-33) When 1-32 approaches
zero, the solution is also well captured for small domain size,
but the error becomes algebra[¢1—3u§)3]. Note that
u,=-1/V3 corresponds ta=A\..

In the large domain limit, we evaluate the bubble’s gBea
by integrating relation(17) in the whole finite domain: this

leads to
l3u2-1
cos)‘[ \Ta(5+ L)}

S=uL +2y21n
CcO }‘{

|
A% 3U§ -1

4 0 L)J

This expression can be simplified when the system size is

r]arge enough:

-_ “r’ ua )
/— i)
V1-14

—
S=ugl +2y2 arccosé

and we obtain the relation between the approximation of the

ture will be explained in detail in the text, where the smallperiod of the solution as a function of its area and

domain size approximation is performed.

In the two following subsections, we compute analytically
the branches of the bubbles solutions in two limits: for large

and small domain size.

E. Large domain size(L — )

For the sake of simplicity, we will work with the variable
u,, defined from\, such that =—u,+us. The solution with
an infinite period(L— ) is obtained taking the limiu;
— Uy,=U,, and we obtain

1 = -\2u
LA= —{S— 2\2 arccosé \—Zﬂ . (18)
Uy V1 —uy

Hence the solutions defined with, and their branches can
be found easily by a simple numerical inversion of the above
implicit equation. This relation is compared with the numeri-
cal computation presented in Fig. 5, where this large domain
approximation matches quite well the exéacomputed nu-
merically) inversion of the relationél4) and(15). The worse
error here is of about 3%, hence we conclude that our ap-
proach permits us to provide an accurate approximation of
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FIG. 5. PeriodL of the solution(13) vs A. The solid line is the

numerical evaluation of the period, and the dashed one corresponds

to the approximation of large domain sizé(S,\) [Eq. (18)]. The

point-dashed line corresponds to the small domain approximation O\falue IS=

the periodL.(S,\) [Eq. (19)]. The full circle is the bifurcation point
(B LY.

the bifurcation branches for the Cahn-Hilliard equation for
large domain and becomes quite good till the vicinity of the

bifurcation point.

F. Small domain size

If we look at Fig. 3, we deduce that aE=\? the bubble
solution emerges from the homogeneous dog. When

)\<>\§, the spatial inhomogeneous solution is a perturbation
of the homogeneous state. For this reason, for computing the

solution near this point, we set the enefgyf the mechani-
cal system defined by the relatidd) to E=V(up) +e€. By

PHYSICAL REVIEW E 71, 046210(2009

40 \

351 \

300 \ \
25 RS N

208 wiple bubble | ™ —-08:18)
~

~N

T~ - ~
15 double bubble ~ ~ ~ — _\_\(ifyw)
10 s oL
Single bubble
> -
; A
0.1 0.2 0.3

FIG. 6. PeriodL of the multibubble solution va.. The area
—3. Periodic boundary conditions.

81 - 3u (N2

e=[u,- u;(n)] 15[u;;2(n) _1] ,

27U, (N)
E: #_
V1- 3Ub (n)

We can now evaluate the approximation of the period of the
solution:

32n’m? - L2
64n*m*

This result is compared with the numerical inversion of the

L .= Ln(l + €+ 0(63/2)> . (19

perturbation, one obtains the following roots of the polyno-relation (15) in Fig. 5, and the agreement is good in the

mial V(u):
Uy == Uy = V2V1 = Uj + 7€+ 0(e¥?),
- Up 3l
Uy, =U,— Ve+ 55€+0(€ ?),
V1- 3u§ (1-3up)?
Uz = Uy + 2\;-'_ U 22€+0(63/2),
~ [
Uy=—Up+ V21 —-UZ— n_e+0(¥?),
where

70 = (1+U2 T 2up1 - uD)/[202(1 - 382\ - U],

Hence using the relatiori44) and(15) we can determine the
multibubble’s period area near the bifurcation point

N 3nm(1 + 7ud)
L(n) = e+o(e¥?),
V1-32 8(1-3u)™
2nmu,  15n7uy(1 — ud) o
S.(n) = - e+o(e?).

Vi-3  41-3up)™?

We are interested in the bifurcation lines for constant &ea
We thus haves,(n)=LBu,(n). We then deduce that

vicinity of the bifurcation. From this relation we deduce that
when S§< 277, the slope of the bifurcation linén the L-\
plane is negative, and hence the bifurcation is supercritical.
On the contrary, the bifurcation is subcritical, and bistability
between a homogeneous state and a bubble solution is de-
duced.

In the case of bistability, according to the existence of a
Lyapunov functional, a barrier separating two stable attrac-
tors is necessary. We relate this separatrix to an unstable
manifold that permits the transition from homogeneous state
to the bubble solution. Due to the intrinsic nature of the
bifurcation, the spectrum of the linearized operator around
the unstable solution must have just one positive eigenvalue,
and its codimension-1 stable manifold acts as the potential
barrier. The nucleation solution is therefore the unstable
bubble that emerges from the subcritical bifurcation. For
mathematical properties of the nucleation problem, see Refs.
[34-34.

G. Unfolding the bifurcation, multibubble solution,
and linear stability

In this section, we are interested in the scenario of bifur-
cation when the system size varies. As seen before, for each
value ofL,, there is a bifurcation of the homogeneous state.
From the bifurcation theory point of view, this means that
there is appearance of a new branch of solutions as illustrated

046210-6



COARSENING DYNAMICS OF THE ONE-DIMENSIONAL.. PHYSICAL REVIEW E 71, 046210(2009

30L \ \ U= thooc= 0,
AN N the kink solution is energetically favorable in comparison to
LE .l ‘. the bubble solution, due to the energetic cost of interfacial
A R R, tension. The bifurcations of the homogeneous stgt@b-
20 » triple-kink D15 i Rt .
S N served in periodic geometffEq. (11)] are slightly changed,
15 Tee N gi) since the harmonic perturbations now take the form of
single bubble IS cog(nw/L)x]. Hence the bifurcation points are
10 = ~ ~ B B A A A
kink /,> L8= 3+ P,
5 )\B s 252+ n277_2
\ A "TES )
0.1 0.2 0.3

In Fig. 7 is represented the bifurcation diagram for this
case, and we can then infer geometrically that the bubble
solution is unstable, and has at least one strictly positive
eigenvalue.
in Fig. 6. In the previous section, we have related this new The bifurcation scenario and the counting of the solutions
branch to a single bubble solution. Before the first bifurca-has been performed using quite different techniques in Ref.
tion, uy, is stable, and if the bifurcation is supercritical, this [39] and computed numerically in Rg#5]. In the compu-
means that in the new solution, the bubble is stable. In theation presented here, we managed to compute analytically
other case, that is, fd8> 2, the bifurcation is subcritical, the solutions and their bifurcation branches, up to an error
and the new solution is unstable. which is exponentially small.

Since at thenth bifurcation(11), the bifurcatinguy, solu-
tion hasn-1 strictly positive eigenvalues, thebubble so-
lution is unstable. For a given ar&then-bubble solution is
composed of bubbles that have an area equdl+&/n, and The transient dynamics consisting in the formation of
a period equal ta.2=L/n. Hence the stability is not affected small domains that subsequently grow is denominated coars-
far away from the bifurcation points, since there are no moreening dynamics. In the last decades, extensive studies of the
possible bifurcations with other branches. This means thagoarsening dynamics have been performg&2—35,42.
the unique stable spatial inhomogeneous solution with periThese approaches are based on an asymptotic reduction of
odic boundary condition is the single bubble solution. Thethe Cahn-Hilliard equation into a set of ODEs describing the
scenario of bifurcations is shown in Fig. 6 evolutions of the positions of the kinks. We propose here an

Now suppose that we set as an initial condition a per-alternative way for deriving such ODEs. It is found that our
turbed bubble paifsymmetrical bubble)s_Since the spec- reduced set of equations is different from the known ones
trum has one positive eigenvalfg S<\8), this means [32-39, a fact that will be discussed at the end of this sec-
that the stable manifold of the solution is a separatrix in theion. We first derive the set of ODEs for bubbles. Then we
functional space: two different behaviors are expected,; this isvill study the special case of two interacting bubbles, and
clearly seen in the simulations and will be explained later inconfront our prediction to the numerical results.
the context of bubble dynamics. The query that we address now is how the system evolves
to its global minimum. Previous to the global minimization
of the free energy, the system behaves minimizing locally

We have deduced the bifurcations scenario in the case dhe free energy in different regions of space yielding several
periodic boundary conditions. In the case of null flux bound-bubbles. Hence we shall consider a gas of bubbles.itthe
ary conditions, that is, bubble is characterized by the position of its centefthe

FIG. 7. PeriodL of the multibubbles solution v&. The area
value isS=-3. Zero flux boundary condition.

Ill. COARSENING DYNAMICS

H. Scenario in the case of the Neumann boundary conditions

FIG. 8. Schematic representa-

Ti tion of the bubble solutiony; is
i ) the bubble center position ani
z is the width.
AW
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A

w1 (2, 251, i) ui(z, zis Ai) U4 1{T> Tiv1, Dis1)

FIG. 9. Schematic representa-
tion of a diluted gas of bubbles.
Each bubble is characterized by
its position and its widtha;,_; rep-

) resents an arbitrary intermediate
; fixed point between the- 1th and
a ith bubbles.
middle point between the two zeros of the bubkded its In order to find the evolution of these order parameters,
width A; (see Fig. 8. we first integrate Eq(7) from a;_; to a, and find
Henceforth we consider a finite system sizéarger than a a
the bubble widths. In order to discern the different time df u(x)dx= 4 oF (22)
scales involved in the system, we consider &gin place of ' ay X ai_l’
Eqg. (8), where the bubble solutions have the following ap- ] ) ) . ] .
proximate form: wherea;_; is an intermediate arbitrary fixed point between
the i-1th andith bubbles(see Fig. 9 and d(F/&u)["
J— A _ _ . . _
u(y) =~ - el + Vﬁtan /H(X_Xi + _|> = 8X(§1:/611)|b ax(éF/®)|a. We associate the above inte
2 2 gral with the masf theith bubble. In order to evaluate the
] A left hand side of the above equation, we write
ey & i — _.J5
- \|s|tanr{ \/ ?(X_ X — E‘)] + 4| g|e V2R f(x), 3 3 _
dtf u(x)dx= dtf [u(x) +1|g] ]dx.
(20 aj-1 aj-1
wheref(x) is a bounded function that converges asymptoti-Using the bubbles approximatid¢@0), the dominant term of
cally to 1 whenx— %, which has the form the integral takes the form
3 A, & —
f(x)=1-=)tan \/@<x—xi+—'> f [u(x)+vﬁ]dxz2AiV|8|,
2 2 2 a,

,_{ |8|( Ai):|} 3 lel then
—tanh \/ = (x-x—-— _2 =
2 2 2V 2 . B
{ 4 /el A dtf u(x)dx = 2\|e[ A,
X (X—Xi+—')secﬁ[ _(X_Xi"'_I)}

2 2 2

aj-1
and Eq.(22), related to the bubble’s width evolution, reads
A |8|< Ai)
Y V| By _y -2 oF
<x X~ )secﬁ[ S\ XX . 2\TelaA = &X%
(21) a_q

. . I Similarly, we consider Eq.7) multiplied by x and integrated
The parameter groufx;,A;} is determined by the initial in the same domain:

conditions. The translation invariance and area conservation

g

(23

induce that the bubble solution has two Goldstone modes, 8 SE |a SE | @
that is, the spectrum of the linear operati@iated to stability di|  xu(x)dx= X2l T sl
of the bubble solutionhas two zero eigenvalues. The solu- &-1 &i-1 &-1

tions of Eq.(7) are approximated as superposition of dilutedThjs integral is related to the motion of the center of the
bubbles(as is illustrated in Fig. B the separation between mass of theith bubble. Evaluating the integral in the left
the bubbles is larger than their widttis>A>1/\e). Hence  hand side of the above equation we obtain at dominant order
locally one has a bubble solution perturbed by the presence

of the nearest ones, and the position of this bubble and its fai

”— ~ /— A
width are considered as variables. Since these variables have XU) + Vel Jdx = 2v]sfxiA,.

the slowest dynamical evolution, they lead to the asymptotic
dynamics. Hence

a-1
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A u
ui(z, 23, &) i1 (&, Tig1, Digr)
/ FIG. 10. Schematic represen-
1 > tation of the enlarged interbubble
region.
a; z
d (& d(x,A) 51: aj SE | & that is, ui(x;xA;/2)=0. The variation of the free energy
d_tJ xu(x)dx= 2y]e| = Xl T sl (8F/8u) at these points are the same, then
gj-1 i1 81
(24) —d(xA) [ oF oF
el =g =l e, o
Using the identity 81 8
/
OF  SF|d | oF SF A A X’SF +axE )
X sy~ |, | aul, Y KT T8 2\ "ul, du |,
i-1 8i-1 -1
SF SF A Using Eq.(23) we find
- | t K (Xi+_l_ai)
T e S PR P .
A\ L OF O]\ "oul,  Teul, )
-— XI -— E a)(% 1 1
%1 At dominant order the equations for the bubble’s position
i oF and the bubble’s width are functions @{ 6F/ éu), which has
G Y . (25 the form

and the fact that the intermediate region, between the
bubbles, is a straight linés illustrated in Fig. 10we can
approximate

oF 2
0)(5 = gUy + 3U“Uy — Uyyy.

The bubble solution a# and a_; has the formu=~-—y|e|

oF [ oF oF ( A )} +0(|e| Y27 2#4) thus we can approach
o = o X— 5 "&-1] |
U [ -a2 Ula Ula 2
5]:
axa =~ 2|8|ux(a1'),
oF oF 5F ( A )] 3
— ~| —| +d—| |x+—-q]]|.
ou X +A/2 { ou a ou a 2 therefore the dynamics of bubble’s position and bubble’s
(26) ~ width are
In the above expressions, we have neglected the exponen- AN = V’H[Ux(ai) -uai_y],
tial corrections and obtain
SF SF|%  SF S5F L]
X0 A I B Ti 90 = =~ [Ux(@) + U(@i-p)]. (27)
: oF oF Since each bubble’s tail converges asymptotically{@—as
—X \&th el axgu . a function of its width, a well defined tilt between the
, ' bubbles is established, as illustrated in Fig. 10. Hence if the
LA p oF p oF ith bubble is surrounded by two bubbles with smaller widths,
21\ ™ au a1 *8u a ' thenu,(a;) is positive andu,(a;_;) is negative, then théh

bubble width grows in timed,A;>0).
The positionsx; £ A;/2 are the roots of the bubble solution, A simple approximation of the tilt is

046210-9
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A Ay
U\ Xi =5 ) 7 Uiea| X ®

dU(ay-1) = A A
s

Using expressioli20) one reads

4\J"’E(e_\““mA e \2‘ [Ai- 1)

u(aj_q) =
LWu(ay_q) '+Ai ] N
X — Xj—1 —
8\1’Ee ell2(4i-y+8) [le
= sinh Aiop— A
A A| X ( i-17 )
X = Xi-1~
. . 0
Introducing the function
8 /ﬂe_\;m@i_lﬂi) FIG. 11. Spatiotemporal evolution of two bubbles with different
liioa(e,Ai_,A) = Vi€ size. Numerical simulation of the Cahn-Hilliard equation with
X - A +Ai -1 €=-0.25, initial total are&8=-81.50,A,;=9.16, andA,=14.46.
i-17 T 5

An+1:A11 Ao:Anv
Xsinh (A, 1—A) |,

X1 =X+ L, Xo=X%X,—L,
the width and position equations take the fomT]

and
A = ligaj = i1, 8\| e VZ[el(A AL /
In+1n IlO_ A A sinh (A Al)
_ vt i X = Xy =
thi—T- (28 i
We remark that these equations are invariant by the transfor- ! the lateral bubbles are thinnerespectively widerthan
mations the central one, the latter width increadesspectively de-
creasep as shown in Fig. 11. Therefore the larger bubbles
Ay — A+ a, increase as a consequence of the disappearance of their thin-
ner neighbors, and in such a way that the global area is
Xi— Xi_g — X — Xi_1 + @, conserved for periodic boundary conditiofts>A;=0). The
bubbles’ interaction depends on the inverse of the distance
t—t exp(\x’%a), between them and exponentially with their widths. When the

bubbles are close enough, our description loses its validity.
wherea is an arbitrary constant. Due to this invariance then this circumstance, the dynamics of the system is given by
averagg(A(t))=(1/n)Z4A;, which is a function of time, satis- Egs. (28) by means ofcomplementary bubbless we shall
fies the similarity relatiom(t)+ a=A(t exp(v2|e|a)). From  see later.
this relation we conclude that

A. Two bubbles
A(t) = /1—In t, To illustrate the dynamics given by E@3), we consider

the case of two bubbles with periodic boundary conditions.
i.e., we recuperate in a very simple way the logarithmic in_Prior to the establishmen; Qf the stationary state, which cor-
crease with time of the average separation of the bubblereSpondS to the global minimum of the free energy, the dy-

[32,42, which has recently been observed experimentallyﬁamlcs 's led by the two bubbles interaction

[13]. It is remarkable that to obtain this behavior one does —dA,=dA =151 o,

not need to have an explicit solution since in our approach it

is an exact consequence of a symmetry of our reduced equa- A(X1A1 +XA5) = LIy 5,

tions of motion. Note that the dynamics of the bubble’s po-

sition and bubble’s width is independent of the arbitrary in- ly1+1q5

termediate fixed points;. If we consider a system of side dixo = dixy = T (29

with periodic boundary conditions amdbubbles, the above
equations describe the dynamics of bubbles’ widths and bubwvherelL is the system size. The first equations express the
ble’s positions with the conditions conservation of the area at dominant order. The second equa-

046210-10
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Aoy 22 ¢

20

FIG. 12. Temporal evolution of the bubble’s
width obtained from the simulation and from the
analytical approximations. The symbol line is ob-
tained from numerical simulation of the Cahn-
Hilliard model with €=0.25, the dashed line is
obtained from the expressid82), and solid thick
line is obtained using the analytical expression of
the relaxation dynamic31).

18 +

16

14|
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-
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tion tells us that the globatenter of massnoves in the phasizes that Eq$29) and(30) give qualitatively and quan-
direction of the largest bubble. We note that the case of idertitatively the evolution of the ulterior dynamics.
tical bubbles is an unstable stationary state=A,) whose The previous description seems to be valid when the
stable manifold is a separatrix in the functional phase spacdubbles are sufficiently separatée;—x,>A,A, and A ,
as we have shown in Sec. Il G. Due to the translation invari> v|e|). If the bubbles are close enough, as illustrated in Fig.
ance of the system, the more appropriate order parameter thd8, one can also use the preceding description but using
describes the interaction is the distance between the bubblesow the complementary bubbles which are related to the
Using the previous equations we obtain original bubbles obtained through the transformatigr, t)
A% - ) = 0 ——u(x,t) (cf. Fig. 13.

w2 A Using Egs.(29) and (30) for the complementary bubbles
So, at dominant order the distance between the bubbles ige find that in the original fieldu(x,t)], the closest bubbles
constant. Numerically, we observe that bubbles move slowlyget near and finally merge. These two qualitatively different
In order to find this dynamic, one can take into account thelynamics result from the existence of a separatrix in the
solvability condition of the two bubbles solutip82-35 and  functional space as shown in Sec. Il G. Therefore the inter-
use the dynamics of the bubble’s wid{®9). The first cor-  action laws(29) and(30) allow us to describe the evolution

rection of the previous equations takes the form of diluted bubbles or nearest ones by consideration of the
(A -A,) appropriate bubbles, i.e., the complementary or the original
d(Xo=x) = =[e|* (1 + 11 ).  (30)  ones.
AsA; As we have seen in Sec. Il H the bubble solution with null

This equation indicates to us that the bubbles always attradtix boundary conditions is unstable. It moves toward the
themselves, i.e., the distandthe smallest onebetween near(_ast border and finally d|sappears giving rise to a k_mk
them always decreases and the interaction law depends §R!ution[43]. In the case for which the bubble is exactly in
the inverse of the distandeee the definition of; ,), but the ~ the center of the system, a very small perturbation mash
intensity of this effect ide| smaller than the evolution of the the bubble in one direction or the other: this reflects the
other quantitiegA ~ 1/|¢["1/2). Therefore the bubbles inter- existence of the stable manifold of codimension 1 predicted
act mainly through their widthésee Fig. 11and the widest " S.ec. Il H. In order to c_alculate _the bubble velocity we use
bubble increases its width and moves slightly towards thdn€ image method doubling the size of the system. The origi-
thinnest one. Numerical simulations confirm this description"@ bubble gives rise to two bubbles by reflection in the
as shown in Fig. 11. In Fig. 12, we compare the evolution ofMdpoint and we finally have a system of double length with
A,(t) obtained through numerical integration of the Cahn-WO bubbles and periodic boundary conditions. Since the
Hilliard equation with the analytical oneq. (29)], and we _bubbles_a_re equal, Eq&29) do not give directly the dynam-
find good agreement. |cs_and it is necessary to_u_se the complgmentary bubbles for

Despite the fact that we have done many approximation§’,".hICh Eqs.(29) are not trivial. One tha|ns_that the bubble
a good agreement is found with the simulations. We compar&/idth dynamics is double the pursuit velocity and then
numerically and analytically the spatial derivative of the field
u(x,t) at intermediate points between the bubbles and find 8|8|e—v“ﬁ(L—A) .

U@ pumeric= ~ 2.69 10°, " S'”h[\z'g'(x )}

-1 . =_ 8
oU(@) =iy == 2.60x 107, where(A,x) are the bubble width and position, respectively.
i.e., an error of 3.5%. The error in the width and the positionlf the bubble width is of ordefe|*'?, our description loses its
dynamicgEqg. (29)] is 4.2 and 17.3%, respectively. This em- validity.
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ﬁ u(x)

-
Ao

uy (IL‘) \ /L:CL‘)\\ uy (1:)

B. Relaxation dynamics nmT

u1(z) . ua(T)

FIG. 13. Schematic represen-
tation of (a) the bubble solutions
and(b) the complementary ones.

For time less thaf” (see Fig. 12the dynamics is led by P L-A'
the interaction law$29) and(30). For times larger thai",
the system relaxes to the global minimum. Once the smallesfince the bubble’s widthA imposes an effective periodic
bubble disappears, the system is described by one perturbedmain of sizgL—A). The eigenvalues are approximated by
bubble. Thus the dynamics is characterized by exponential
relaxation to the bubble solutiof20). One can determine n2m2 ( n2m2 )

this characteristic time by means of a simple linear analysis o=-— 7|2+ — (31)

—A)2 A2
of the bubble solution. The perturbation of one bubble solu- (L=4) (L=4)

tion u, with width A in a system of siz& is described by . . . . L
with nonlocalized eigenvector. This rough approximation

ov=dy[- e+ 3ug(X)% = dylv, permits us to compute the eigenvalues with a quite reason-
able agreement with the numerical simulations, as depicted
where u(x,t) =uy(x) +v(x)e’* and |v|<|u,|. Another way to in Fig. 14. We emphasize that this derivation is an analog of
study the stability of thémulti)bubble consists of computing the WKB method. Moreover, numerical computations show
the second variation of the free energy; this has the advarthat the tails of these eigenvectors are similar to the harmon-
tage of allowing a complete analydi48]. It is possible to ics one derived abové&f. Fig. 14.
compute approximately the continuous part of the spectrum, This continuous spectrum plays a fundamental role in the
which contains the eigenvalues whose eigenvectors do ndiubble dynamics, because the bubble disappearance creates a
converge to zero at infinity. Far away from the bubble’s po-large perturbation far away from its position and excites
sition, the fieldu, asymptotically converges ta; at *o. these modes.
Then the spectrum must also obey
ov = &yy(_ e+ 3u§ - AV C. Analytical solution of two bubbles’ interaction
When one considers the dynamics of the bubble’s width
and the bubble’s positiof29), it is found thatA; +A,=A and
X,—X;=R are constants. We introduce the auxiliary variable
6=A;—A, which satisfies

Making Fourier expansion with spatial frequengythe ei-
genvalues satisfy

ov =-p¥(- e+ 3u3 + Y.

When the bubble’s width is large enough,z—\s‘: and the di6=2(Ip1-112)
eigenvalues are=-p%(2e+p?), the spatial frequencigs is
approximated by or equivalently
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\m/’—- of simplicity, we consider the cask, <A,, then
20 40"/ I\ \60 80 100 1 [
5 oYy tani =/ —A
) bl T ot 4 ——n 212
| ! —to AT 1 ’
] Cy\2 1
* o V2lel tan*{" \/HfSJ
1 |l | 2 2
|
-6 |,I l,' where A,(T)=A or A,(T')=0. We note that this time de-
‘“' ',l creases when the bubbles are more dissimilar, whereas it
8 W () becomes infinite when the widths are the same, since it is a
III '|| stationary unstable state. Besides, this time increases with
10 ‘ the total widthA.
| \ The evolution of the bubble’s positions are given by
f
] |2 1+ Il 2 L-2R
dxq = dixp = = == d:A
osl || X1 = 0o > 2L — A4
i
I and using the expression af;(t) we obtain
AR}
0 :
20 40\ [+ 80 0 L—2R[60—5(t)}
X1 (1) = X4(tp) — ,
|l " 1( ) 1( 0) 2L-A) >
05f i
{
| L-2R | §,- 81)
Xo(t) = Xo(tp) — .
1 |" 2(1) = X,(t,) 2L - A)[ >

®) The distance between the bubbles is constant, however, the
FIG. 14. Comparison of numerical eigenvector and the applroXiposmon of the greatest bubble moves to the smallest one and
mated ones. The dashed line is the numerical eigenvector, the thid® Smallest moves away from the greatest one. For small
line is the approximated one, and the solid line is the bubble solulime [v2[e|C(t-t,) <1] the width changes proportionally to
tion with \=3.062< 106, e=-1, and system siz&=102.4.(a)  the time, i.e.A; ,~t as shown in Fig. 11.
First eigenvector with numerical eigenvalu.0023 and approxi-
mated to—0.0024 using expressiof81). (b) Second eigenvector

numerical eigenvalue-0.0093 and approximated t60.0097 using D. Comparison of our model

with the Kawasaki-type equations

expression31).
As argued in the beginning of the section, extensive stud-
{ le] ] ies have been devoted to derive a set of ODEs predicting the
d;6=2Csinh| \/ —4|, dynamics of the bubble§32-35. These calculations are
2 based on the assumption that the kink-antikink pairs are suf-
whereC is a constant defined ficiently diluted, a hypothesis we also use. The technique for
_ the reduction to an ODE is a Fredholm alternative. Two ap-
_ Blel(L-A)enlela proaches have been used. In the first 8233, the com-
- A A\ patibility condition is applied over an autoadjoint operator
(R— E)(L -R- E) (obtained by inversion of the Laplacian operat@nd in the
second case, over a nonautoadjoint operfddr35. Both
The solution of the above equation is computations give rise to the same set of ODEs. In our case,
the reduction is done by a study of the dynamics of the mass
St = 2\/Zarctan><tanr{1 \/35 :|e\ZC(t—to)> and the position of the bubbles, and no Fredholm alternative
|e] 2NV 2°7° is used. Here we take into account the fact that in between

the kinks the field is slightly tiltedsee Fig. 10 whereas in

with 8(to)=4. Then the widths take the form the former works, the field is seen as constant. This tilt is

A+ 8(t) explained as the following: the kink solution asymptotically
1= 2 converges at-« to —y|e|, but the bubble solution converges
to a value that depends on its widfk|e|+o(V|e)exp
A - 8(t) -(yV2|e]A)] as seen in Eq17). This small difference leads to

A > (32)  the dynamics. In particular for the two bubble coarsening,
following the former workg32-35, one can deduce that the

In Fig. 12, numerical simulations are compared with the pre-evolution of the distancelzxz—xl—%(A2+Al) between the

vious solutions. The time when one bubble disappéars interacting bubbles is of the same order as the evolution of

can be determined from the above expressions. For the sakige widths, whereas we claim that it is a second-order effect
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ufz)

04

frame of interface instability for two-dimensional extended
systems, one can find that the dynamics of an interface which
connects two symmetrical domains is described by the one-
dimensional Cahn-Hilliard model, where the conservative or-
der parameter is the spatial variation of interface’s position,
160 and the conservative quantity is the interface’s area with re-
spect to the initial flat interface.

We have studied the dynamics of the one-dimensional
Cahn-Hilliard model, which is characterized by relaxation
dynamics described by a free enerdyapunov potential
We have persued the stationary solutions of this model and
established the local and global minima. The bifurcation sce-

¢ » narios of these stationary solutions as functions of the initial
41.65 / area and system size have been studied. These bubbles are
/ characterized by the parameter group position and width. In
41.6 order to describe the ulterior dynamics of one-dimensional
Cahn-Hilliard model, we have considered a gas of diluted
bubbles and found a set of ordinary differential equations,
which describes the interactions between them. These equa-
tions allowed us to give a simple description of the coarsen-

e ing dynamics observed in the system, in terms of the bub-
jae ble’s position and bubble’s width. In order to illustrate the
asymptotic dynamics, we have considered the case of two

FIG. 15. Distance separating two bubbles. Two snapshots of  pypples with periodic boundary conditions. We have de-
the fieldu taken at time=0 for thg solid line and=18 876 for the  4,,ced explicitly the behavior of the position and the width of
dashed one. Irib) we plot the distance between the zeros of theio [y pples, We confronted our prediction with those ob-
field u defined withd=x,—x, - 5(A2+41) tained in Refs[32—35 and conclude that different dynamics

are predicted. For example, for the interaction of two
(order|e|) as stated in E(30). Numerical calculations sup- bubbles, our conclusions are validated by numerical simula-
port our prediction. In Fig. 15, it is seen that the variation oftions. After the interaction, we show that the relaxation dy-
dis of order 0.7%, whereas the change in area of the biggesiamics leads the system.
bubble(seen in Fig. 1Ris of order 8%. We have taken the
correction (30) for d, and integrated it. The relative error
with the direct simulation becomes less than 1%.

The dynamics of the bubble widths obtained in Refs. The gimulation software developed at the laboratory
[32-39 are qualitatively the same as ours. And it is from NN in France has been used for all the numerical simula-
their equations that is deduced the logarithmic behavior iRions presented in this paper. The authors thank the support
time of the characteristic length scale. This law has beeps FONDAP (Grant No. 11980002 ECOS, and the CNRS-
deduced theoretically in Ref42] from the Cahn-Hilliard coNICYT cooperation program. M.G.C. thanks the support
equation and recently verified experimentgiy] of Programa de insercion de cientificos Chilenos of Fun-

dacion Andes, FONDECYT(Project No. 1020782 and
V- CONCLUSION Ayuda a la investigacion of University of Los Andes ICIV-

A traditional model used in the description of conserva-001-02. M.A. and E.T. acknowledge support of FONDECYT

tive phase separation is the Cahn-Hilliard system. In théProject Nos. 3000017 and 1020374, respectively
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