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The dynamics of one-dimensional Cahn-Hilliard model is studied. The stationary and particle-type solutions,
the bubbles, are perused as a function of initial conditions, boundary conditions, and system size. We charac-
terize the bubble solutions which are involved in the coarsening dynamics and establish the bifurcation
scenarios of the system. A set of ordinary differential equation permits us to describe the coarsening dynamics
in very good agreement with numerical simulations. We also compare these dynamics with the bubble dynam-
ics deduced from the classical kink interaction computation where our model seems to be more appropriated.
In the case of two bubbles, we deduce analytical expressions for the bubble’s position and the bubble’s width.
Besides, a simple description of the ulterior dynamics is presented.
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I. INTRODUCTION

Interfacial instabilities and pattern formation have stimu-
lated a great amount of studies during the last decadesf1g. In
most cases, the interface is a moving boundary separating
two different domains. For example, in crystal growth, rich
morphological instabilities may arise from destabilization of
the solidification front, see Ref.f2g for a specific review and
also Ref. f3g more generally. In the two-dimensional ex-
tended system, the domains dynamics are described by inter-
face propagation. Its dynamics can be treated as the evolu-
tion of unidimensional curvesf4g; usually, it is characterized
by a nonlocal equation in spacef5g, hence their study is
difficult in general. When an almost flat interface undergoes
an instability, its dynamics become local, as the interface
exhibits slow variation in spacessee, for example, Ref.f6gd.
As a consequence, one can take into account the fieldPst ,xd,
which describes the slowly varying interface position param-
etrized by the space variablex at the instantt. Henceforth,
for the sake of simplicity, we consider that the interface is
initially flat. If the system under study is isotropic, the inter-
face dynamics must be invariant under spatial translation,
since a solid translation of the interfacesP→P+Pod does not
affect the interface dynamics. Thus the interface position
must satisfy an equation of the form

]tPsx,td = Fs] x
nP,n = 1,…d. s1d

The isotropic hypothesis also provides a reflection symmetry
with respect to the direction of the flat interfacestangential
direction, x→−xd, then the interface perturbations are de-
scribed asymptotically by

]tPsx,td = «Pxx ± Px
2, s2d

where the first term of the right hand side stands for a diffu-
sive effect, if the control parameter« is positive. The last
term represents nonlinear advective effects. The dynamics
exhibited by Eq.s2d is characterized by a spreading of the
perturbations. When the perturbed interface is almost flat, the
dynamics are governed by the heat equation, since the non-
linear term of systems2d is not dominant. Since the position
of the interface is arbitrary due to the translational symmetry
sP→P+Pod, the positionfPsx,tdg is not a standard order
parameter, because it is not small in general. Instead, it is
desirable to consider the spatial gradient of the interface po-
sition su=Pxd, which is a good order parameter in the clas-
sical sense,u!1, and satisfies the Burgers equationf7g.

When «.0, the above model describes the evolution of
stable perturbations of a flat interface in an anisotropic me-
dium. This flat interface exhibits a spatial instability when«
is negative. In the case of small« spositive or negatived, it is
necessary to take into account higher derivatives and the in-
terface is described asymptotically by the new system

]tPsx,td = «Pxx ± Px
2 − Pxxxx, s3d

which is the well-known Kuramoto-Sivashinsky equation
f8,9g. It has been derived by Sivashinsky to describe the
diffusive instabilities of planar flame frontsf9,10g and by
Kuramoto within the framework of phase dynamics in
reaction-diffusion systemsf8g.

The general above picture is modified when one considers
extra symmetries, in which case the interface dynamics is not
described by Eq.s2d. For example, this situation arises for an
interface that separates symmetrical domains with energeti-
cally equivalent states, like those observed in a magnetic
domainf11g or in the Ising wall model elegantly exhibited in
liquid crystalsf12,13g. In all these cases, the interfaces con-
nect two symmetrical states and an extra symmetry appears
sP→−Pd that prohibits the nonlinear advective term in Eq.
s2d. The interface dynamics becomes described by
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]tPsx,td = «Pxx + aPx
2Pxx, s4d

where the last term represents the effect of a nonlinear dif-
fusion sa.0d or antidiffusion sa,0d. The above model is
characterized by diffusive dynamicss«.0d, that is, the in-
terface tends to reduce its local curvature. This model is also
a continuity equation, which expresses the conservation of
the area under the curvePsx,td. This property is a conse-
quence of the fact that if the interface moves over one do-
main then it also moves over the other domain, since both
states are energetically equivalent.

In the case of smallseither positive or negatived «, the
interface is described asymptotically by

]tPsx,td = «Pxx + 3Px
2Pxx − Pxxxx, s5d

where the sign of the last term has been chosen in order to
saturate linearly the spatial instability for large wave number.

We remark that the above model is also a continuity equa-
tion. It is variational, since one can write

]tP = −
dF

dP
,

FfPg =E dxH«
Px

2

2
+

Px
4

4
+

Pxx
2

2
J , s6d

where thefree energy Fdepends only on the derivatives of
Psx,td. Introducing the variableu; Px which is a standard
order parametersu!1d, the above equation is transformed
into the Cahn-Hilliard equationf14g

]tu = ]xxs«u + u3 − uxxd = ]xx
dFfug
dusxd

, s7d

which is a continuity equation with the Lyapunov functional
f15g,

Ffug ; E dyF«
u2

2
+

u4

4
+

uy
2

2
G .

The Cahn-Hilliard equation has been derived in order to
describe the phase separation dynamics in a conservative
system, such as binary alloysf16g, binary liquids f17g,
glassesf18g, and polymer solutionsf19g to mention a few.
Note that this model also describes the zigzag instability un-
dergone by straight rolls in two-dimensional extended sys-
tems like Rayleigh-Bénard convectionf20g or electroconvec-
tion f21g in fluid systems, and it has been extensively studied
over the last decadesf1g. A similar zigzag instability affect-
ing anisotropic interfaces has recently aroused considerable
interest in different fieldsf22,23g, for example, in gas dis-
charge systemf24g, rifts in spreading wax layerf25g, Ising
wall in smectic, nematic, cholesteric liquid crystals, and liq-
uid crystal electroconvectionf13,22,23,26g.

A successful strategy to study partial differential equa-
tions sPDEsd consists in studying particle or defectlike type
solutionsf1,27–31,33g which have the property of being lo-
calized in space. If, after some transient, a solution consist-
ing of a certain number of these localized structures is estab-
lished, one can describe the ulterior dynamics of the system

through the evolution of these solutions due to their mutual
interactions, and this evolution turns out to be determined in
many cases by ordinary differential equationssODEsd f1,27g.
The previous scenario is based on the fact that particle type
solutions have Goldstone modes. This means that they have a
neutral mode related to a continuous invariance, for example
the spatial translation. Hence the evolution of these solu-
tions, when they are sufficiently dilutedsspaced apartd, is
obtained through the Goldstone modes. Consequently, the
temporal evolution associated to the mutual influence of lo-
calized structures exhibits slow dynamics.

These interactions are typically exponential with respect
to the distance between the defectsf33g. The process of the
appearance and the ulterior evolution of these defects solu-
tions is well known as coarsening dynamics. Then we see
that in this way we can have a simplified description with
ODE of the physical phenomenons occurring in the system
f1,27–30,33g, and in particular in the Cahn-Hilliard equation
f32–35g.

This paper is organized as follows. The dynamical de-
scription and characterization of stationary solutions of the
Cahn-Hilliard equation is addressed in Sec. II. A great
amount of work has been devoted to the study of the station-
ary solutionsf36–40g and their bifurcations. We propose
here a unified description for stationary solutions and their
bifurcations, which also reproduces these former works. Our
approach allows us to have a qualitative and quantitative
understanding of the bifurcations scenarios. The dynamics of
a diluted gas of bubbles which characterize the coarsening
dynamics is addressed in Sec. III. We also compare our re-
sults with previous worksf32–35g. The interaction of two
bubbles in a periodic domain is analyzed in great detail. We
summarize our results and conclude in the last section.

II. DESCRIPTION STATIONARY SOLUTIONS
AND THEIR LINEAR STABILITY

When the diffusion coefficient« of the Cahn-Hilliard
model is positive, the perturbation of the flat solution
fusx,td=Px=0g is ruled out by the heat equation and the
modes of largest wave numbers decay faster than the small-
est ones.

In the case of negative«, the flat solution is spatially
unstable. By perturbing initially this solution with noise and

FIG. 1. Spatiotemporal evolution of the Cahn-Hilliard model in
the spinodal decomposition regime. Time is running ups800 time
unitsd, system sizeL=200, e=−0.5. White color represents20.6
and the black one 0.6.
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following the ulterior evolution, one can observe initially the
appearance of a periodic pattern with a well-defined wave
number weakly modulated: this is trivially deduced from the
linear study around the flat solution. Successively, the small-
est bumps merge together forming new larger bumpsssee
Fig. 1d: this process is well known as spinodal descomposi-
tion f41g. A recent experimental study of an interface be-
tween two convective states in electroconvection of liquid
crystals showed that, in the coarsening regime, the average
separation between the bubbles increases logarithmically in
time f13g, in agreement with the theoretical prediction
f32,42g.

In the next sections, we will present an analytical descrip-
tion of the stationary solutions, bifurcation scenarios, and
coarsening dynamics observed in the one-dimensional Cahn-
Hilliard equation.

A. Stationary bubble solutions

The stationary solutions of the one-dimensional Cahn-
Hilliard equation has been studied in great detail by Novick-
Cohen and co-workersf36,37,39,40g. We propose in this sec-
tion an alternative study of the stationary inhomogeneous
solution and assess the behavior of these solutions in the
large and small domain size. The existence ofsmultidbubble
solution is related to the bifurcations of the homogeneous
solutions f39g. We refer to bubble solutions as a pair of
kink-antikink profile. From this scheme, stability of the
smultidbubble solution will be found, using a different ap-
proach than the former worksf32–35g. Since the Cahn-
Hilliard model possesses a Lyapunov functional, the knowl-
edge of its stationary solution permits us to give a qualitative
picture of the dynamics. It is in this spirit that the coarsening
process is understood as a flow in the PDE phase space that
successively passes near the unstable stationary solution con-
taining n bubbles,n−1, until the system is relaxed to the
global minimum of the Lyapunov functionalsa bubble in
periodic boundary condition or a kink with zero flux bound-
ary conditiond f34,35g. From the analysis, it is deduced that
the coarsening dynamics is exponentially slowf43g.

By appropriate scalings, the bifurcation parameter« can
be set equal to21 when it is negative, and Eq.s7d is trans-
formed into

]tu = ]xxs− u + u3 − ]xxud, s8d

with periodic boundary conditions or Neumann type bound-
ary conditions, i.e., null flux at the boundary. The area under
the usx,td field is conserved during the time evolution,S
=e0

Lusx,tddx. Stationary solutions are therefore functions of
the areaSand the system size, which can be finite or infinite;
they obey the equation

− u + u3 − ]xxu − l = 0,

wherel is an integration constant and isa priori arbitrary.
Due to the symmetryl→−l and u→−u, we will suppose
without loss of generality thatl.0. The above Newton type
equation is integrated into

Vsud + s]xud2 = E, s9d

where the potential energy isVsud=2lu+u2−u4/2 scf.
Fig. 2d.

B. Homogeneous solutions and their stability

The potential Vsud has three extrema ifl2,lc
2, lc

;2/s3Î3d. We will note them uaøubøuc and they are
given by

ua = − 2Î1

3
sinS1

3
arctanÎ 4

27l2 − 1 +
p

6
D ,

ub = 2Î1

3
sinS1

3
arctanÎ 4

27l2 − 1 −
p

6
D ,

uc = 2Î1

3
cosS1

3
arctanÎ 4

27l2 − 1D .

Note that1
3 ,ua,c

2 ,1, and −1/Î3,ub,0. Let us investigate
the linear stability of a homogeneous solutionu0 with respect
to an inhomogeneous spatial perturbation. This latter, that we
namevsv;u−u0d, obeys

]tv = ]xxfvs− 1 + 3u0
2d − ]xxvg.

In Fourier space, this relation becomes

]tvp = p2fs1 − 3u0
2d − p2gvp,

wherevp is the amplitude of a harmonic perturbation with a
spatial frequencyp. Therefore, if 1−3u0

2ø0, the solution is
stable whatever the perturbing wave number is. Sinceua and
uc are bigger in absolute value than 1/Î3, the potential
maxima are stable. The stability of the minimumub depends
on the domain size. If the domain is infinite, thenp can be as
small as possible and the solutionub will be unstable toward
large wavelength perturbations. It is related to the classical
spinodal decomposition, for which the Cahn-Hilliard model
has been historically derivedf14g. If the domain is finite, the
quantified wave numberp may be large enough and such that
ub remains stable. For larger system size, the smallest wave

FIG. 2. PotentialVsud as a function ofu, for l=0.2.
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number 2p /L renders this solution unstable whens1−3u0
2d

=p2; in terms of the areaS sS=ubLd and the system sizeL,
this bifurcation point is

5L1
B = Î3S2 + 4p2,

l1
B = − 2S

S2 + 2p

s3S2 + 4p2d3/2.
s10d

This instability corresponds to a saddle node bifurcation un-
der Os2d symmetry due to the space translation symmetry. In
fact, there is a bifurcation occurring for each Fourier mode
which becomes unstable with a spatial frequency 2np /L, this
occurs when

5Ln
B = Î3S2 + 4n2p2,

ln
B = − 2S

S2 + 2n2p2

s3S2 + 4n2p2d3/2.
s11d

This means that the homogeneous solutions haven positive
eigenvalues in the rangeln+1

B ,l,ln
B. At thenth bifurcation

point, i.e., forL=Ln, the positive eigenvalues are

si = S 4ip2

3S2 + 4n2p2D2

sn2 − i2d, for i = 1¯n.

Consequently, in the bifurcation diagram, branches of new
solutions are expected to cross the homogeneous branch so-
lution at bifurcation points. These new solutions must be
spatially inhomogeneous, since we have already explored all
the trivial solutions.

C. Inhomogeneous solutions and bubbles

In this section we determine the inhomogeneous solutions
that take the form of kinks, solutions that connect at6` two
different stationary states when the domain is large enough.
The potentialVsud must have at least one minimum, and this
is insured, as it results from the above analysis, ifl2,lc

2.
With such an assumption, one can write

s]xud2 =
su − u1dsu − u2dsu − u3dsu − u4d

2
, s12d

where the roots of]xu are real and expressed as function ofl
and E, and we assume thatu1øu2øu3øu4 as pictured in
Fig. 2. Equations12d can be directly integrated and we ob-
tain the bubble solution

Usxd = u4 −
su4 − u2dsu4 − u3d

su4 − u2d − su3 − u2dsnsyumd2 s13d

with y=s1/2Î2dÎsu3−u1dsu4−u2dsx−xod and m=su4−u1d
3su3−u2d / fsu3−u1dsu4−u2dg. The function snsf und is a
Jacobi elliptic functionf44g. This solution is well known
f36,37g and has as period

L =
4Î2

Îsu4 − u2dsu3 − u1d
Ksmd, s14d

where the function Ksmd is the complete elliptic integral of
the first kind. The period logarithmically diverges when the

solution tends to be a homoclinic trajectory, i.e., foru1
→u2 implying m→1. From the solutions13d one can explic-
itly obtain the areaS

S=
4Î2fu1Ksmd + su2 − u1dPsn1,m1dg

Îsu3 − u1dsu4 − u2d
, s15d

where n1=su3−u2d / su3−u1d and m1=su2−u3dsu4−u1d / su1

−u3dsu2−u4d. Psn1,m1d is the elliptic integral of the third
kind.

D. Construction of the solutions

To compute the explicit solution of the problem, one
needs to fix the areaS and the system sizeL, which are
conserved during temporal evolution. Fixing the two last
quantities permits the inversion of the relationss14d ands15d
and gives a value forl and E. These values determine the
dynamical systems9d, and we can now construct its solu-
tions. An example of numerical inversion is shown in Fig. 3

Similar bifurcation diagrams have been derived numeri-
cally f45g. From Fig. 3sbd, it is seen that if the areaS is large

FIG. 3. Period of the solutions that have a fixed areaS=−3 sad
andS=−30 sbd. The thin line represents the period of homogeneous
solutions; the lowest curve represents the period ofub and the high-
est one, the period ofua. The thick line represents the period of the
bubble solution. The dashedsrespectively solidd line represents un-
stablesrespectively stabled solutions. Stationary solutionsA sstable
bubble solutiond, B sunstable bubble solutiond, andC sstable homo-
geneous solutiond are found by the intersection of these curves with
the lineL=17.5.
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enough in absolute value, the system is bistable for small
domain size. In that case, it has as stationary solution the
homogeneous solution and an inhomogeneous one that rep-
resents the bubble solution. Note that if the system size is too
small, there is no bubble solution. Atl=l1, there is a saddle
bifurcation under Os2d symmetrysthe new solution breaks
the translation invarianced occurring at the branching point
of the two families of solutions, whose normal form isf37g,
for the supercritical bifurcation,

dA

dt
= mA − uAu2A.

The point of bifurcation is related to the bifurcation of theub
solution, derived in the previous section,

l1
B = − 2S

2p2 + S2

s4p2 + 3S2d3/2.

In the case of large areascf. Fig. 4d, bistability occurs
between the bubble solutionA and the homogeneous solution
C. Since the system is potential, an extremum solution
must exist. It is related to a nucleation solution whose
codimension-1 stable manifold is the nucleation barrier
smanifoldd separating two stable solutions; it is a separatrix
in the functional space. Mathematical properties of this
nucleation manifold has been studied in Ref.f46g. This fea-
ture will be explained in detail in the text, where the small
domain size approximation is performed.

In the two following subsections, we compute analytically
the branches of the bubbles solutions in two limits: for large
and small domain size.

E. Large domain size„L\`…

For the sake of simplicity, we will work with the variable
ua, defined froml, such thatl=−ua+ua

3. The solution with
an infinite periodsL→`d is obtained taking the limitu1

→u2;ua, and we obtain

Uhsxd = ua +
2s3ua

2 − 1d

− 2ua + Î2s1 − ua
2dcoshfsx − x0dÎ3ua

2 − 1g
.

s16d

This is a known solution and has been derived in Refs.
f15,36g. The above expression can be rewritten in the follow-
ing form:

Uhsxd = ua +Î3ua
2 − 1

2
HtanhFÎ3ua

2 − 1

2
Sx − x0 +

d

2
DG

− tanhFÎ3ua
2 − 1

2
Sx − x0 −

d

2
DGJ , s17d

where d=2/Î3ua
2−1arccoshf−2ua/Î2s1−ua

2dg. When L is
large enough, the function tanhsxd converges exponentially
to a constant and it is possible to approximate the exact
solution s13d with Eq. s17d, since the error is exponentially
small. The computation of this correction is straightforward,
but needs a lot of algebrasdetails of the calculation will be
omittedd, and gives

32
s1 − 3ua

2d3

1 − ua
2 e−2LÎ3ua

2−1.

If 1−3ua
2 is different from 0, the large domain size approxi-

mation captures very well the solution, since the error is

exponentially smallse−2LÎ1−3ua
2
d. When 1−3ua

2 approaches
zero, the solution is also well captured for small domain size,
but the error becomes algebraicfs1−3ua

2d3g. Note that
ua=−1/Î3 corresponds tol=lc.

In the large domain limit, we evaluate the bubble’s areaS,
by integrating relations17d in the whole finite domain: this
leads to

S= uaL + 2Î2 ln1 coshFÎ3ua
2 − 1

4
sd + LdG

coshFÎ3ua
2 − 1

4
sd − LdG2 .

This expression can be simplified when the system size is
large enough:

S= uaL + 2Î2 arccoshS − Î2ua

Î1 − ua
2D ,

and we obtain the relation between the approximation of the
period of the solution as a function of its area andua:

LA =
1

ua
FS− 2Î2 arccoshS − Î2ua

Î1 − ua
2DG . s18d

Hence the solutions defined withua and their branches can
be found easily by a simple numerical inversion of the above
implicit equation. This relation is compared with the numeri-
cal computation presented in Fig. 5, where this large domain
approximation matches quite well the exactscomputed nu-
mericallyd inversion of the relationss14d ands15d. The worse
error here is of about 3%, hence we conclude that our ap-
proach permits us to provide an accurate approximation of

FIG. 4. Plot of the fieldu of the bubbleA in the thick line, the
nucleation solutionB in the thick dashed line, and the homogeneous
solutionC sL=17.5, andS=−30d.
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the bifurcation branches for the Cahn-Hilliard equation for
large domain and becomes quite good till the vicinity of the
bifurcation point.

F. Small domain size

If we look at Fig. 3, we deduce that atl=l1
B the bubble

solution emerges from the homogeneous onesubd. When
l,l1

B, the spatial inhomogeneous solution is a perturbation
of the homogeneous state. For this reason, for computing the
solution near this point, we set the energyE of the mechani-
cal system defined by the relations9d to E=Vsubd+e. By
perturbation, one obtains the following roots of the polyno-
mial Vsud:

u1 = − ub − Î2Î1 − ub
2 + h+e + ose3/2d,

u2 = ub −
1

Î1 − 3ub
2
Îe +

ub

s1 − 3ub
2d2e + ose3/2d,

u3 = ub +
1

Î1 − 3ub
2
Îe +

ub

s1 − 3ub
2d2e + ose3/2d,

u4 = − ub + Î2Î1 − ub
2 − h−e + ose3/2d,

where

h± = s1 + ub
2 7 2ub

Î1 − ub
2d/f2Î2s1 − 3ub

2d2Î1 − ub
2g.

Hence using the relationss14d ands15d we can determine the
multibubble’s period area near the bifurcation point

Lesnd =
np

Î1 − 3ub
2

+
3nps1 + 7ub

2d
8s1 − 3ub

2d7/2 e + ose3/2d,

Sesnd =
2npub

Î1 − 3ub
2

−
15npubs1 − ub

2d
4s1 − 3ub

2d7/2 e + ose3/2d.

We are interested in the bifurcation lines for constant areaS.
We thus haveSesnd=Ln

Bub
*snd. We then deduce that

e = fub − ub
*sndg

8f1 − 3ub
* 2

sndg2

15fub
*2snd − 1g

,

Se =
2pub

*snd
Î1 − 3ub

*2snd
.

We can now evaluate the approximation of the period of the
solution:

Le = LnS1 +
3s2n2p2 − Se

2dLn
2

64n4p4 e + ose3/2dD . s19d

This result is compared with the numerical inversion of the
relation s15d in Fig. 5, and the agreement is good in the
vicinity of the bifurcation. From this relation we deduce that
whenSe

2,2p2, the slope of the bifurcation linesin the L-l
planed is negative, and hence the bifurcation is supercritical.
On the contrary, the bifurcation is subcritical, and bistability
between a homogeneous state and a bubble solution is de-
duced.

In the case of bistability, according to the existence of a
Lyapunov functional, a barrier separating two stable attrac-
tors is necessary. We relate this separatrix to an unstable
manifold that permits the transition from homogeneous state
to the bubble solution. Due to the intrinsic nature of the
bifurcation, the spectrum of the linearized operator around
the unstable solution must have just one positive eigenvalue,
and its codimension-1 stable manifold acts as the potential
barrier. The nucleation solution is therefore the unstable
bubble that emerges from the subcritical bifurcation. For
mathematical properties of the nucleation problem, see Refs.
f34–36g.

G. Unfolding the bifurcation, multibubble solution,
and linear stability

In this section, we are interested in the scenario of bifur-
cation when the system size varies. As seen before, for each
value ofLn, there is a bifurcation of the homogeneous state.
From the bifurcation theory point of view, this means that
there is appearance of a new branch of solutions as illustrated

FIG. 6. PeriodL of the multibubble solution vsl. The area
value isS=−3. Periodic boundary conditions.

FIG. 5. PeriodL of the solutions13d vs l. The solid line is the
numerical evaluation of the period, and the dashed one corresponds
to the approximation of large domain sizeLAsS,ld fEq. s18dg. The
point-dashed line corresponds to the small domain approximation of
the periodL«sS,ld fEq. s19dg. The full circle is the bifurcation point
sl1

B,L1
Bd.
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in Fig. 6. In the previous section, we have related this new
branch to a single bubble solution. Before the first bifurca-
tion, ub is stable, and if the bifurcation is supercritical, this
means that in the new solution, the bubble is stable. In the
other case, that is, forS.Î2p, the bifurcation is subcritical,
and the new solution is unstable.

Since at thenth bifurcations11d, the bifurcatingub solu-
tion hasn−1 strictly positive eigenvalues, then-bubble so-
lution is unstable. For a given areaS, then-bubble solution is
composed of bubbles that have an area equal toSn=S/n, and
a period equal toLn

b=L /n. Hence the stability is not affected
far away from the bifurcation points, since there are no more
possible bifurcations with other branches. This means that
the unique stable spatial inhomogeneous solution with peri-
odic boundary condition is the single bubble solution. The
scenario of bifurcations is shown in Fig. 6

Now suppose that we set as an initial condition a per-
turbed bubble pairssymmetrical bubblesd. Since the spec-
trum has one positive eigenvaluesif S,Î8pd, this means
that the stable manifold of the solution is a separatrix in the
functional space: two different behaviors are expected; this is
clearly seen in the simulations and will be explained later in
the context of bubble dynamics.

H. Scenario in the case of the Neumann boundary conditions

We have deduced the bifurcations scenario in the case of
periodic boundary conditions. In the case of null flux bound-
ary conditions, that is,

ux = uxxx= 0,

the kink solution is energetically favorable in comparison to
the bubble solution, due to the energetic cost of interfacial
tension. The bifurcations of the homogeneous stateub ob-
served in periodic geometryfEq. s11dg are slightly changed,
since the harmonic perturbations now take the form of
cosfsnp /Ldxg. Hence the bifurcation points are

5Ln
B = Î3S2 + n2p2,

ln
B = − S

2S2 + n2p2

s3S2 + n2p2d3/2.

In Fig. 7 is represented the bifurcation diagram for this
case, and we can then infer geometrically that the bubble
solution is unstable, and has at least one strictly positive
eigenvalue.

The bifurcation scenario and the counting of the solutions
has been performed using quite different techniques in Ref.
f39g and computed numerically in Ref.f45g. In the compu-
tation presented here, we managed to compute analytically
the solutions and their bifurcation branches, up to an error
which is exponentially small.

III. COARSENING DYNAMICS

The transient dynamics consisting in the formation of
small domains that subsequently grow is denominated coars-
ening dynamics. In the last decades, extensive studies of the
coarsening dynamics have been performedf32–35,42g.
These approaches are based on an asymptotic reduction of
the Cahn-Hilliard equation into a set of ODEs describing the
evolutions of the positions of the kinks. We propose here an
alternative way for deriving such ODEs. It is found that our
reduced set of equations is different from the known ones
f32–35g, a fact that will be discussed at the end of this sec-
tion. We first derive the set of ODEs for bubbles. Then we
will study the special case of two interacting bubbles, and
confront our prediction to the numerical results.

The query that we address now is how the system evolves
to its global minimum. Previous to the global minimization
of the free energyF, the system behaves minimizing locally
the free energy in different regions of space yielding several
bubbles. Hence we shall consider a gas of bubbles. Theith
bubble is characterized by the position of its centerxi sthe

FIG. 7. PeriodL of the multibubbles solution vsl. The area
value isS=−3. Zero flux boundary condition.

FIG. 8. Schematic representa-
tion of the bubble solution.xi is
the bubble center position andDi

is the width.
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middle point between the two zeros of the bubbled and its
width Di ssee Fig. 8d.

Henceforth we consider a finite system sizeL larger than
the bubble widths. In order to discern the different time
scales involved in the system, we consider Eq.s7d in place of
Eq. s8d, where the bubble solutions have the following ap-
proximate form:

uisyd < − Îu«u + Îu«utanhFÎu«u
2
Sx − xi +

Di

2
DG

− Îu«utanhFÎu«u
2
Sx − xi −

Di

2
DG + 4Îu«ue−Î2u«uDfsxd,

s20d

where fsxd is a bounded function that converges asymptoti-
cally to 1 whenx→ ±`, which has the form

fsxd = 1 −
3

2
HtanhFÎu«u

2
Sx − xi +

Di

2
DG

− tanhFÎu«u
2
Sx − xi −

Di

2
DGJ −

3

2
Îu«u

2

3HSx − xi +
Di

2
Dsech2FÎu«u

2
Sx − xi +

Di

2
DG

− Sx − xi −
Di

2
Dsech2FÎu«u

2
Sx − xi −

Di

2
DGJ .

s21d

The parameter grouphxi ,Dij is determined by the initial
conditions. The translation invariance and area conservation
induce that the bubble solution has two Goldstone modes,
that is, the spectrum of the linear operatorsrelated to stability
of the bubble solutiond has two zero eigenvalues. The solu-
tions of Eq.s7d are approximated as superposition of diluted
bubblessas is illustrated in Fig. 9d: the separation between
the bubbles is larger than their widthssL@D@1/Î«d. Hence
locally one has a bubble solution perturbed by the presence
of the nearest ones, and the position of this bubble and its
width are considered as variables. Since these variables have
the slowest dynamical evolution, they lead to the asymptotic
dynamics.

In order to find the evolution of these order parameters,
we first integrate Eq.s7d from ai−1 to ai and find

dtE
ai−1

ai

usxddx=U]x
dF

du
U

ai−1

ai

, s22d

whereai−1 is an intermediate arbitrary fixed point between
the i −1th and ith bubblesssee Fig. 9d and u]xsdF /dudua

b

;u]xsdF /dudub− u]xsdF /dudua. We associate the above inte-
gral with the massof the ith bubble. In order to evaluate the
left hand side of the above equation, we write

dtE
ai−1

ai

usxddx= dtE
ai−1

ai

fusxd + Îu«u gdx.

Using the bubbles approximations20d, the dominant term of
the integral takes the form

E
ai−1

ai

fusxd + Îu«u gdx< 2Di
Îu«u,

then

dtE
ai−1

ai

usxddx= 2Îu«u]tDi

and Eq.s22d, related to the bubble’s width evolution, reads

2Îu«u]tDi =U]x
dF

du
U

ai−1

ai

. s23d

Similarly, we consider Eq.s7d multiplied byx and integrated
in the same domain:

dtE
ai−1

ai

xusxddx=Ux]x
dF

du
U

ai−1

ai

− UdF

du
U

ai−1

ai

.

This integral is related to the motion of the center of the
mass of theith bubble. Evaluating the integral in the left
hand side of the above equation we obtain at dominant order

E
ai−1

ai

xfusxd + Îu«ugdx< 2Îu«uxiDi .

Hence

FIG. 9. Schematic representa-
tion of a diluted gas of bubbles.
Each bubble is characterized by
its position and its width.ai−1 rep-
resents an arbitrary intermediate
fixed point between thei −1th and
ith bubbles.
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d

dt
E

ai−1

ai

xusxddx= 2Îu«u
dsxiDid

dt
=Ux]x

dF

du
U

ai−1

ai

− UdF

du
U

ai−1

ai

.

s24d

Using the identity

x]x
dF

du
− UdF

du
U

ai−1

ai

= FUdF

du
U

ai−1

+U]x
dF

du
U

ai−1

Sxi −
Di

2
− ai−1DG

− FUdF

du
U

ai

+ U]x
dF

du
U

ai

Sxi +
Di

2
− aiDG

− Sxi −
Di

2
DU]x

dF

du
U

ai−1

+ Sxi +
Di

2
DU]x

dF

du
U

ai

, s25d

and the fact that the intermediate region, between the
bubbles, is a straight linesas illustrated in Fig. 10d we can
approximate

UdF

du
U

xi−Di/2
< FUdF

du
U

ai−1

+U]x
dF

du
U

ai−1

Sxi −
Di

2
− ai−1DG ,

UdF

du
U

xi+Di/2
< FUdF

du
U

ai

+U]x
dF

du
U

ai

Sxi +
Di

2
− aiDG .

s26d

In the above expressions, we have neglected the exponen-
tial corrections and obtain

x]x
dF

du
−UdF

du
U

ai−1

ai

<UdF

du
U

xi−Di/2
−UdF

du
U

xi+Di/2

− xiSU]x
dF

du
U

ai−1
−U]x

dF

du
U

ai

D
+

Di

2 SU]x
dF

du
U

ai−1
+ U]x

dF

du
U

ai

D .

The positionsxi ±Di /2 are the roots of the bubble solution,

that is, uisxi ±Di /2d=0. The variation of the free energy
sdF /dud at these points are the same, then

2Îu«u
dsxiDid

dt
= − xiSU]x

dF

du
U

ai−1

−U]x
dF

du
U

ai

D
+

Di

2 SU]x
dF

du
U

ai−1

+U]x
dF

du
U

ai

D .

Using Eq.s23d we find

]txi =
1

4Îu«uSU]x
dF

du
U

ai−1

+U]x
dF

du
U

ai

D .

At dominant order the equations for the bubble’s position
and the bubble’s width are functions of]xsdF /dud, which has
the form

]x
dF

du
= «ux + 3u2ux − uxxx.

The bubble solution atai and ai−1 has the formu<−Îu«u
+Osu«u1/2e−Î2u«uDid, thus we can approach

U]x
dF

du
U

ai

< 2u«uuxsaid,

therefore the dynamics of bubble’s position and bubble’s
width are

]tDi = Îu«ufuxsaid − uxsai−1dg,

]txi =
Îu«u
2

fuxsaid + uxsai−1dg. s27d

Since each bubble’s tail converges asymptotically to −Îu«u as
a function of its width, a well defined tilt between the
bubbles is established, as illustrated in Fig. 10. Hence if the
ith bubble is surrounded by two bubbles with smaller widths,
then uxsaid is positive anduxsai−1d is negative, then theith
bubble width grows in times]tDi .0d.

A simple approximation of the tilt is

FIG. 10. Schematic represen-
tation of the enlarged interbubble
region.
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]xusai−1d <
uiSxi −

Di

2
D − ui−1Sxi−1 +

Di−1

2
D

Sxi −
Di

2
D − Sxi−1 +

Di−1

2
D .

Using expressions20d one reads

]xusai−1d <
4Îu«use−Î2u«uDi − e−Î2u«uDi−1d

xi − xi−1 −
Di + Di−1

2

=
8Îu«ue−Îu«u/2sDi−1+Did

xi − xi−1 −
Di + Di−1

2

sinhFÎu«u
2

sDi−1 − DidG .

Introducing the function

I i,i−1s«,Di−1,Did =
8Îu«ue−Îu«u/2sDi−1+Did

xi − xi−1 −
Di + Di−1

2

3sinhFÎu«u
2

sDi−1 − DidG ,

the width and position equations take the formf47g

dtDi = I i+1,i − I i,i−1,

dtxi =
I i+1,i + I i,i−1

2
. s28d

We remark that these equations are invariant by the transfor-
mations

Di → Di + a,

xi − xi−1 → xi − xi−1 + a,

t → t expsÎ2u«uad,

wherea is an arbitrary constant. Due to this invariance the
averagekDstdl=s1/ndoDi, which is a function of time, satis-
fies the similarity relationDstd+a=Dst expsÎ2u«uadd. From
this relation we conclude that

Dstd =
1

Î2u«u
ln t,

i.e., we recuperate in a very simple way the logarithmic in-
crease with time of the average separation of the bubbles
f32,42g, which has recently been observed experimentally
f13g. It is remarkable that to obtain this behavior one does
not need to have an explicit solution since in our approach it
is an exact consequence of a symmetry of our reduced equa-
tions of motion. Note that the dynamics of the bubble’s po-
sition and bubble’s width is independent of the arbitrary in-
termediate fixed pointsai. If we consider a system of sizeL
with periodic boundary conditions andn bubbles, the above
equations describe the dynamics of bubbles’ widths and bub-
ble’s positions with the conditions

Dn+1 = D1, Do = Dn,

xn+1 = x1 + L, xo = xn − L,

and

In+1,n = I1,0=
8Îu«ue−Î2u«usDn+D1d

xi − xi−1 −
Di + Di−1

2

sinhFÎu«u
2

sDn − D1dG .

If the lateral bubbles are thinnersrespectively widerd than
the central one, the latter width increasessrespectively de-
creasesd, as shown in Fig. 11. Therefore the larger bubbles
increase as a consequence of the disappearance of their thin-
ner neighbors, and in such a way that the global area is
conserved for periodic boundary conditionssdtoDi =0d. The
bubbles’ interaction depends on the inverse of the distance
between them and exponentially with their widths. When the
bubbles are close enough, our description loses its validity.
In this circumstance, the dynamics of the system is given by
Eqs. s28d by means ofcomplementary bubblesas we shall
see later.

A. Two bubbles

To illustrate the dynamics given by Eq.s23d, we consider
the case of two bubbles with periodic boundary conditions.
Prior to the establishment of the stationary state, which cor-
responds to the global minimum of the free energy, the dy-
namics is led by the two bubbles interaction

− dtD2 = dtD1 = I2,1− I1,2,

dtsx1D1 + x2D2d = LI1,2,

dtx2 = dtx1 =
I2,1+ I1,2

2
, s29d

whereL is the system size. The first equations express the
conservation of the area at dominant order. The second equa-

FIG. 11. Spatiotemporal evolution of two bubbles with different
size. Numerical simulation of the Cahn-Hilliard equation with
e=−0.25, initial total areaS=−81.50,D1=9.16, andD2=14.46.
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tion tells us that the globalcenter of massmoves in the
direction of the largest bubble. We note that the case of iden-
tical bubbles is an unstable stationary statesD1=D2d whose
stable manifold is a separatrix in the functional phase space,
as we have shown in Sec. II G. Due to the translation invari-
ance of the system, the more appropriate order parameter that
describes the interaction is the distance between the bubbles.
Using the previous equations we obtain

dtsx2 − x1d = 0.

So, at dominant order the distance between the bubbles is
constant. Numerically, we observe that bubbles move slowly.
In order to find this dynamic, one can take into account the
solvability condition of the two bubbles solutionf32–35g and
use the dynamics of the bubble’s widths29d. The first cor-
rection of the previous equations takes the form

dtsx2 − x1d = − u«u1/2sI2,1+ I1,2d
sD1 − D2d

D1D2
. s30d

This equation indicates to us that the bubbles always attract
themselves, i.e., the distancesthe smallest oned between
them always decreases and the interaction law depends on
the inverse of the distancessee the definition ofI1,2d, but the
intensity of this effect isu«u smaller than the evolution of the
other quantitiessD,1/u«u−1/2d. Therefore the bubbles inter-
act mainly through their widthsssee Fig. 11d and the widest
bubble increases its width and moves slightly towards the
thinnest one. Numerical simulations confirm this description
as shown in Fig. 11. In Fig. 12, we compare the evolution of
D2std obtained through numerical integration of the Cahn-
Hilliard equation with the analytical onefEq. s29dg, and we
find good agreement.

Despite the fact that we have done many approximations,
a good agreement is found with the simulations. We compare
numerically and analytically the spatial derivative of the field
usx,td at intermediate points between the bubbles and find

]xusadnumeric= − 2.693 10−8,

]xusad = I i+1,i = − 2.603 10−8,

i.e., an error of 3.5%. The error in the width and the position
dynamicsfEq. s29dg is 4.2 and 17.3%, respectively. This em-

phasizes that Eqs.s29d ands30d give qualitatively and quan-
titatively the evolution of the ulterior dynamics.

The previous description seems to be valid when the
bubbles are sufficiently separatedsx1−x2.D1,D2 and D1,2
@Îu«ud. If the bubbles are close enough, as illustrated in Fig.
13, one can also use the preceding description but using
now the complementary bubbles which are related to the
original bubbles obtained through the transformationusx,td
→−usx,td scf. Fig. 13d.

Using Eqs.s29d and s30d for the complementary bubbles
we find that in the original fieldfusx,tdg, the closest bubbles
get near and finally merge. These two qualitatively different
dynamics result from the existence of a separatrix in the
functional space as shown in Sec. II G. Therefore the inter-
action lawss29d and s30d allow us to describe the evolution
of diluted bubbles or nearest ones by consideration of the
appropriate bubbles, i.e., the complementary or the original
ones.

As we have seen in Sec. II H the bubble solution with null
flux boundary conditions is unstable. It moves toward the
nearest border and finally disappears giving rise to a kink
solution f43g. In the case for which the bubble is exactly in
the center of the system, a very small perturbation maypush
the bubble in one direction or the other: this reflects the
existence of the stable manifold of codimension 1 predicted
in Sec. II H. In order to calculate the bubble velocity we use
the image method doubling the size of the system. The origi-
nal bubble gives rise to two bubbles by reflection in the
midpoint and we finally have a system of double length with
two bubbles and periodic boundary conditions. Since the
bubbles are equal, Eqs.s29d do not give directly the dynam-
ics and it is necessary to use the complementary bubbles for
which Eqs.s29d are not trivial. One obtains that the bubble
width dynamics is double the pursuit velocity and then

]tx =
8u«ue−Î2u«usL−Dd

D
sinhFÎ2u«uSx −

L

2
DG ,

wheresD ,xd are the bubble width and position, respectively.
If the bubble width is of orderu«u1/2, our description loses its
validity.

FIG. 12. Temporal evolution of the bubble’s
width obtained from the simulation and from the
analytical approximations. The symbol line is ob-
tained from numerical simulation of the Cahn-
Hilliard model with e=0.25, the dashed line is
obtained from the expressions32d, and solid thick
line is obtained using the analytical expression of
the relaxation dynamicss31d.
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B. Relaxation dynamics

For time less thanT* ssee Fig. 12d the dynamics is led by
the interaction lawss29d and s30d. For times larger thanT* ,
the system relaxes to the global minimum. Once the smallest
bubble disappears, the system is described by one perturbed
bubble. Thus the dynamics is characterized by exponential
relaxation to the bubble solutions20d. One can determine
this characteristic time by means of a simple linear analysis
of the bubble solution. The perturbation of one bubble solu-
tion uo with width D in a system of sizeL is described by

sv = ]yyf− e + 3u0sxd2 − ]xxgv,

where usx,td=uosxd+vsxdest and uvu! uuou. Another way to
study the stability of thesmultidbubble consists of computing
the second variation of the free energy; this has the advan-
tage of allowing a complete analysisf48g. It is possible to
compute approximately the continuous part of the spectrum,
which contains the eigenvalues whose eigenvectors do not
converge to zero at infinity. Far away from the bubble’s po-
sition, the fieldu0 asymptotically converges tou1 at 6`.
Then the spectrum must also obey

sv = ]yys− e + 3u1
2 − ]xxdv.

Making Fourier expansion with spatial frequencyp, the ei-
genvalues satisfy

sv = − p2s− e + 3u1
2 + p2dv.

When the bubble’s width is large enough,u1<−Îe and the
eigenvalues ares=−p2s2e+p2d, the spatial frequenciesp is
approximated by

p <
np

L − D
,

since the bubble’s widthD imposes an effective periodic
domain of sizesL−Dd. The eigenvalues are approximated by

s . −
n2p2

sL − Dd2S2e +
n2p2

sL − Dd2D , s31d

with nonlocalized eigenvector. This rough approximation
permits us to compute the eigenvalues with a quite reason-
able agreement with the numerical simulations, as depicted
in Fig. 14. We emphasize that this derivation is an analog of
the WKB method. Moreover, numerical computations show
that the tails of these eigenvectors are similar to the harmon-
ics one derived abovescf. Fig. 14d.

This continuous spectrum plays a fundamental role in the
bubble dynamics, because the bubble disappearance creates a
large perturbation far away from its position and excites
these modes.

C. Analytical solution of two bubbles’ interaction

When one considers the dynamics of the bubble’s width
and the bubble’s positions29d, it is found thatD1+D2=D and
x2−x1=R are constants. We introduce the auxiliary variable
d;D1−D2 which satisfies

dtd = 2sI2,1− I1,2d

or equivalently

FIG. 13. Schematic represen-
tation of sad the bubble solutions
and sbd the complementary ones.
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dtd = 2C sinhFÎu«u
2

dG ,

whereC is a constant defined

C =
8u«usL − Dde−Îu«u/2D

SR−
D

2
DSL − R−

D

2
D .

The solution of the above equation is

dstd = 2Î 2

u«u
arctanhStanhF1

2
Îu«u

2
doGeÎ2u«uCst−todD

with dstod=do. Then the widths take the form

D1 =
D + dstd

2
,

D2 =
D − dstd

2
. s32d

In Fig. 12, numerical simulations are compared with the pre-
vious solutions. The time when one bubble disappearssT*d
can be determined from the above expressions. For the sake

of simplicity, we consider the caseD1,D2, then

T* = to +
1

CÎ2u«u
ln* tanhF1

2
Îu«u

2
DG

tanhF1

2
Îu«u

2
dG * ,

where D2sT*d=D or D1sT*d=0. We note that this time de-
creases when the bubbles are more dissimilar, whereas it
becomes infinite when the widths are the same, since it is a
stationary unstable state. Besides, this time increases with
the total widthD.

The evolution of the bubble’s positions are given by

dtx1 = dtx2 =
I2,1+ I1,2

2
=

L − 2R

2sL − Dd
dtD1

and using the expression ofD1std we obtain

x1std = x1stod −
L − 2R

2sL − DdFdo − dstd
2

G ,

x2std = x2stod −
L − 2R

2sL − DdFdo − dstd
2

G .

The distance between the bubbles is constant, however, the
position of the greatest bubble moves to the smallest one and
the smallest moves away from the greatest one. For small
time fÎ2u«uCst− tod!1g the width changes proportionally to
the time, i.e.,D1,2, t as shown in Fig. 11.

D. Comparison of our model
with the Kawasaki-type equations

As argued in the beginning of the section, extensive stud-
ies have been devoted to derive a set of ODEs predicting the
dynamics of the bubblesf32–35g. These calculations are
based on the assumption that the kink-antikink pairs are suf-
ficiently diluted, a hypothesis we also use. The technique for
the reduction to an ODE is a Fredholm alternative. Two ap-
proaches have been used. In the first casef32,33g, the com-
patibility condition is applied over an autoadjoint operator
sobtained by inversion of the Laplacian operatord, and in the
second case, over a nonautoadjoint operatorf34,35g. Both
computations give rise to the same set of ODEs. In our case,
the reduction is done by a study of the dynamics of the mass
and the position of the bubbles, and no Fredholm alternative
is used. Here we take into account the fact that in between
the kinks the field is slightly tiltedssee Fig. 10d, whereas in
the former works, the field is seen as constant. This tilt is
explained as the following: the kink solution asymptotically
converges at6` to −Îu«u, but the bubble solution converges
to a value that depends on its widthf−Îu«u+osÎu«udexp
−sÎ2u«uDdg as seen in Eq.s17d. This small difference leads to
the dynamics. In particular for the two bubble coarsening,
following the former worksf32–35g, one can deduce that the
evolution of the distanced=x2−x1− 1

2sD2+D1d between the
interacting bubbles is of the same order as the evolution of
the widths, whereas we claim that it is a second-order effect

FIG. 14. Comparison of numerical eigenvector and the approxi-
mated ones. The dashed line is the numerical eigenvector, the thick
line is the approximated one, and the solid line is the bubble solu-
tion with l=3.062310−6, e=−1, and system sizeL=102.4. sad
First eigenvector with numerical eigenvalue20.0023 and approxi-
mated to20.0024 using expressions31d. sbd Second eigenvector
numerical eigenvalue20.0093 and approximated to20.0097 using
expressions31d.
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sorder u«ud as stated in Eq.s30d. Numerical calculations sup-
port our prediction. In Fig. 15, it is seen that the variation of
d is of order 0.7%, whereas the change in area of the biggest
bubblesseen in Fig. 12d is of order 8%. We have taken the
correction s30d for d, and integrated it. The relative error
with the direct simulation becomes less than 1%.

The dynamics of the bubble widths obtained in Refs.
f32–35g are qualitatively the same as ours. And it is from
their equations that is deduced the logarithmic behavior in
time of the characteristic length scale. This law has been
deduced theoretically in Ref.f42g from the Cahn-Hilliard
equation and recently verified experimentallyf13g

IV. CONCLUSION

A traditional model used in the description of conserva-
tive phase separation is the Cahn-Hilliard system. In the

frame of interface instability for two-dimensional extended
systems, one can find that the dynamics of an interface which
connects two symmetrical domains is described by the one-
dimensional Cahn-Hilliard model, where the conservative or-
der parameter is the spatial variation of interface’s position,
and the conservative quantity is the interface’s area with re-
spect to the initial flat interface.

We have studied the dynamics of the one-dimensional
Cahn-Hilliard model, which is characterized by relaxation
dynamics described by a free energysLyapunov potentiald.
We have persued the stationary solutions of this model and
established the local and global minima. The bifurcation sce-
narios of these stationary solutions as functions of the initial
area and system size have been studied. These bubbles are
characterized by the parameter group position and width. In
order to describe the ulterior dynamics of one-dimensional
Cahn-Hilliard model, we have considered a gas of diluted
bubbles and found a set of ordinary differential equations,
which describes the interactions between them. These equa-
tions allowed us to give a simple description of the coarsen-
ing dynamics observed in the system, in terms of the bub-
ble’s position and bubble’s width. In order to illustrate the
asymptotic dynamics, we have considered the case of two
bubbles with periodic boundary conditions. We have de-
duced explicitly the behavior of the position and the width of
the bubbles. We confronted our prediction with those ob-
tained in Refs.f32–35g and conclude that different dynamics
are predicted. For example, for the interaction of two
bubbles, our conclusions are validated by numerical simula-
tions. After the interaction, we show that the relaxation dy-
namics leads the system.

ACKNOWLEDGMENTS

The simulation software developed at the laboratory
INLN in France has been used for all the numerical simula-
tions presented in this paper. The authors thank the support
of FONDAP sGrant No. 11980002d, ECOS, and the CNRS-
CONICYT cooperation program. M.G.C. thanks the support
of Programa de inserción de científicos Chilenos of Fun-
dación Andes, FONDECYTsProject No. 1020782d, and
Ayuda a la investigación of University of Los Andes ICIV-
001-02. M.A. and E.T. acknowledge support of FONDECYT
sProject Nos. 3000017 and 1020374, respectivelyd.

f1g M. Cross and P. Hohenberg, Rev. Mod. Phys.65, 851 s1993d.
f2g J. S. Langer, Rev. Mod. Phys.52, 1 s1980d, and all references

therein.
f3g Growth and Form—Non Linear Aspects, edited by M. Ben

Amar et al. sPlenum Press, New York, 1991d.
f4g J. A. Sethian,Level Set Methods and Fast Marching Methods:

Evolving Interfaces in Computational Geometry, Fluid
Mechanics, Computer Vision, and Materials SciencesCam-
bridge University Press, New York, 1999d.

f5g D. M. Petrich and R. E. Goldstein, Phys. Rev. Lett.72, 1120

s1994d; R. E. Goldstein, D. J. Muraki, and D. M. Petrich, Phys.
Rev. E 53, 3933s1996d.

f6g R. C. Brower, D. A. Kessler, J. Koplik, and H. Levine, Phys.
Rev. Lett. 51, 1111s1983d.

f7g J. Burgers, Adv. Appl. Mech.1, 171 s1948d.
f8g Y. Kuramoto and T. Tsuzuki, Prog. Theor. Phys.55, 356

s1976d.
f9g G. I. Sivashinsky, Acta Astronaut.4, 1177s1977d.

f10g P. Clavin, Prog. Energy Combust. Sci.11, 1 s1985d; P. Pelcé
and P. Clavin, J. Fluid Mech.124, 219s1982d; F. Sabathier, L.

FIG. 15. Distance separating two bubbles.sad Two snapshots of
the fieldu taken at timet=0 for the solid line andt=18 876 for the
dashed one. Insbd we plot the distance between the zeros of the
field u defined withd=x2−x1− 1

2sD2+D1d

ARGENTINA et al. PHYSICAL REVIEW E 71, 046210s2005d

046210-14



Boyer, and P. Clavin, Prog. Astronaut. Aeronaut.76, 246
s1981d; G. I. Sivashinsky, Annu. Rev. Fluid Mech.15, 179
s1983d.

f11g A. Hubert and R. Schafer,Magnetic DomainssSpringer-
Verlag, Berlin, Heidelberg, 1998d.

f12g L. N. Bulaevskii and V. L. Ginzburg, Zh. Eksp. Teor. Fiz.45,
772 s1963d fSov. Phys. JETP18, 530 s1964dg; P. Coullet, J.
Lega, B. Houchmanzadeh, and J. Lajzerowicz, Phys. Rev. Lett.
65, 1352s1990d.

f13g T. Nagaya and J. M. Gilli, Phys. Rev. E65, 051708s2002d.
f14g J. W. Cahn and J. E. Hilliard, J. Chem. Phys.28, 258 s1958d.
f15g J. S. Langer, Ann. Phys.sN.Y.d 65, 53 s1971d.
f16g S. de Fontaine,Ultrafine-Grain MetalssSyracuse University

Press, New York, 1971d.
f17g A. J. Schwartz, J. S. Huang, and W. I. Goldberg, Chem. Phys.

62, 1847s1975d.
f18g L. Granasy, T. Pusztai, and P. F. James, J. Chem. Phys.117,

6157 s2002d.
f19g C. A. Smolders, J. J. van Aartsen, and A. Steenbergen, Kolloid

Z. Z. Polym. 242, 14 s1971d.
f20g P. Manneville and J.-M. Piquemal, Phys. Rev. A28, 1774

s1983d.
f21g R. Ribotta, A. Joets, and Lin Lei, Phys. Rev. Lett.56, 1595

s1986d; E. Bodenschatz, M. Kaiser, L. Kramer, W. Pesch, A.
Weber, and W. Zimmermann,New Trends in Nonlinear Dy-
namics and Pattern-Forming Phenomena, edited by P. Coullet
and P. HuerresPlenum Press, New York, 1990d.

f22g C. Chevallard, M. Clerc, P. Coullet, and G. J. Gilli, Eur. Phys.
J. E 1, 179 s2000d.

f23g C. Chevallard, M. Clerc, P. Coullet, and G. J. Gilli, Europhys.
Lett. 58, 686 s2002d.

f24g Yu. A. Astrov, E. Ammelt, and H. G. Purwins, Phys. Rev. Lett.
78, 3129s1997d.

f25g R. Ragnarsson, J. L. Ford, C. D. Santangelo, and E. Boden-
schatz, Phys. Rev. Lett.76, 3456s1996d.

f26g L. Limat, Europhys. Lett.44, 205 s1998d.
f27g C. Elphick, G. R. Ierley, O. Regev, and E. A. Spiegel, Phys.

Rev. A 44, 1110s1991d.
f28g D. K. Campbell, A. C. Newell, R. J. Schreiffer, and H. Segur,

Physica D18, 1 s1986d.
f29g B. A. Malomed and A. A. Nepomnyashchy, Phys. Rev. A42,

6009 s1990d.
f30g D. Mermin, Rev. Mod. Phys.51, 591 s1979d.
f31g K. Kawasaki, Prog. Theor. Phys.79, 161 s1984d; 80, 123

s1984d.
f32g T. Kawakatsu and T. Munakata, Prog. Theor. Phys.64, 11,

1985.
f33g K. Kawasaki and T. Otha, Physica A116, 573s1982d; T. Nagi

and K. Kawasaki,ibid. 139, 438 s1986d.
f34g P. W. Bates and J. Xun, J. Diff. Eqns.111, 421 s1994d.
f35g P. W. Bates and J. Xun, J. Diff. Eqns.117, 165 s1995d.
f36g A. Novick-Cohen and L. A Segel, Physica D10, 277 s1984d.
f37g A. Novick-Cohen, J. Stat. Phys.38, 707 s1985d.
f38g A. Novick-Cohen, Physica D26, 403 s1987d.
f39g A. Novick-Cohen and L. A. Peltier, Proc. - R. Soc. Edinburgh,

Sect. A: Math.123, 1071s1993d.
f40g M. Grinfield and A. Novick-Cohen, Proc. - R. Soc. Edinburgh,

Sect. A: Math.125, 351 s1995d.
f41g J. D. Gunton, M. San Miguel, and P. S. Sanhi, inPhase Tran-

sitions and Critical Phenomena, edited by D. Domb and J. L.
LebowitzsAcademic Press, London, 1983d, Vol. 8, pp. 267 and
466.

f42g A. D. Rutemberg and A. J. Bray, Phys. Rev. E51, 5499, 1999.
f43g N. Alikakos, P. W. Bates, and G. Fusco, J. Diff. Eqns.90, 81

s1991d.
f44g M. Abramowitz and I. Stegun,Handbook of Mathematical

FunctionssDover Publications, New York, 1972d.
f45g J. C. Eilbeck, J. E. Furter, and M. Grinfeld, Phys. Lett. A135,

272 s1989d.
f46g P. W. Bates and P. C. Fife, SIAM J. Appl. Math.53, 990

s1993d.
f47g H. Calisto, M. Clerc, R. Rojas, and E. Tirapegui, Phys. Rev.

Lett. 85, 3805s2000d.
f48g M. Argentina and M. G. Clercsunpublishedd.

COARSENING DYNAMICS OF THE ONE-DIMENSIONAL… PHYSICAL REVIEW E 71, 046210s2005d

046210-15


