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Phase separation in a fluidized granular system is studied. We consider a one-dimensional hydrodynamic
model that mimics a two-dimensional fluidized granular system with a vibrating wall and without gravity,
which exhibits a phase separation. Close to the critical point, by means of an adiabatic elimination of the
temperature, we deduce the van der Waals normal form, which is the equation that describes the slow dynamics
of the system and predicts the qualitative behavior in different regions of parameters. This allows us to
understand the origin of the effective viscosity and the spatial saturation at the onset of the bifurcation. The
hydrodynamic model and van der Waals normal form exhibit a behavior similar to the one observed in
molecular dynamics simulations.
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I. INTRODUCTION

Recently, it has been shown that a fluidized granular sys-
tem in two spatial dimensions with a vibrating wall and with-
out gravity exhibits a phase separation[1–3], analogous to
the spinodal decomposition of the gas-liquid transition in the
van der Waals model[4]. Molecular dynamics simulations of
a granular system at the onset of phase transition reveal a
rich dynamical behavior characterized by the appearance,
coalescence, and disappearance of bubbles. The mechanism
of this phase separation is triggered by a negative compress-
ibility implied by the fact that the granular temperature is a
decreasing function of the density for a fixed geometry and
boundary conditions[5]. The microscopic model used in the
molecular dynamics simulations is the inelastic hard sphere
(IHS) model [5–7], where grains are modeled as smooth
rigid disks characterized by a constant normal restitution co-
efficient a. These grains have only translational degrees of
freedom and there is no tangential friction between them at
collisions. The inelastic hard sphere model has been widely
studied and reproduces quite well many of the observed phe-
nomena in granular fluids at moderate densities, when rota-
tion is not fundamental(see, for example,[5–7]).

A continuous or macroscopic description of granular
flows is still an open question. There are several models with
different approximation schemes that produce different hy-
drodynamic models[8–15]. Nevertheless, using simple ge-
neric arguments, independent of the specific macroscopic
model, we have shown that a fluidized granular system that
exhibits phase separation can be described, close to the criti-
cal point, in good detail by thevan der Waals normal form
(VDWNF) [3]. Our previous derivation, however, was un-
able to predict the position of the critical point nor the values
of the different coefficients appearing in the equation.

The aim of this article is to achieve an explicit derivation
of the VDWNF from a hydrodynamic model. The model we
will consider is an effective one-dimensional description of a
two-dimensional system with a vibrating wall and without
gravity. We show that when the hydrodynamic model pre-
sents an effective negative compressibility, close to the criti-
cal point of the instability, the temperature can be adiabati-

cally eliminated in favor of the density and momentum
fields. This results in a simpler model for the density and
momentum that, after scaling the variables, yields the
VDWNF. The procedure allows us to compute the various
coefficients that appear in the VDWNF in terms of the pa-
rameters of the hydrodynamic model and to understand the
physical mechanism that produces the effective viscosity and
the spatial saturation in the VDWNF. We peruse the dynam-
ics of the normal form and compare it with the dynamic
behavior of the one-dimensional hydrodynamic model. Close
to the instability, qualitative and quantitative agreement is
observed between the VDWNF and the one-dimensional hy-
drodynamic model. Furthermore, far from the critical point a
similar dynamic behavior is observed.

II. HYDRODYNAMIC MODEL

We consider a two-dimensional system of grains placed in
a horizontal box with large aspect ratioLx/Ly@1, whereLx
and Ly are the lengths of the box(see Fig. 1). The grains
move without friction in the box. For the sake of simplicity
henceforth, we will refer to horizontalx and verticaly direc-
tions as the long and short directions, respectively. The sys-
tem is periodic in the long direction. The top wall reflects
grains elastically while the bottom one injects energy into the
system by means of vertical sinusoidal vibrations that are
modeled by a thermal wall at a fixed temperatureTW. That is,
each time a particle collides with the wall, it emerges with a

FIG. 1. Schematic representation of the system studied. Grains
are placed in a horizontal box. The bottom wall is vibrating while
the top one reflects grains elastically. The system is periodic in the
x direction.
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normal velocity taken from a thermal bath at temperatureTW.
The collisions with the walls are elastic with no tangential
friction, thus conserving horizontal momentum. We define
the granular temperature, as in molecular fluids, to be pro-
portional to the kinetic energy per particle in the reference
frame of the fluid.

In a traditional hydrodynamic approach, the system is de-
scribed by a set of macroscopic quantities: particle number
densitynsx,y,td=koi d(rW−rWistd)l, macroscopic velocity flow
Usx,y,td=n−1koi vW id(rW−rWistd)l, and temperatureTsx,y,td
=n−1koi

1
2fvi −Usx,y,tdg2d(rW−rWistd)l, where rW=sx,yd is the

position vector andk l represents a coarse grained average
over a small region of space or time.

Starting from kinetic theory, it is possible to derive a set
of equations based on mass, momentum, and energy balances
[11,12,15]. The macroscopic variables have ay dependence
that varies faster than thex dependence, due to the large
aspect ratio of the box. Hence one can describe this system
with y-averaged variables

rsx,td =
1

Ly
E dy nsx,y,td, s1d

usx,yd =
1

Ly
E dy Usx,y,td, s2d

Qsx,td =
1

Ly
E dy Tsx,y,td, s3d

and deduce a set of equations based on mass, momentum,
and energy balances. Due to they dependence of the particle
number density and temperature at equilibrium, this set of
equations can be nonlocal, and its study is arduous.

In order to have a simple hydrodynamic model that mim-
ics the granular system in two spatial dimensions, we write
down balance equations for the one-dimensional variables
[16], which resemble those of a real two-dimensional sys-
tem. Mass balance is exact, and in the momentum balance
we consider pressure and viscous transfer. The energy equa-
tion is subtler because energy is not conserved due to the
inelastic collisions and the energy injection at the base. We
consider the usual terms in the energy equation(heat flux and
mechanical work) plus one term that takes into account the
local energy dissipation and injection. The system is modeled
by

]tr = − ]xsrud, s4d

r]tu + ru]xu = − ]xPsr,Qd + ]xshQ1/2]xud,

r]tQ + ru]xQ = ]xsC2]xQ
3/2d − C1P]xu − qC3r2fQ3/2

− F3/2sr,ldg + hQ1/2s]xud2.

The coefficientsC1, C2, C3, and h are the effective one-
dimensional transport coefficients that result on the projec-
tion of the two-dimensional system, which is inhomogeneous
in the short direction, in one dimension. Therefore, they will
depend on the geometry and the energy injection mecha-
nisms. Furthermore, the two-dimensional transport coeffi-

cients for dense systems are elaborate functions of the den-
sity [15]. As a result, the effective one-dimensional
coefficients are complex functions of the density, and we will
consider them as unknown functions. Nevertheless, a precise
knowledge of their values is not necessary to deduce the van
der Waals normal form as long as they remain positive. The
dependence of the transport coefficients on different powers
of Q is extracted from the expressions for the transport co-
efficients for hard spheres, but it can also be deduced by
simple dimensional analysis. Finally,h is the effective vis-
cosity, C1 gives account of the heat production due to me-
chanical work,C2 is the effective thermal conductivity,C3
gives the energy dissipation rate,q is the inelasticity coeffi-
cient q=s1−ad /2, a is the restitution coefficient, and
PsQ ,rd is the pressure for a fluid of hard disks and its con-
stitutive relation is[17]

Psr,Qd =
s1 + r2/8d
s1 − rd2 rQ. s5d

The pressure of the two-dimensional granular system is a
function of the number density and the temperature. When
one reduces the dynamics to they-average variables, the
pressure depends nonlocally on these variables. The use of
the local hard-disk equation of state(5) is a strong simplifi-
cation becauseP is the average pressure, which does not
need to satisfy the equation of state in terms of the average
density and temperature. However, this simplification allows
us to tackle the problem without going into the full two-
dimensional system. It is important to note that the pressure
diverges at the area fractionr=1. Physically, this density is
unattainable because the maximum area fraction corresponds
to the close packingrCP=p /2Î3. The equation of state gives
an increasing pressure as a function of density for a given
temperature.

The heat source that accounts for the energy injected by
the vibrating wall is written in such a form that the homoge-
neous equilibrium temperature for a given density is

Q0 = Fsr0d. s6d

In molecular dynamic simulations of the IHS model, the av-
erage temperatureQ0 is obtained as a function of the density
for some values of the inelasticity coefficientq (see Fig. 2).
For fixed inelasticityq, geometry, and boundary conditions,
the equilibrium temperature is a decreasing function of den-
sity; this is so because when the density increases the num-
ber of collisions per unit time rises, and hence the dissipation
grows[5]. Also, on increasing the value ofq, the equilibrium
temperature decreases. To model this, we have chosen the
function F, plotted in Fig. 2, to be

Fsr,ld =
e−lrs1 − rd
s1 + r2/8d

. s7d

It is a decreasing function of the density that vanishes atr
=1, since for this density all the energy is dissipated instan-
taneously. The parameterl is a control parameter that takes
into account the balance between the energy injection and
dissipation(it plays the role of the inelasticity coefficientq).
The heat source functionF has been chosen by this expres-
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sion because it keeps the qualitative features of the computed
value and allows for a complete analysis of the hydrody-
namic equations. More complex expressions forFsrd that
better fit the simulation results will produce qualitatively the
same results as the expression we propose.

III. VAN DER WAALS INSTABILITY

The above model has trivial homogeneous stationary so-
lutions r=r0, u=0, and Q=Fsr0d, which represent the
granular system in a homogeneous fluidized state. Note that
the family of homogeneous solutions is parametrized byr0,
which is fixed by the initial condition. In order to study the
stability of this state, we introduce the variablesr=r0
+ r̄sx,td, u=vsx,td, Q=Fsr0d+usx,td and we linearize Eqs.
(4) about this homogeneous solution:

]tr̄ = − r0]xv,

r0]tv = − ]xFP„r0,Fsr0d… + U ] P

] r
U

r0

r̄ + U ] P

] Q
U

Fsr0d
uG

+ h0Fsr0d1/2]xxv,

r0]tu = − C10P„r0,Fsr0d…]xv +
C20

Fsr0d−1/2]xxu

− q
C30

Fsr0d−1/2r0
2Su − U ] F

] r
U

r0

r̄D , s8d

where h0=hsr0d, C10=C1sr0d, C20=C2sr0d, and C30

=C3sr0d.
By looking for solutions of the formr̄sx,td= r̄est+ikx,

vsx,td=vest+ikx, usx,td=uest+ikx, it is possible to obtain the
spectrum(sskd) of the linear perturbations. Figure 3 shows
the real part of the spectrum as a function of the wave num-
ber. Neglecting the viscous term and considering small wave
numbersk, the eigenvalues take the form

kÎ− UdP„r,Fsrd…
dr

U
r0

, − kÎ−
dP„r,Fsrd…

dr
,

−
qC30r0

Fsr0d
− k2F C20

Fsr0d−1/2 +
] P

] u
S 1

qC30
−

Fsr0d1/2C10

C20r0
2 DG .

s9d

From the previous expressions one can see that if theeffec-
tive pressure P(r ,Fsrd) is a decreasing function ofr0 (nega-
tive compressibility coefficient) the trivial homogeneous
state is unstable(has positive eigenvalues). The effective
pressure has the form

P„r,Fsrd… = P0
e−lr

s1 − rd
r. s10d

When l,4 the effective pressure is an increasing function
of the density, whenl=4 the effective pressure has an in-
flection point atr=1/2, and forl.4 the effective pressure
is a nonmonotonic function of the density as show in Fig. 4.
Hence, the trivial homogeneous state is unstable(cf. Fig. 3).
A classical example of this behavior is the van der Waals
equation of state[4]: when the compressibility is negative
sr]P/]r,0d, the homogeneous state is unstable and the
system presents a spinodal decomposition into gas and liquid
phases. In model(4) this phase transition is between two
granular fluid phases with different densities.

Close to the critical point, the spectrum of the homoge-
neous state is characterized by one branch that is separated

FIG. 2. Left: The heat source functionF plot-
ted against the density forl=2.0, l=4.0, andl
=6.0. Right: Average temperature obtained in
molecular dynamics simulations forq=0.0030,
q=0.0046, andq=0.0100. The wall temperature
is TW=1 andLy=100.

FIG. 3. Real part of the spectrumfRessdg of the homogeneous
solution r=r0, u=0, and Q=Fsr0d for r0=0.5, a=5.0, P0=1.0,
h0=0.0, C10=1, C20=1, andC30=0.04. The lowest branch corre-
sponds to the temperature mode.
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from the others as shown in Fig. 3. Accordingly, a perturba-
tion of the homogeneous state is characterized by a mode
that is attenuated, that is, this mode varies fast and follows
the dynamics driven by the other two modes, and hence this
mode is a slave variable. The central manifold, i.e., the set of
modes that govern the dynamics for long times, is of dimen-
sion 2. In conclusion one can remove one variable adiabati-
cally and find a minimal description of the instability[18].

IV. VAN DER WAALS NORMAL FORM

In order to have a minimal description close to the critical
point it is necessary to remove adiabatically the temperature
which, to linear order, is an attenuated mode(cf. Fig. 3). If
we consider that the spatial variations are small, close to the
critical point the temperature can be expressed as

Qsr,vd = Fsr0 + r̄,l = 4 +«d + Q1]xxr̄ + Q2]xv + h.o.t.,

s11d

where« is the bifurcation parameter, whileQ1 and Q2 are
constants. The higher order termssh.o.t.d represent linear or
nonlinear terms inr̄ and v and their spatial derivatives.
These terms are negligible with respect to the above terms as
we see later. Substituting the above ansatz into the third
equation of[4] and using the other two equations yields

Q1 =

C20U ] F

] r
U

r0

qr0
2C30

, s12d

Q2 = −

2SC10P„r0,Fsr0d… − r0
2U ] F

] r
U

r0

D
3qr0

2C30Fsr0d−1/2 . s13d

It is important to remark that these coefficients are negative
when the heat sourceFsr ,ld is a decreasing function of the
density. The physical interpretation of the term proportional
to Q1 in the approach(11) is that when the gradients increase

the temperature increases. This term produces similar effects
as a surface tension. The term proportional toQ2 is inter-
preted as the temperature generated by the mechanical work,
i.e., this term accounts for the transfer of mechanical to ther-
mal energy.

Considering the critical density and the parameters around
the instability(r0=1/2 andl=4+«,), introducing the change
of variable r=1/2+r̄sx,td, u=vsx,td, and substituting the
above temperature expansion in the second Eq.(4), at domi-
nant order ine one obtains

]tr̄ = −
]xv
2

,

]tv
2

= − ]xF−
«

e2r̄ +
16

3e2r̄3 +
33Q1

16
]xxr̄ +

33Q2

16
]xvG

+
33

16e2h0]xxv. s14d

Note that the coefficient33
16sh0/e2+Q2d is the effective vis-

cosity. The term proportional to 33Q1/16 represents the in-
crease of pressure with increasing gradients, which is respon-
sible for the saturation at large wave number. Using the
expression of the heat source(7) in the coefficientsQ1 and
Q2 and combining Eqs.(14), one obtains

]ttr̄ = − ]xxF−
«

e2r̄ +
16

3e2r̄3 − 3.31
C20

qC30
]xxr̄ + S1.41

C10

qC30

+
1.05

qC30
+ 0.28h0D]tr̄G . s15d

Introducing the scaling x=yÎ3.31C20/qC30, t
=tÎ3.31C20/qC30, r̄=4u/eÎ3 and defining«=s4−ld /e2 and
m=s1.41C10/qC30+1.05/qC30+0.28h0d /Î3.31C20/qC30, the
equation reads

]ttu = ]xxs«u + u3 − ]xxu + m]tud, s16d

which is thevan der Waals normal form[3], where« is the
control parameter that is proportional tol−4. Whenl,4
the parametere is positive and the term proportional to it is
a convective one. Forl.4 this term is a focusing one, that
is, it increases the gradient and focuses the density in some
spatial region. The term proportional tou3 is a nonlinear
convective one, the linear term with highest spatial deriva-
tive is a superconvective term, and the last term is diffusive.
m is the effective viscosity coefficient composed of the initial
viscosity termh and the diffusion generated by the mechani-
cal work. The terms of the above model are the dominant
ones. One can check this by means of the scalingu,e1/2,
v,e, ]x,e1/2, ]t,e, m,os1d, and show that the other
terms are negligible for small bifurcation parameterse!1d.
Equation(16) is of ordere5/2. It can directly be checked that
this scaling allows one to consider simultaneously both the
linear and nonlinear terms in the equation. The first one gives
rise to the instability and the second one is responsible for its
saturation.

FIG. 4. Effective pressureP(r ,Fsrd) as a function of the density
for different values ofl. For l,4 the pressure is a monotonic
function. Whenl=4 the pressure has an inflection point atr=0.5
and forl.4 the pressure is a nonmonotonic function.
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It is important to note that the dynamics of the model(16)
is characterized not only by the parameterhe ,mj but also by
the parameter fixed by the initial condition

u0 =E dxusx,t0d, s17d

which follows from global mass conservation. One might
think that the parameteredx]tusx,tdut0 also characterizes the
dynamics, but the resultant Galilean invariance allows us to
set this parameter to zero. Hence the dynamics of this insta-
bility is characterized by three parametershe ,m ,u0j.

The van der Waals normal form can be written as

]ttu = ]xx

dF
du

+ m]xxtu, s18d

whereF=edxh«u2/2+u4/4+s]xud2/2j. The above dynamics
can be regarded as the tendency of the system to minimize
the Lyapunov functional

H =E dxH«
u2

2
+

u4

4
+

s]xud2

2
+

]tL
2

2
J , s19d

where L is an auxiliary functional defined asLsx,td
;exdyusyd /2. Note thatH satisfies

dH

dt
= − ms]tud2 ø 0. s20d

H is bounded and the minima of this Lyapunov functional
are the minima ofF; hence the equilibrium states of Eq.(16)
are the minima ofF (for a detailed study of the properties of
the functionalF, see Ref.[19]). The phase diagram ofF is
illustrated in Fig. 5, where the horizontal and vertical axes
are u0 and e, respectively. The continuous line is the meta-

stable curve and the dashed one is the spinodal curve. With
periodic boundary conditions and initial massu0, F has two
types of minima: the homogeneous and the bubble states as
we describe in more detail below. Over the metastable curve
in Fig. 5, the only minimum ofF is the homogeneous state.
In the region of parameters between the metastable and spin-
odal curve the minima ofF are the homogeneous and the
bubble states; one can observe this kind of solution from the
metastable curve. Close to the metastable curve the homoge-
neous state is the global minimum, and close to the spinodal
curve the bubble solution is the global minimum. Below the
spinodal curve the bubble solution is the minimum ofF. We
remark that as a consequence of the spatial translation invari-
ance the bubble solution is parametrized by a symmetry
group with one parameter, the position of the bubble.

V. DYNAMICS CLOSE TO THE CRITICAL POINT

In this section we analyze the dynamics close to the criti-
cal point, comparing the theoretical predictions that can be
obtained from Eq.(16) and numerical solutions of the hydro-
dynamic model(4). For the purpose of comparison and to
obtain numerical values, we have taken the transport coeffi-
cientsC1, C2, C3, andh to be constants, independent of the
density. The values chosen are arbitrary, with the only pre-
caution that the viscosityh must be small as it is observed in
molecular dynamics simulations. These approximations sim-
plify the analysis but do not qualitatively modify the charac-
ter of the solutions.

The Lyapunov functional does not depend explicitly on
the diffusion coefficientm. Therefore this coefficient does
not modify this phase diagram and the equilibrium states, but
rather it changes the transient behavior exhibited by the sys-
tem. For smallm, the transients are characterized by the pres-
ence of waves, while for largem the transients are character-
ized by a diffusive behavior.

The region over the metastable curve is characterized by
the stability of the homogeneous states and a perturbation of
this state moves and spreads through the fluid. The dynamics
of the normal form and the hydrodynamic model(4) are
characterized in this region of parameters by dispersion and
diffusion of sound waves. This is directly obtained by doing
a linear analysis about the homogeneous state in Eq.(16)
[20].

The region of parameters between the metastable and the
spinodal curves is characterized by the coexistence of the
homogeneous state and the bubble state(phase separation
state), both being stable. Figure 6 shows the spatiotemporal
diagram of the normal form, the hydrodynamic model(4),
and the molecular dynamics simulation reported in[3].
When the homogeneous stable state initially is perturbed by
a localized perturbation, this perturbation increases and satu-
rates at a given density. Later, as seen in Fig. 6, two pairs of
shock and rarefaction waves appear and move away, giving
rise to the bubble. Due to the periodic boundary condition,
the shock and rarefaction waves eventually collide, generat-
ing damped oscillations of the bubble as shown in Fig. 6.
Hence, in this region of parameters, one can observe either
the homogeneous state or the bubble solution, depending on

FIG. 5. Phase diagram obtained from the van der Waals normal
form. The solid line(dashed) parabola is the metastable(spinodal)
curve. The gray region is the bistability region.
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the initial condition. It is important to note that the homoge-
neous state and bubble state are divided by a nucleation bar-
rier that corresponds to an unstable bubble state. This un-
stable solution is nucleated by a saddle-node bifurcation with
the stable bubble in the metastable curve[23,24].

Below the spinodal curve, the homogeneous state under-
goes a spatial instability and the dynamical evolution is ini-
tially characterized by the appearance of spatial modulations.
Later, this spatial modulation becomes a gas of bubbles that
merge together, giving rise to a coarsening process. The tran-
sient of this coarsening process is different in the case of
large or small viscosity(m). For small viscosities, the trans-
port of mass is through nonlinear waves(shock and rarefac-
tion). Closer bubbles merge into a bigger one giving rise to a
coalescence process. Subsequently, the bubble dynamics is

led by an interaction mediated by sound waves(cf. Fig. 7),
that is, mass and momentum are exchanged between bubbles
by waves. For large viscosities the transients do not exhibit
waves and the transport of mass is through the interaction of
the bubbles, where the greatest bubbles grow and the small-
est shrink. A study of this coarsening process and wave dy-
namics is in progress. It is important to remark that this
process is less efficient than the transport of mass due to
waves; hence the coarsening process is slower.

VI. STATIONARY SOLUTIONS OF THE NORMAL FORM

The equilibrium solutions of Eq.(16) with periodic
boundary conditions obey the equation

− u + u3 − ]xxu − l0 = 0, s21d

where l0 is an integration constant, that characterizes the
stationary solutions. Due to the symmetryl0→−l0 and u

FIG. 6. Spatiotemporal evolution of the density, with time run-
ning up. The gray scale is proportional to density, with darker re-
gions representing denser regions in the system. The top graph cor-
responds to a molecular dynamics simulation. The system size is
5400 and the total simulation time isT=3.53105. An initial con-
dition (with u=1.4310−2) that overcomes the nucleation barrier is
imposed. The minimum(light gray) and maximum(dark gray) den-
sities are u=−2.6310−2 and u=2.9310−2, respectively. The
middle graph is obtained from the one-dimensional hydrodynamic
model (4) with C10=0.38, C20=0.37, C30=10, P0=1, h0=0.0036,
l=4.5, andr=0.7, where the system size is 200 and the total simu-
lation time is T=2000. The minimum(light gray) and maximum
(dark gray) densities arer=0.12 andr=0.61, respectively. The bot-
tom graph is obtained from the model defined by Eq.(16) with «
=−0.5, n=2, and initial densityusx,t=0d=0.43, where the system
size is 200 and the total simulation time isT=800. The minimum
(light gray) and maximum(dark gray) densities areu=−0.7 andu
=0.7, respectively.

FIG. 7. Spatiotemporal evolution of the density, with time run-
ning up. The gray scale is proportional to the density, with darker
regions representing denser regions in the system. The top graph
corresponds to a molecular dynamic simulation. The system size is
5400 and the total simulation time isT=13105. The middle graph
is obtained from the one-dimensional hydrodynamic model(4) with
C10=0.38, C20=0.37, C30=10, P0=1, h0=0.0036, l=4.5, andr
=0.6, where the system size is 100 and the total simulation time is
T=2000. The minimum(light gray) and maximum(dark gray) den-
sities arer=0.32 andr=0.81, respectively. The bottom graph is
obtained from the van der Waals normal form(16) with «=−0.5,
n=2, and initial densityusx,t=0d=0.35, where the system size is
200 and the total simulation time isT=800. The minimum(light
gray) and maximum(dark gray) densities areu=−0.7 andu=0.7,
respectively.
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→−u, we will assume, without loss of generality, thatl0 is
positive. The above Newton type of equation is integrated
into

Vsud + s]xud2 = E s22d

where the potential energy isVsud=2l0u+«u2−u4/2. The
potentialVsud has three extrema ifl0

2,lc
2, lc;2/s3Î3d. We

will denote themuaøubøuc, and they have the form

ua = − 2Îu«u
3

sinS1

3
arctanÎ 4u«u

27l0
2 − 1 +

p

6
D , s23d

ub = 2Îu«u
3

sinS1

3
arctanÎ 4u«u

27l0
2 − 1 −

p

6
D , s24d

uc = 2Îu«u
3

cosS1

3
arctanÎ 4u«u

27l0
2 − 1D . s25d

Note thatu«u /3,ua,c
2 ,1, and −Îu«u /3,ub,0. In the case of

infinite sizesLx@1d the phase diagram of the Newton type
equation has a bubble or homoclinic solution, which starts at
ua, later moves touc, and finally comes back toua. The
analytic expression of this solution is

Usx − x0d = ua +
2s3u0

2 + «d

− 2u0 + Î2su«u − u0
2dcoshfÎs3u0

2 + «dx − x0g
,

s26d

In the case of Neumann boundary conditions, that is,]xxu
=]xxxxu=0, the bubble solution is not the global minimum
and it is replaced by the wall or kink solutions

Usx − x0d = 7 Îu«utanhSÎu«u
2

sx − x0dD . s27d

This solution represents physically a coexistence between
two phases with only one interface between the phases. The
bubble solution has two interfaces; therefore it is energeti-
cally more costly. The dynamics in this case is similar to that
with periodic boundary conditions, and the main difference
is that the bubble solution moves to the nearest boundary and
finally gives rise to the wall or kink solution.

VII. DISCUSSION OF HYDRODYNAMIC SOLUTIONS
IN TWO DIMENSIONS AND CONCLUSIONS

We have studied a one-dimensional hydrodynamic model
that mimics a two-dimensional fluidized granular system
with a vibrating wall and without gravity, which exhibits a
phase separation. Close to the critical point, we have de-
duced the van der Waals normal form(16). The choice of the
hydrodynamic model is based on its simplicity, which cap-
tures most of the dynamics near the onset of the instability in
two spatial dimensions, and also because its simplicity al-
lows for a detailed analytic study. The adiabatic elimination
of the temperature allows us to understand the origin of the
effective viscosity, which is a combination of the hydrody-
namic viscosityh and the heat generated by the mechanical

work. The linear spatial saturation at the onset of the bifur-
cation is related to the fact that the density gradients locally
increase the temperature, breaking the tendency to focus the
grains.

In the original two-dimensional problem, it is difficult to
make a complete analysis like the one performed here, but it
is important to verify if the conclusions of this work are valid
in two dimensions. Using the full hydrodynamic equations
for the density, momentum, and temperature fields, some
conclusions can be extracted in two dimensions. It has been
shown, using numerical solutions of the hydrodynamic equa-
tions, that they present a region in parameter space where the
longitudinal compressibility becomes negative[20–22]. In
Ref. [20] the spinodal and coexistence curves were deduced
numerically. The numerical character of the solutions, how-
ever, does not allow for a derivation of the normal form
associated with the instability, but the arguments presented in
[3] indicate that the van der Waals normal form is the appro-
priate model. Also, to make a qualitative comparison of the
phenomena predicted by the van der Waals normal form to
the two-dimensional system, we have numerically solved the
full hydrodynamic equations in two dimensions for dense
granular fluids. We consider hydrodynamic equations for
dense quasielastic granular fluids, which are similar to the
equations for elastic compressible fluids, with the addition of
an energy sink term(see[14,15]). The transport coefficients
are those of the quasielastic inelastic hard sphere model, and
the full set of equations and coefficients are given in[15,20].
The equations are solved using a finite volume approach with
a small time step in order to take into account both the hy-
perbolic(sound and compressible effects) and parabolic(vis-
cosity and heat transfer) parts of the equations with high

FIG. 8. Spatiotemporal evolution of the density given by the
numerical solution of the full two-dimensional hydrodynamic equa-
tions. Time is running up, and the gray scale is proportional to the
density, with darker regions representing denser regions in the sys-
tem. In both graphs, the common parameters areLx=100 000,Ly

=100,TW=1, andr=0.11. In the top graph, the inelasticity coeffi-
cient is q=0.01 and an initial noise is added to produce unstable
bubbles. In the bottom graph,q=0.015, an initial nucleus grows
with the emission of two shock waves.
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precision. The system under study has a vibrating wall, but
for computational feasibility we model it using a thermal
wall at temperatureTW. The other boundary conditions are
the same as those of the system under study.

In the hydrodynamic description, this implies that the
temperature of the granular fluid is imposed to beTW by the
wall. This boundary condition fails to reproduce exactly the
molecular dynamics simulations, where a temperature jump
is observed in the Knudsen layer[20]. The initial conditions
are those of a fluid at rest with uniform density and the
temperature given by the wall, where the global density is
chosen to be in the metastable or unstable region, according
to the results presented in Ref.[20]. The initial condition
evolves fast to a horizontally homogeneous state with they
dependence given by the energy and momentum balance
[14]. After the transient, the observed phenomena(see Fig.
8) are similar to those deduced from the normal form and
observed in molecular dynamics simulations: waves, shocks,
instability, metastability, and bubbles. One difference is that

the viscosity seems to be larger than in molecular dynamics
simulations, implying a faster attenuation of the shock
waves. It is important to note that, although these phenomena
are found in the two-dimensional system, the full equations
are so intricate that it is difficult to predict them compared
with the normal form.
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