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Phase separation in a fluidized granular system is studied. We consider a one-dimensional hydrodynamic
model that mimics a two-dimensional fluidized granular system with a vibrating wall and without gravity,
which exhibits a phase separation. Close to the critical point, by means of an adiabatic elimination of the
temperature, we deduce the van der Waals normal form, which is the equation that describes the slow dynamics
of the system and predicts the qualitative behavior in different regions of parameters. This allows us to
understand the origin of the effective viscosity and the spatial saturation at the onset of the bifurcation. The
hydrodynamic model and van der Waals normal form exhibit a behavior similar to the one observed in
molecular dynamics simulations.
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I. INTRODUCTION cally eliminated in favor of the density and momentum

Recently, it has been shown that a fluidized granular sysfi€lds. This results in a simpler model for the density and
tem in two spatial dimensions with a vibrating wall and with- momentum that, after scaling the variables, yields the
out gravity exhibits a phase separatifir-3], analogous to VDWNF. The procedure allows us to compute the various
the spinodal decomposition of the gas-liquid transition in thecoefficients that appear in the VDWNF in terms of the pa-
van der Waals modg#]. Molecular dynamics simulations of rameters of the hydrodynamic model and to understand the
a granular system at the onset of phase transition reveal physical mechanism that produces the effective viscosity and
rich dynamical behavior characterized by the appearancéhe spatial saturation in the VDWNF. We peruse the dynam-
coalescence, and disappearance of bubbles. The mechaniiga of the normal form and compare it with the dynamic
of this phase separation is triggered by a negative compresbehavior of the one-dimensional hydrodynamic model. Close
ibility implied by the fact that the granular temperature is ato the instability, qualitative and quantitative agreement is
decreasing function of the density for a fixed geometry andbserved between the VDWNF and the one-dimensional hy-
boundary condition§5]. The microscopic model used in the drodynamic model. Furthermore, far from the critical point a
molecular dynamics simulations is the inelastic hard sphersimilar dynamic behavior is observed.

(IHS) model [5-7], where grains are modeled as smooth

rigid disks characterized by a constant normal restitution co-

efficient a. These grains have only translational degrees of Il. HYDRODYNAMIC MODEL

freedom and there is no tangential friction between them at
collisions. The inelastic hard sphere model has been WideI¥l
studied and reproduces quite well many of the observed ph

nomena mfgrzénular fluids a'; moderatel d5ensmes, when 1otgg, e’ without friction in the box. For the sake of simplicity
tion is not fundamentalsee, for example[5—7]). henceforth, we will refer to horizontal and verticaly direc-

A continuous or macroscopic description of granula}rtions as the long and short directions, respectively. The sys-
flows is still an open question. There are several models witf

diff S h h q i h em is periodic in the long direction. The top wall reflects
ffferent approximation schemes that produce different Ygrains elastically while the bottom one injects energy into the
drodynamic model$8—15. Nevertheless, using simple ge-

) ) o system by means of vertical sinusoidal vibrations that are
neric arguments, independent of the specific Macroscopig - jeled by a thermal wall at a fixed temperatlige That is,

mode_l, we have shown that a fIU|d|zed.granuIar system th.aéach time a particle collides with the wall, it emerges with a
exhibits phase separation can be described, close to the criti-

cal point, in good detail by thean der Waals normal form
(VDWNF) [3]. Our previous derivation, however, was un-
able to predict the position of the critical point nor the values

We consider a two-dimensional system of grains placed in
horizontal box with large aspect ratig/L,> 1, whereL,
&ind L, are the lengths of the bosee Fig. 1 The grains

Elastic wall ‘/ ‘/ '/
[ ® [ X P N ] L Rl X4
o ® g0 0 % o e ® o 0% e

of the different coefficients appearing in the equation. ® . se, o o o . ..
The aim of this article is to achieve an explicit derivation \® . . . .
of the VDWNF from a hydrodynamic model. The model we T ~Vibratg wall a F:

will consider is an effective one-dimensional description of a

two-dimensional system with a vibrating wall and without  FIG. 1. Schematic representation of the system studied. Grains
gravity. We show that when the hydrodynamic model pre-are placed in a horizontal box. The bottom wall is vibrating while
sents an effective negative compressibility, close to the critithe top one reflects grains elastically. The system is periodic in the
cal point of the instability, the temperature can be adiabatix direction.
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normal velocity taken from a thermal bath at temperafiyyje  cients for dense systems are elaborate functions of the den-
The collisions with the walls are elastic with no tangentialsity [15]. As a result, the effective one-dimensional
friction, thus conserving horizontal momentum. We definecoefficients are complex functions of the density, and we will
the granular temperature, as in molecular fluids, to be proeonsider them as unknown functions. Nevertheless, a precise
portional to the kinetic energy per particle in the referenceknowledge of their values is not necessary to deduce the van
frame of the fluid. der Waals normal form as long as they remain positive. The
In a traditional hydrodynamic approach, the system is dedependence of the transport coefficients on different powers
scribed by a set of macroscopic quantities: particle numbeof © is extracted from the expressions for the transport co-
densityn(x,y,t)=(Z; 8(r-ri(t))), macroscopic velocity flow efficients for hard spheres, but it can also be deduced by
U(x,y,t)=n"YZ; 5;8(F-F;(t))), and temperatureT(x,y,t)  Simple dimensional analysis. Finally, is the effective vis-
=n"Y3, %[vi—U(x,y,t)]25(F—ﬁ(t))>, wheref=(x,y) is the  COSity, C; gives account of the heat production due to me-
position vector and ) represents a coarse grained averagéhanical work,C, is the effective thermal conductivitys
over a small region of space or time. gives the energy dissipation ratgjs the inelasticity coeffi-

Starting from kinetic theory, it is possible to derive a setclent q?(l—a)/Z, @ is the rgst|tut|on cpefﬂment,. and
of equations based on mass, momentum, and energy balanda®? ) is the pressure for a fluid of hard disks and its con-
[11,12,15. The macroscopic variables haveyalependence Stitutive relation is{17]
that varies faster than the dependence, due to the large (1+p%8)
aspect ratio of the box. Hence one can describe this system P(p,®) = (1_—1))2

with y-averaged variables

pO. ©)

1 The pressure of the two-dimensional granular system is a
p(x,t)=— J dy n(x,y,t), (1)  function of the number density and the temperature. When
Ly one reduces the dynamics to tlyeaverage variables, the
. pressure depends nonlocally on these variables. The use of
= the local hard-disk equation of staf®) is a strong simplifi-
uxy) = Lyfdy oy 0, @ cation becausé is the average pressure, which does not
need to satisfy the equation of state in terms of the average
1 density and temperature. However, this simplification allows
0(x,t) = L—de Tx,y,1), (3)  us to tackle the problem without going into the full two-

y dimensional system. It is important to note that the pressure
and deduce a set of equations based on mass, momentudiverges at the area fractign=1. Physically, this density is
and energy balances. Due to thdependence of the particle unattainable because the maximum area fraction corresponds
number density and temperature at equilibrium, this set ofo the close packingcp=/2y3. The equation of state gives
equations can be nonlocal, and its study is arduous. an increasing pressure as a function of density for a given

In order to have a simple hydrodynamic model that mim-temperature.

ics the granular system in two spatial dimensions, we write The heat source that accounts for the energy injected by

down balance equations for the one-dimensional variablethe vibrating wall is written in such a form that the homoge-

[16], which resemble those of a real two-dimensional sysneous equilibrium temperature for a given density is

tem. Mass balance is exact, and in the momentum balance

we consider pressure and viscous transfer. The energy equa- ©0=F(po). (6)

tion is subtler because energy is not conserved due to they molecular dynamic simulations of the IHS model, the av-

inelastic collisions and the energy injection at the base. Werage temperatui®, is obtained as a function of the density

consider the usual terms in the energy equati@at flux and  for some values of the inelasticity coefficieni(see Fig. 2

mechanical workplus one term that takes into account the For fixed inelasticityq, geometry, and boundary conditions,

local energy dissipation and injection. The system is modeleghe equilibrium temperature is a decreasing function of den-

by sity; this is so because when the density increases the num-

ap=— dpu), (4) ber of collisions per unit tir_ne rises, and hence the_(_iis_sipation

grows[5]. Also, on increasing the value gf the equilibrium

temperature decreases. To model this, we have chosen the

functionF, plotted in Fig. 2, to be

PO + pud,® = 9(C,0,0%?) — C,Pau— qCap’[ @32 eM(1-p)
_ F3/2(p NE 77@1/2((;, Ll)2 Flo,N)=—"—5-" (7)
1 X .

p(?tu + puaxu == &Xp(p! ®) + ax( 7]@1/2(9)([]) ’

S (1+p%8)

The coefficientsC;, C,, Cs, and n are the effective one- It is a decreasing function of the density that vanishep at
dimensional transport coefficients that result on the projec=1, since for this density all the energy is dissipated instan-
tion of the two-dimensional system, which is inhomogeneouganeously. The parametgris a control parameter that takes
in the short direction, in one dimension. Therefore, they willinto account the balance between the energy injection and
depend on the geometry and the energy injection mechadissipation(it plays the role of the inelasticity coefficienj.
nisms. Furthermore, the two-dimensional transport coeffi-The heat source functioR has been chosen by this expres-
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06 - i i FIG. 2. Left: The heat source functighplot-

: ted against the density for=2.0,A=4.0, and\

'y =6.0. Right: Average temperature obtained in
0.4 - . molecular dynamics simulations far=0.0030,
q=0.0046, andy=0.0100. The wall temperature

02 - | | is Tw=1 andL,=100.
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sion because it keeps the qualitative features of the computed CIC%oPo 5 Cxo P P/ 1 |:(p0)1/2(;10
value and allows for a complete analysis of the hydrody- ~ = F 127 59 2

namic equations. More complex expressions Fdp) that (po) (po)” ACso  Cootf
better fit the simulation results will produce qualitatively the 9

same results as the expression we propose. From the previous expressions one can see that ieffee-

tive pressure Bp,F(p)) is a decreasing function gf, (nega-
IIl. VAN DER WAALS INSTABILITY tive compressibility coefficient the trivial homogeneous
state is unstablghas positive eigenvalugsThe effective
The above model has trivial homogeneous stationary sopressure has the form

lutions p=py, u=0, and ®=F(py), which represent the S

granular system in a homogeneous fluidized state. Note that P(p,F(p)) = Poe—p (10)

the family of homogeneous solutions is parametrizeghhy 1-p)

which is fixed by the initial condition. In order to study the ) ] ) ) )

stability of this state, we introduce the variablesp, Whenk <4 the effective pressure is an increasing function

+0x,1), u=v(x,t), @=F(pg) +(x,t) and we linearize Eqs. ©f the density, wher\=4 the effective pressure has an in-

(4) about this homogeneous solution: flectlon point atp_:1/2, qnd forn>4 the_ effective pressure
is a nonmonotonic function of the density as show in Fig. 4.
Hence, the trivial homogeneous state is unstétiieFig. 3).

9P =~ Pod, A classical example of this behavior is the van der Waals
equation of statd4]: when the compressibility is negative
[ aPl _ ap } (pdPldp<0), the homogeneous state is unstable and the
podv = =6y P(po,F(pg))+ — | p+ — 0 system presents a spinodal decomposition into gas and liquid
9P 14 70 F(pg phases. In mode{4) this phase transition is between two
+ 7oF (o) Y200, granular fluid phaggs With_different densities.
Close to the critical point, the spectrum of the homoge-
neous state is characterized by one branch that is separated
Cxo
podi0=— C10P(po, F(po)) dyv + Waxxe K
c JE 0.07] 0.02 .06 0.08 0.1
qvj‘impé(e— o p), ® e
0 Po -0.04

©
where 75=7(po), C10=Ci(po), C20=Capo), and Czo g -0-08¢

=Cs(po)- o -0.08}
By looking for solutions of the formp(x, t) = pet+kx, 0
v(x, 1) =ve’™kg(x,t)= e’ kX it is possible to obtain the -0.1

spectrum(o(k)) of the linear perturbations. Figure 3 shows  _g. 12}
the real part of the spectrum as a function of the wave num-
ber. Neglecting the viscous term and considering small wave
numbersk, the eigenvalues take the form

) \/_ dP(p,F(p))
dp

-0.14"%

FIG. 3. Real part of the spectrufRRe(o)] of the homogeneous
solution p=pg, u=0, and ® =F(p,y) for pg=0.5, «=5.0, Py=1.0,
dp(p, (p)) 70=0.0, C10=1, Cyp=1, andC3y=0.04. The lowest branch corre-
dp sponds to the temperature mode.

Po
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2=3 the temperature increases. This term produces similar effects
0.25 as a surface tension. The term proportional®tg is inter-
A=4 preted as the temperature generated by the mechanical work,
0.2 i.e., this term accounts for the transfer of mechanical to ther-
= mal energy.
f/ 0.15 Considering the critical density and the parameters around
2 -5 the instability(po=1/2 and\ =4 +e,), introducing the change
o 0.1 of variable p=1/2+p(x,t), u=v(x,t), and substituting the
above temperature expansion in the second(&gat domi-
0.05 nant order ine one obtains
0.2 0.4 0.6 0.8 1 Pl Iv
P tP 2 ’
FIG. 4. Effective pressurB(p,F(p)) as a function of the density
for different values ofA. For A<4 the pressure is a monotonic v g— 164 330, _— 330,
function. When\=4 the pressure has an inflection pointpat0.5 T T TPt Pt T Gt 0
2 e 3¢ 16 16
and for\>4 the pressure is a nonmonotonic function.
33
from the others as shown in Fig. 3. Accordingly, a perturba- T (9

tion of the homogeneous state is characterized by a mode

that is attenuated, that is, this mode varies fast and follow&lote that the coefficienfa(7,/€2+©,) is the effective vis-

the dynamics driven by the other two modes, and hence thigosity. The term proportional to 88/16 represents the in-
mode is a slave variable. The central manifold, i.e., the set o¢rease of pressure with increasing gradients, which is respon-
modes that govern the dynamics for long times, is of dimensible for the saturation at large wave number. Using the
sion 2. In conclusion one can remove one variable adiabatexpression of the heat sour¢®) in the coefficientsd, and

cally and find a minimal description of the instabiligg]. ~ ©, and combining Eqs(14), one obtains
_ — 16 C _ C
dp=- axx{— Lt 3 -331-2 ) 5+ (1.41ﬁ
IV. VAN DER WAALS NORMAL FORM e? 3¢ aCso aCso
_In (_)r(_jer to have a minimal desc_rlptlo_n close to the critical + +0.287 |ap]|. (15)
point it is necessary to remove adiabatically the temperature qCs

which, to linear order, is an attenuated madé Fig. 3). If

we consider that the spatial variations are small, close to thitroducing the scaling x=y\3.31C,0/qCs0, t
critical point the temperature can be expressed as =7/3.31C,/qCs, p=4u/e\3 and definings=(4-\)/€? and
_ — — w=(1.41C;¢/ qCsp+ 1.05/0C50+0.287) / 13.31C,0/ Cyp, the
O(p,v) =F(pg+ p,A =4 +&) + O1d,,0 + Oy + h.0.t., equation reads
(13)

where e is the bifurcation parameter, whil®,; and ©, are
constants. The higher order teritiso.t) represent linear or which is thevan der Waals normal forrfd], wheree is the
nonlinear terms inp and v and their spatial derivatives. control parameter that is proportional ¥o-4. When\ <4
These terms are negligible with respect to the above terms dse parametee is positive and the term proportional to it is
we see later. Substituting the above ansatz into the third convective one. Fax >4 this term is a focusing one, that
equation off4] and using the other two equations yields s, it increases the gradient and focuses the density in some
spatial region. The term proportional 0 is a nonlinear

AU = Ah(8U + US = AU + pdyU), (16)

Cao Ik convective one, the linear term with highest spatial deriva-
Ip1p, tive is a superconvective term, and the last term is diffusive.
0,= " a02Ca (12) w is the effective viscosity coefficient composed of the initial
9Po’-s0 viscosity termz and the diffusion generated by the mechani-
cal work. The terms of the above model are the dominant
2<C10p(po,,:(po)) g Ik ) ones. One can check this by means of the scalinge*?,
ap 1, v~e d~e'? g~e€ p~o(1), and show that the other

0=~ 30p2CaoF (po) 2 : (13 terms are negligible for small bifurcation parameter<1).
Po’~30™%P0 Equation(16) is of ordere®?. It can directly be checked that
It is important to remark that these coefficients are negativehis scaling allows one to consider simultaneously both the
when the heat sourdeé(p,\) is a decreasing function of the linear and nonlinear terms in the equation. The first one gives
density. The physical interpretation of the term proportionalrise to the instability and the second one is responsible for its
to ®, in the approactill) is that when the gradients increase saturation.
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0.5 P ' ' ' stable curve and the dashed one is the spinodal curve. With
periodic boundary conditions and initial mags F has two
types of minima: the homogeneous and the bubble states as
we describe in more detail below. Over the metastable curve
in Fig. 5, the only minimum ofF is the homogeneous state.

In the region of parameters between the metastable and spin-
odal curve the minima ofF are the homogeneous and the
bubble states; one can observe this kind of solution from the
metastable curve. Close to the metastable curve the homoge-
neous state is the global minimum, and close to the spinodal
curve the bubble solution is the global minimum. Below the
spinodal curve the bubble solution is the minimum7fWe
remark that as a consequence of the spatial translation invari-
ance the bubble solution is parametrized by a symmetry
group with one parameter, the position of the bubble.

0.5

1.5

V. DYNAMICS CLOSE TO THE CRITICAL POINT

In this section we analyze the dynamics close to the criti-
1 0.5 0 0.5 1 cal point, comparing the theoretical predictions that can be

obtained from Eq(16) and numerical solutions of the hydro-

FIG. 5. Phase diagram obtained from the van der Waals norm&tﬂynamic model(4). For the purpose of comparison and to
form. The solid line(dashed parabola is the metastabispinoda)  obtain numerical values, we have taken the transport coeffi-

curve. The gray region is the bistability region. cientsC;, C,, C;, and 7 to be constants, independent of the
density. The values chosen are arbitrary, with the only pre-

It is important to note that the dynamics of the moddd)  caution that the viscosity must be small as it is observed in
is characterized not only by the paramefteru} but also by  molecular dynamics simulations. These approximations sim-

the parameter fixed by the initial condition plify the analysis but do not qualitatively modify the charac-
ter of the solutions.
Uo:deL(X.to), (17) The Lyapunov functional does not depend explicitly on
the diffusion coefficientu. Therefore this coefficient does

not modify this phase diagram and the equilibrium states, but
rather it changes the transient behavior exhibited by the sys-
tem. For smallu, the transients are characterized by the pres-
@nce of waves, while for large the transients are character-
%zed by a diffusive behavior.
The region over the metastable curve is characterized by
the stability of the homogeneous states and a perturbation of
SF this state moves and spreads through the fluid. The dynamics
TU= doc ¥ Mo, (18)  of the normal form and the hydrodynamic modd) are
characterized in this region of parameters by dispersion and
where F=[dx{su?/2 +u*/4+(d,u)?/2}. The above dynamics diffusion of sound waves. This is directly obtained by doing
can be regarded as the tendency of the system to minimize linear analysis about the homogeneous state in(Eg).

which follows from global mass conservation. One might
think that the parametefrdxﬁtu(x,t)|to also characterizes the
dynamics, but the resultant Galilean invariance allows us t
set this parameter to zero. Hence the dynamics of this inst
bility is characterized by three parametéesu,ug}.

The van der Waals normal form can be written as

the Lyapunov functional [20].
s 4 ) ) The region of parameters between the metastable and the
H =f dx{su—+ U_+ (d,u) +%} (19) spinodal curves is characterized by the coexistence of the
2 4 2 2 |’ homogeneous state and the bubble statease separation

. . . , statg, both being stable. Figure 6 shows the spatiotemporal
v_vhsre A is an auxiliary fgnptlonal defined as\(x,t) diagram of the normal form, the hydrodynamic modg#),
=J*dyu(y)/2. Note thatH satisfies and the molecular dynamics simulation reported [8j.
dH ) When the homogeneous stable state initially is perturbed by
o u(du)*<0. (200 alocalized perturbation, this perturbation increases and satu-
rates at a given density. Later, as seen in Fig. 6, two pairs of
H is bounded and the minima of this Lyapunov functionalshock and rarefaction waves appear and move away, giving
are the minima off; hence the equilibrium states of H3.6) rise to the bubble. Due to the periodic boundary condition,
are the minima ofF (for a detailed study of the properties of the shock and rarefaction waves eventually collide, generat-
the functionalF, see Ref[19]). The phase diagram of is  ing damped oscillations of the bubble as shown in Fig. 6.
illustrated in Fig. 5, where the horizontal and vertical axesHence, in this region of parameters, one can observe either
are Up and ¢, respectively. The continuous line is the meta-the homogeneous state or the bubble solution, depending on
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(b)

©

©

FIG. 6. Spatiotemporal evolution of the density, with time run- ~ FIG. 7. Spatiotemporal evolution of the density, with time run-
ning up. The gray scale is proportional to density, with darker re-hing up. The gray scale is proportional to the density, with darker
gions representing denser regions in the system. The top graph cdegions representing denser regions in the system. The top graph
responds to a molecular dynamics simulation. The system size igorresponds to a molecular dynamic simulation. The system size is
5400 and the total simulation time ®&=3.5x 10°. An initial con- 5400 and the total simulation time T=1x 10°. The middle graph
dition (with u=1.4Xx 1072 that overcomes the nucleation barrier is is obtained from the one-dimensional hydrodynamic medeWwith
imposed. The minimundight gray) and maximum(dark gray den- ~ C10=0.38, C50=0.37, C3,=10, Py=1, 75=0.0036,A=4.5, andp
sities are u=-2.6x102 and u=2.9x1072 respectively. The =0.6, where the system size is 100 and the total simulation time is
middle graph is obtained from the one-dimensional hydrodynamicl =2000. The minimunglight gray) and maximun(dark gray den-
model (4) with C;5=0.38, C,,=0.37,C3,=10, Py=1, 7,=0.0036, sities arep=0.32 andp=0.81, respectively. The bottom graph is
N=4.5, andp=0.7, where the system size is 200 and the total simu-Obtained from the van der Waals normal fo(d6) with £=-0.5,
lation time is T=2000. The minimum(light gray) and maximum  v»=2, and initial densityu(x,t=0)=0.35, where the system size is
(dark gray densities ar@=0.12 andp=0.61, respectively. The bot- 200 and the total simulation time E=800. The minimum(light
tom graph is obtained from the model defined by Exf) with ¢  gray) and maximum(dark gray densities arai=-0.7 andu=0.7,
=-0.5, »=2, and initial densityu(x,t=0)=0.43, where the system respectively.
size is 200 and the total simulation timeTs800. The minimum
(light gray) an.d maximum(dark gray densities arei=—0.7 andu led by an interaction mediated by sound wavefs Fig. 7),
=0.7, respectively. that is, mass and momentum are exchanged between bubbles

the initial condition. It is important to note that the homoge- by waves. For large viscosities the transients do not exhibit

neous state and bubble state are divided by a nucleation b}aves and the transport of mass is through the interaction of
rier that corresponds to an unstable bubble state. This urih® bubbles, where the greatest bubbles grow and the small-

stable solution is nucleated by a saddle-node bifurcation witt§st shrink. A study of this coarsening process and wave dy-
the stable bubble in the metastable cuf28,24. namics is in progress. It is important to remark that this
Below the spinodal curve, the homogeneous state undeprocess is less efficient than the transport of mass due to
goes a spatial instability and the dynamical evolution is ini-waves; hence the coarsening process is slower.
tially characterized by the appearance of spatial modulations
Later, this spatial modulation becomes a gas of bubbles tha
merge together, giving rise to a coarsening process. The tran- The equilibrium solutions of Eq(16) with periodic
sient of this coarsening process is different in the case oboundary conditions obey the equation
large or small viscosityw). For small viscosities, the trans- U+ W= dl= =0 (21)
port of mass is through nonlinear wavehock and rarefac- X o=
tion). Closer bubbles merge into a bigger one giving rise to avhere A\ is an integration constant, that characterizes the
coalescence process. Subsequently, the bubble dynamicssimtionary solutions. Due to the symmety— —\y and u

|. STATIONARY SOLUTIONS OF THE NORMAL FORM
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——u, we will assume, without loss of generality, thef is
positive. The above Newton type of equation is integrated
into

V(u) + (du)2=E (22)

where the potential energy ¥(u)=2\qu+eu?-u?/2. The
potentialV(u) has three extrema ¥3<\2, A\;=2/(313). We
will denote themu,<up<u,, and they have the form

le] . (1 4le] T
Ug=—24/—sinl Zarctam/—5-1+—|, (23
37\3 27\2 6

U,=2 Msin(larcta M—1—Z> (24)
TN 37\ 3 27\2 6/

b
24/ i 5(1 tany | aid 1) (25) v
U.= —coy —arctam/—5-1]).
¢ 3 3 27}\3 FIG. 8. Spatiotemporal evolution of the density given by the

5 TS numerical solution of the full two-dimensional hydrodynamic equa-
.thef tha?'8|/3< Upc=<1, and _"|8|_/3< Up<0. Inthe case of iong Time is running up, and the gray scale is proportional to the
infinite size (L,>1) the phase diagram of the Newton type gensity, with darker regions representing denser regions in the sys-
equation has a bubble or homoclinic solution, which starts aem. In both graphs, the common parametersLare100 000,L,

U,, later moves tou,, and finally comes back to,. The =100, T,,=1, andp=0.11. In the top graph, the inelasticity coeffi-
analytic expression of this solution is cient isq=0.01 and an initial noise is added to produce unstable
2(3 2. ) bubbles. In the bottom graply=0.015, an initial nucleus grows
U(X = X) = Uy + Uo+ e , with the emission of two shock waves.
= 2Ug + V2(|&| - ud)cosh V(3u3 + £)x — Xo] _ _ _ _
(26) work. The linear spatial saturation at the onset of the bifur-

cation is related to the fact that the density gradients locally
In the case of Neumann boundary conditions, thatjg) increase the temperature, breaking the tendency to focus the
= do=0, the bubble solution is not the global minimum grains.

and it is replaced by the wall or kink solutions In the original two-dimensional problem, it is difficult to
make a complete analysis like the one performed here, but it
Ux=-Xo) = F vﬁmm( \/E'(x _ Xo)) 27) is important to verify if the conclusions of this work are valid
2 ' in two dimensions. Using the full hydrodynamic equations

. , . , for the density, momentum, and temperature fields, some
This solution represents physically a coexistence betweeg,nc|ysions can be extracted in two dimensions. It has been

two phases with only one interface between the phases. Thg,qn using numerical solutions of the hydrodynamic equa-

bubble solution has two interfaces; therefore it is energetitions that they present a region in parameter space where the
cally more costly. The dynamics in this case is similar to thatlongitudinal compressibility becomes negatif@0—-22. In

with periodic boundary conditions, and the main differenceg ¢ [20] the spinodal and coexistence curves were deduced
is that the bubble solution moves to the nearest boundary a’}%merically. The numerical character of the solutions, how-

finally gives rise to the wall or kink solution. ever, does not allow for a derivation of the normal form
associated with the instability, but the arguments presented in
VII. DISCUSSION OF HYDRODYNAMIC SOLUTIONS [3] indicate that the van der Waals normal form is the appro-
IN TWO DIMENSIONS AND CONCLUSIONS priate model. Also, to make a qualitative comparison of the

phenomena predicted by the van der Waals normal form to

We have studied a one-dimensional hydrodynamic modethe two-dimensional system, we have numerically solved the
that mimics a two-dimensional fluidized granular systemfull hydrodynamic equations in two dimensions for dense
with a vibrating wall and without gravity, which exhibits a granular fluids. We consider hydrodynamic equations for
phase separation. Close to the critical point, we have dedense quasielastic granular fluids, which are similar to the
duced the van der Waals normal fo(®). The choice of the equations for elastic compressible fluids, with the addition of
hydrodynamic model is based on its simplicity, which cap-an energy sink ternisee[14,15). The transport coefficients
tures most of the dynamics near the onset of the instability irare those of the quasielastic inelastic hard sphere model, and
two spatial dimensions, and also because its simplicity althe full set of equations and coefficients are giveflis,2Q.
lows for a detailed analytic study. The adiabatic eliminationThe equations are solved using a finite volume approach with
of the temperature allows us to understand the origin of the small time step in order to take into account both the hy-
effective viscosity, which is a combination of the hydrody- perbolic(sound and compressible effectsd paraboligvis-
namic viscosityn and the heat generated by the mechanicatosity and heat transfeiparts of the equations with high
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precision. The system under study has a vibrating wall, buthe viscosity seems to be larger than in molecular dynamics
for computational feasibility we model it using a thermal simulations, implying a faster attenuation of the shock
wall at temperaturél,. The other boundary conditions are waves. It is important to note that, although these phenomena
the same as those of the system under study. are found in the two-dimensional system, the full equations
In the hydrodynamic description, this implies that theare so intricate that it is difficult to predict them compared
temperature of the granular fluid is imposed toTygby the  with the normal form.
wall. This boundary condition fails to reproduce exactly the
molecular dynamics simulations, where a temperature jump
is observed in the Knudsen layg0]. The initial conditions ACKNOWLEDGMENTS
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