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Abstract. Fréedericksz transition can become subcritical in the presence of a feedback mechanism that
leads to the dependence of the local electric field onto the liquid crystal re-orientation angle. We have
characterized experimentally the first-order Fréedericksz transition in a Liquid Crystal Light Valve with
optical feedback. The bistability region is determined, together with the Fréedericksz transition point and
the Maxwell point. We show the propagation of fronts connecting the different metastable states and we
estimate the front velocity. Theoretically, we derive an amplitude equation, valid close to the Fréedericksz
transition point, which accounts for the subcritical character of the bifurcation.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 64.60.-i General studies of phase
transitions

1 Introduction

Liquid crystals under the influence of electric and mag-
netic fields exhibit a large variety of complex dynamical
behaviors, like electro-convection [1] and optical instabil-
ities [2]. Pattern formation, defect dynamics and spatio-
temporal instabilities have also been reported for a liquid
crystal layer subjected to optical feedback, either in Liq-
uid Crystal Light Valve (LCLV) experiments [3,4] or for
a tilted liquid crystal cell with a feedback mirror [5–7].

One of the most well-studied phenomena in the physics
of liquid crystals is the field-induced distortion of a
homeotropic or planar aligned liquid-crystal film, called
the Fréedericksz transition [8]. This transition is usually a
second order one [9,10]. The possibility of modifying the
Fréedericksz transition into a first-order one has attracted
much attention not only in view of potential applications
but also from the fundamental point of view of studying
metastability and propagation of interfaces [11]. In order
to render Fréedericksz transition first-order (subcritical bi-
furcation) several experiments have been considered dur-
ing the last ten years, either through the simultaneous ap-
plication of electric and magnetic field [12,13] or through
the action of an optical field [14]. For a detailed review on
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optical Fréedericksz transition see reference [2] and the ar-
ticles cited therein. Many of these experiments have shown
an hysteresis cycle, either for liquid crystals possessing a
very large optical anisotropy or for large intensities of the
applied fields. Another approach, introduced in [15], is to
realize a global feedback by means of a spatially integrated
light intensity. Also in this case the Fréedericksz transition
displays hysteresis, however spatial dynamics are lost as a
consequence of the spatial averaging.

By using a LCLV with optical feedback, the first-
order Fréedericksz transition may be studied by retaining
the features of a spatially extended dynamics [16]. The
nematic film is planar aligned and the feedback is pro-
vided by the LCLV photoconductor. Because of this feed-
back mechanism, the effective electric field applied locally
across the liquid crystal layer depends on the liquid crys-
tal director orientation, which, on its turn, depends on the
electric field. As shown in [16], the first-order Fréedericksz
transition is characterized by the presence of a large hys-
teresis region on the bifurcation diagram. Here we will fo-
cus our study on the propagation of interfaces (fronts) that
connect the unstable and metastable states corresponding
to the two branches of the bifurcation diagram.

The concept of front propagation, emerged in the field
of population dynamics [17,18], has gained growing inter-
est in biology [19], chemistry [20,21], physics [22–24] and
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mathematics [25,26]. Front propagation for a first-order
optical Fréedericksz transition has been theoretically stud-
ied in [11], where a model including hydrodynamic cou-
pling with the director reorientation and transverse effects
has been derived.

Domain segregation and coarsening have been re-
ported for a LCLV with optical feedback in the case of
a lateral shift in the feedback loop [27]. Chaotic domains
have been observed for the same system in the case of a
rotated and time-modulated feedback [28]. However, an
experimental characterization of the front propagation in
the vicinity of the first-order Fréedericksz transition has
not yet been performed. In general, the study of fronts
is not easily accessible from the the experimental side,
whereas the LCLV with optical feedback is a good system
for this kind of investigations.

The paper is organized as follows. In Section 2 we give
an introduction to the Fréedericksz transition and we dis-
cuss its first-order features, with particular attention to
the spatial dynamics. In Section 3 we present the exper-
imental set-up and the light-driven feedback. Section 4
contains the derivation of the amplitude equation and the
description of the measurement procedure used to deter-
mine the bifurcation diagrams. Section 5 is devoted to
front propagation and reports the measurements of the
front velocity. Section 6 are the conclusions.

2 The Fréedericksz transition

Fréedericksz transition is the elastic distortion of a ne-
matic liquid crystal film under the action of a magnetic
or electric field [8]. We will consider here the action of an
electric field, but similar considerations and results can be
obtained by substituting the electric field with a magnetic
field and the dielectric tensor with the magnetic suscep-
tibility. Fréedericksz transition is usually a second order
transition (supercritical bifurcation) [9,10]. The possibil-
ity of modifying the Fréedericksz transition into a first-
order one has been theoretically considered in [11], where
transverse effects have been taken into account and front
propagation has been predicted. Experimental evidence of
the subcritical Fréedericksz transition on a spatially ex-
tended system has been given in [16] for a LCLV with
optical feedback.

Liquid crystal materials are composed of anisotropic-
shaped organic molecules. This results in the anisotropy
of all their physical properties, especially optical proper-
ties [2]. In the nematic phase, the configuration of low-
est energy is reached when all rod-like molecules are, on
average, aligned along a single direction pointed out by
a director �n [9,10] and any description must include the
symmetry �n ↔ −�n. This direction can be experimen-
tally specified either by applying an external field, like
an electric or magnetic one, or by imposing some partic-
ular boundary conditions at the confining surfaces of the
sample, that is, the anchoring conditions. When two of
these constraints are competing, the long-range orienta-
tional order may be partially destroyed.

For a sufficiently high magnitude of the applied field,
the initial alignment due to the anchoring disappears in
the bulk, that is, the system exhibits the Fréedericksz tran-
sition [8–10]. The threshold of this transition depends on
the geometry of the set up, that is, on the orientation of
the anchoring direction with respect to the external field.
Besides, the chosen geometry determines the kind of uni-
form elastic distortion that appears in the medium at the
onset of the transition.

2.1 The spatial dynamics in the subcritical case

The main feature of a first order transition is the appear-
ance of hysteresis in the bifurcation diagram [29], that
is, the system exhibits bistability for a certain parameter
range. If the system is on one of these stable states and
one begins to decrease the bifurcation parameter, then
the state generically disappears (saddle-node bifurcation)
or becomes unstable (pitchfork bifurcation) giving rise to
the nucleation of other stationary stable states, which are
largely different from the initial one. On the contrary, in
second order transition the stable state that becomes un-
stable leads to the appearance of stationary stable states
similar to the unstable one, i.e., the transition is a contin-
uous one.

In a spatially extended system, a subcritical transition
gives rise to a transient behavior characterized by front
dynamics. For example, at the onset of bistability a large
enough spatially localized perturbation can give rise to the
appearance of the other stable state. As a consequence,
the system displays a moving interface, so-called front,
that connects the two stable states. A generic bifurcation
diagram with reflection symmetry, together with the as-
sociated directions of the front propagation, is shown in
Figure 1.

The front moves into the most energetically favor-
able state with a well defined velocity. In the case of one
or two dimensional variational system and small inter-
face curvature, the front velocity is proportional to the
energy difference between the two states. This velocity
can be modified by the curvature of the front, the so-
called Gibbs-Thomson effect [30]. By increasing the bifur-
cation parameter, the metastable state becomes energet-
ically equivalent to the other state, thus the front stops
propagating. In this case, the system is said to be at the
Maxwell point [31]. By further increase of the bifurcation
parameter, the front velocity is reversed, that is, the most
energetically favoured state invades the less favoured one.

Another interesting dynamical behavior appears when
the state becomes unstable through a pitchfork bifurca-
tion. Fluctuations of the initial state gives rise to the ap-
pearance of the other state. In this case there is a front
connecting a stable state with an unstable one. This type
of front is called Fisher-Kolmogorov-Petrosvky-Piskunov
(FKPP) [17,18]. At variance with the normal front, the
velocity of the FKPP front is not determined by the dif-
ference of energy between the two connected states. There
is instead an infinite set of possible velocities, each one de-
termined by the initial conditions [24,25]. At stationary
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Fig. 1. The generic features of a subcritical bifurcation dia-
gram and the associated directions of the front propagation.
µ0 and µM mark the beginning of the hysteresis region and
the Maxwell point, respectively. The front connecting the u0

to the u+,+ state propagates towards the less stable state, this
one being u0 or u+,+ depending on the value of the bifurcation
parameter µ with respect to µM . The front dynamics are the
same on the lower branch u+,−.

state, the front velocity eventually reaches its minimum
value, corresponding to the energy difference between the
two states.

3 The experiment

3.1 The liquid crystal light valve

A LCLV was firstly used for feedback experiments by
Akhmanov et al. [32]. The LCLV consists essentially in
a nematic liquid-crystal film sandwiched between a glass
plate and a photoconductive plate over which a dielectric
mirror is deposed. A schematic diagram of the LCLV is
shown in Figure 2. Coating of the two bounding plates in-
duces a planar anchoring of the liquid crystal film, i.e., the
nematic director �n is parallel to the confining walls. Trans-
parent electrodes covering the two plates, allow to apply
an electric field across the liquid-crystal layer. The photo-
conductor behaves like a variable resistance, decreasing for
increasing illumination. The equivalent electrical circuit is
displayed in the bottom of Figure 2.

When the voltage V0 is applied to the LCLV, liquid
crystal reorientation takes place. The average angle θ of
the director reorientation can be measured by sending a
reading light beam on the front side of the LCLV and by
measuring the phase shift ∆ϕ acquired by the light beam
for travelling back and forth through the liquid crystal
film. For doing this, a reference plane wave is used to make
interference with the beam reflected by the LCLV. The
phase shift is measured by recording onto a photodiode
the displacement of the interference fringes.

The results are shown in Figure 3a as a function of
the applied voltage V0. Then, by fixing a value of the ap-
plied voltage V0 = 8 Vrms, the same measurements are re-
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Fig. 2. The LCLV and its equivalent electrical circuit. The
photoconductor PC behaves like a variable resistance con-
trolled by the light intensity.
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Fig. 3. Response of the LCLV: the phase shift ∆ϕ experi-
enced by the reading light is measured (a) as a function of
the applied voltage V0 and (b) as a function of the writing
light intensity Iw. Solid lines are guide for the eyes. In (b) ∆ϕ
is the additional phase shift with respect to the one fixed by
V0 = 8 Vrms. The dashed line is a linear fit, used to evaluate
the response of the photoconductor.

peated in the presence of a writing beam on the back side
of the LCLV. The resulting additional phase shift ∆ϕadd

is plotted in Figure 3b as a function of the writing light
intensity Iw. From the response curves, it appears that
a large (greater than 2π) phase shift can be obtained in
the LCLV either by changes of the applied voltage V0 or
by changes of the write beam intensity Iw. This means
a large nonlinearity that can be controlled either electri-
cally or optically. If the reading beam is sent back onto
the write side of the LCLV, large feedback effects can be
obtained. Indeed, the effective voltage applied across the
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Fig. 4. Experimental set-up. Two confocal lenses, not dis-
played in the scheme, provide a 1:1 image-forming system from
the front side of the LCLV to its rear side. The optical feedback
loop is closed by a fiber bundle, which is aligned in order to
avoid any rotation or shift. Pin and Pfb are, respectively, the
input and feedback polarizer. Their orientation with respect to
the liquid crystal director �n is indicated in the left bottom of
the figure. In the right bottom it is shown the mask used for
the 1D experiments.

liquid crystal layer depends on the light intensity onto
the photoconductor, and this one, on its turn, depends
on the liquid crystal orientation, controlled by the voltage
applied.

3.2 The light driven feedback

The experimental set-up for the light driven feedback is
displayed in Figure 4. The optical loop is designed in such
a way that the light beam experiences no diffraction as
well as no geometrical transformation (the fiber bundle is
adjusted in such a way that there is no rotation or transla-
tion of the feedback image). The light intensity Iw reach-
ing the photoconductor is thus given by [3]

Iw = | sinψ1 sinψ2 + cosψ1 cosψ2e
−iβ cos2 θ|2Iin (1)

where β cos2 θ is the overall phase shift ∆ϕ experienced by
the light travelling forth and back through the liquid crys-
tal layer. β ≡ 2kd∆n, k = 2π/λ is the optical wave num-
ber, d is the thickness of the liquid crystal layer and ∆n
is the difference between the extraordinary (‖ to �n) and
ordinary (⊥ to �n) index of refraction of the liquid crys-
tal [9]. In our experiment, β � 60 since λ = 633 nm,
∆n = 0.2, d = 15 µm. Iin = 1 mW/cm2 is the input light
intensity, ψ1 and ψ2 are the angles formed by the input
and feedback light polarization with the liquid crystal di-
rector �n, respectively. In most of the experiments we fix
ψ1 = ψ2 = 45◦, in order to maximize the birefringence of
the LCLV.

The voltage V0 applied to the LCLV is sinusoidal of
frequency f = 20 kHz, much larger than the liquid crystal
response time and the typical times for liquid crystal
hydrodynamic instabilities [1]. This way, liquid
crystals are sensitive only to the r.m.s value of the

applied voltage and thereby perform only a static molec-
ular re-orientation. However, backflow effects are to be
taken into account when we deal with the spatial dynam-
ics, since the motion of the interface between different
orientations leads to a coupling with an hydrodynamic
flow developing close to the front [11].

The effective electric field Eeff applied to the liquid
crystal layer depends on the response of the photocon-
ductor to the writing light intensity Iw and to the volt-
age V0 applied to the liquid crystal layer. In the absence
of light on the photoconductor, Eeff (Iw=0) ≡ E(Iw=0) =
ΓE0 = ΓV0/d, where V0 is the total voltage applied to
the LCLV, d is the liquid crystal thickness and Γ < 1 is a
transfer factor that depends on the electrical characteris-
tics (impedances) of the photoconductor, dielectric mirror
and liquid crystal layers.

As long as the light intensity is sufficiently small, that
is, of the order of a few mW/cm2, the response of the
photoconductor can be approximated by a linear func-
tion. Under this approximation, the total effective electric
field applied to the liquid crystal film can be expressed as
Eeff = E(Iw=0) + αIw , where α is a phenomenological di-
mensional parameter that we can evaluate from the exper-
imental characteristics of the LCLV (see Fig. 3). Indeed,
by fitting the additional phase shift ∆ϕadd as a function of
the write intensity and by measuring Iw in mW/cm2, we
get ∆ϕadd � α̃Iw with α̃ = 4.0 cm2/mW. By fitting the
fixed phase shift imposed by the applied voltage V0, we get
∆ϕ � g̃V0 with g̃ = 1.9 V−1. The total phase shift, ∆ϕtot,
is thus given by ∆ϕtot = ∆ϕ +∆ϕadd � g̃[V0 + (α̃/g̃)Iw ]
where α̃/g̃ = 2.1 V cm2/mW. Normalizing to the thick-
ness d of the liquid crystal film, we have that a light
intensity Iw on the photoconductor is equivalent to an
additional applied electric field αIw, with α = α̃/g̃d =
0.70 kV cm/mW.

4 The subcritical bifurcation

4.1 Derivation of the amplitude equation

The competition between the elastic restoring force and
the electric torque for a nematic film is described by the
Frank free energy [9]. In the LCLV, as a consequence of
the optical feedback, the local electric field �E depends on
the director �n. Thus, the variation δF of the free energy,
resulting from of a variation δ�n of the director, takes the
form

δF =
1
2

∫
δ

[
K1

(
�∇ · �n

)2

+K2

(
�n ·
(
�∇ ∧ �n

))2
]
d3x

+
1
2

∫
δ

[
K3

(
�n ∧

(
�∇ ∧ �n

))2
]
d3x−

∫
�Eδ �D (�n) d3x,

(2)

where K1, K2 and K3 are the elastic constants describing
the elastic deformation of the nematic film for splay, twist
and bend, respectively, and the last integral accounts for
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the electromagnetic contribution. The displacement vec-
tor �D is related to the director by �D = (ε⊥/2) �E(�n) +
(εa/2)(�n · �E(�n))�n, with εa being the dielectric anisotropy
and ε⊥ the perpendicular dielectric permeability.

The variation of the displacement vector is

δ �D =
ε⊥
2
∂ �E(�n)
∂�n

δ�n+
εa
2

(
δ�n · �E(�n)

)
�n

+
εa
2

(
�n · �E(�n)

)
δ�n+

εa
2

(
�n · ∂

�E(�n)
∂�n

δ�n

)
�n

where ∂ �E/∂�n is a tensor of order two with (∂ �E/∂�n)i,j =
∂Ei/∂nj. The dynamical equation for the liquid crystal
director is given by

γ�n ∧ ∂t�n = −�n ∧ δF
δ�n

, �n · �n = 1

where γ is the rotational viscosity of the nematic film.
For the sake of simplicity, we assumeK1 = K2 = K3 =

K. Thus, the dynamical equation reads

γ∂t�n = K
[∇2�n− �n

(
�n · ∇2�n

)]
+ εa

(
�n · �E

)

×
[
�E − �n

(
�n · �E

)]
+
ε⊥
4
∂ �E2

∂�n
− ε⊥

4

[
�n · ∂

�E2

∂�n

]
�n

+
εa
2

(
�n · �E

)[∂ �E
∂�n

· �n−
(
�n ·
(
∂ �E

∂�n
· �n
))

�n

]
,

(3)

where (∂ �E/∂�n) · �n = nx
�∇Ex + ny

�∇Ey + nz
�∇Ez .

At rest (without any electric field applied), the liquid
crystal alignment is planar, that is, all the molecules are
parallel to the x-axis (x and y being in the plane of the
confining plate and z perpendicular to it), so that �n =
(1, 0, 0). In the presence of an electric field applied along z,
�E = (0, 0, Ez) with Ez = E(�n) = E(Iw=0) + αIw(�n), and
for εa > 0, the director reorients in the (x−z)-plane. As
a consequence, the director becomes �n = (nx, 0, nz) with
n2

x + n2
z = 1.

After substituting the write intensity Iw , equation (1),
in the expression for the electric field, we obtain

E(�n) = E(Iw=0) + αIw(�n)

= E(Iw=0) + αIin
[
A+B cos(β cos2 θ)

]
(4)

where

A =
1
4
[cos 2(ψ1 − ψ2) + cos 2(ψ1 + ψ2) + 2],

B =
1
4
[cos 2(ψ1 − ψ2) − cos 2(ψ1 + ψ2)].

Close to the onset of the Fréedericksz transition, the di-
rector reorientation can be expressed as a Fourier series

nz(x, y, z, t) =
∑

n un(x, y, t) sin(nπz/d). For a small re-
orientation angle, the director reorientation along the z-
direction, nz, describes quite well the orientation angle
of the liquid crystal molecules. By means of the stan-
dard bifurcation theory [24], it is possible to derive an
amplitude equation for the first unstable Fourier mode,
nz = u(x, y) sin(πz/d) and nx = 1− u2 sin2(πz/d)/2. The
amplitude equation reads

∂tu = c1u+ c3u
3 + c5u

5 +
K

γ
∇2

⊥u (5)

where the development has been extended up to the fifth
order since the third order coefficient c3 can become pos-
itive depending on the parameters of the system.

The amplitude equation, equation (5), describes qual-
itatively the subcritical bifurcation close to the transition
point. The coefficients c1, c3 and c5 are functions of the
physical parameters of the experiments, that is, c1, c3
and c5 are functions of β, ε⊥, εa, E0, Iin, ψ1, ψ2. The
three coefficients may change sign depending on the pa-
rameters set in the experiment, and in particular the sign
of c3 depends on the polarization angles ψ1 and ψ2 [16].
Note that A and B are periodic in ψ1 and ψ2, so that
changing the polarizer angles modulates the response of
the LCLV. When c3 is negative and of order one, equa-
tion (5) describes a second order Fréedericksz transition.
This transition becomes of a first order one when c1 and c3
are positive (and small) with c5 negative. The complete
expression of the coefficients is reported in the appendix.

4.2 Measurement of the bifurcation diagram

In order to observe the FT and to construct the experi-
mental bifurcation diagram, the intensity Iw reaching the
photoconductor is measured by extracting a small portion
of the feedback light and by sending it onto a photodiode.

When the applied voltage V0 is below the threshold for
molecular reorientation, Iw has a value fixed by β. When
reorientation occurs, we expect this value to change ac-
cording to expression given in equation (1). We verify the
validity of this prediction by measuring Iw in the absence
of feedback, that is, by blocking the entrance of the fiber
bundle with a black screen. The Fréedericksz transition
takes place at V0 � 3.2Vrms.

When we remove the blocking screen, Iw changes ac-
cording to the liquid crystal reorientation. Variations of
Iw induce, on their turn, variations of the effective volt-
age applied across the liquid crystal film and hence a fur-
ther reorientation. Once feedback is established between
the applied voltage and the liquid crystal director, the FT
becomes a first-order transition. A typical bifurcation di-
agram, recorded for ψ1 = ψ2 = 45◦, is shown in Figure 5.
The transition from the non oriented state to the oriented
one is characterized by a large hysteresis region.
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Fig. 5. Iw as a function of the applied voltage V0: open circles
are dark states with writing light off; stars are white states with
writing light off; cross are white states with writing light on.
The white state shrinks to zero or expands to infinity depend-
ing on the initial location of the perturbation. Beyond (and
close to) the Maxwell point it exists a critical droplet radius
for which the front velocity is zero.

4.3 Experimental results and qualitative comparison
with the model

In Figure 5, Iw is plotted as a function of V0 and in the
presence of feedback. The transition point is character-
ized by an abrupt change in the intensity, which reaches
its maximum value. Note that Iw is measured by a small
area photodiode, i.e., it is a local measurement taken at
the center of the feedback beam. By looking at the entire
image of the beam with a CCD camera, we see that the
transition point is characterized by a white spot develop-
ing over a dark background. Three representative images
of the feedback field are displayed in Figure 5, showing
the direction of the front propagation in dependence on
the mutual stability of the white and the dark states. The
dashed line marks the Maxwell point. Below this point the
white state is less stable than the dark one and the white
spot, once created by the writing light, contracts to zero.

Above the Fréedericksz transition point, the white spot
nucleates spontaneously and the front expands until the
white state covers all the background. In between, the
front expands or retracts depending on the size of the
perturbation. By increasing V0 beyond the Fréedericksz
transition point, the LCLV birefringence changes and the
white state becomes grey until the dark value is reached
again. Successive transitions to the white state are present
for larger values of V0.

By decreasing the voltage, we observe a hysteresis cy-
cle. In order to determine the size of the bistable region,
we inject an additional light spot (low power He–Ne laser)
into the feedback loop. This acts as a small perturbation,
triggering the transition from the dark state to the white
one. The white state persists when we block the additional
writing light, while it switches to the dark state if we per-
turb the feedback. In Figure 5, the arrows delimit the re-
gion over which this writing-erasing procedure is robust.

Fig. 6. Experimental bifurcation diagrams recorded for three
different values of the polarizer angle: (a) ψ1 = ψ2 = 45◦,
(b) ψ1 = 45◦ and ψ2 = 38◦, (c) ψ1 = 45◦ and ψ2 = 18◦.
Arrows mark the limits of the hysteresis region, dashed lines
indicate the Maxwell point and thin lines are guides for the
eyes. In (c) the bifurcation has become a second-order one.

The three crucial points, i.e., the beginning of the bista-
bility, B, the Maxwell point, µM , and the Fréedericksz
transition point, FT , are also identified by the divergence
of the response times, as it was shown in [16].

In Figure 6 three experimental bifurcation diagrams
are shown for different values of the polarizer angles ψ2,
while ψ1 is fixed to 45◦. The character of the bifurcation
changes from a subcritical one (Fig. 6a) to a supercritical
one (Fig. 6c), through a decreasing width of the hysteresis
region (Fig. 6b). Note in Figure 6a the existence of a suc-
cessive bifurcation after the Fréedericksz transition one,
taking place at V0 = 3.90Vrms.

As it can be seen from the expression of the coeffi-
cients of the amplitude equation, equation (5), a change
of ψ1 and ψ2 leads to a sign reversal of c3 and c5. We have
substituted the experimental values of ψ1 and ψ2 in the
expression for the coefficients and we have verified that the
amplitude equation gives bifurcation diagrams which are
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Fig. 7. Coefficients c1 (dotted line), c3 (continuous line) and c5
(dashed line) as a function of the polarizer angle ψ2 (radians).
The system is close at the onset of the bifurcation, that is, c1
is close to zero, and ψ1 = π/4.
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Fig. 8. Phase diagram as a function of the input intensity Iin

and of the polarizer angle ψ2 (radians). Solid line corresponds
to c3 = 0, marking the border between the subcritical and the
supercritical case.

in a good qualitative agreement with the measured ones.
In particular, it is possible to relate the character of the ex-
perimental bifurcations with the value of the coefficients,
as we show in Figure 7, where c3 and c5 are reported as
a function of ψ2 and for a fixed value of ψ1 = 45◦. The
first coefficient c1 is set close to zero in order to keep the
system close to the transition point.

The other parameters are fixed at the experimental
values. As we can see on the plot, c3 becomes positive for
small values of ψ2, whereas c5 is already negative, thus
assuring the saturation of the amplitude.

In Figure 8 it is shown a phase diagram in the plane
of the input light intensity Iin and of the polarizer an-
gle ψ2. The applied electric field E0 is computed in or-
der to set the system at the bifurcation point, that is,
at c1 = 0. Then, we look at the sign of c3 to deter-
mine whether the bifurcation is subcritical or supercrit-
ical. The line marks the transition between the two cases,
corresponding to c3 = 0. The phase diagram characterizes
entirely the dependence of c3 from the physical parame-
ters that are readily accessible from the experimental side.
Changing the value of c3 leads to tuning the character
of the Fréedericksz transition, from a largely subcritical
one to a small subcriticality or even to supercriticality. In

other words, an experimental procedure has been identi-
fied which allows to move the system along the tricritical
point of the associated phase diagram. It is important to
remark that in the general case of nascent bistability the
bifurcation is associated to a cusp catastrophe in the space
of parameters. However, this picture can change when the
system presents a symmetry, like the reflection symmetry,
as it occurs for the Fréedericksz transition (the reoriented
state u is equivalent to the −u state). In this case the
catastrophe becomes smooth, like it is shown in Figure 8,
at variance with the cusp singularity.

5 Front propagation

5.1 Features of the first-order model

In order to describe the dynamics associated to the am-
plitude equation, equation (5), we introduce the scaling

u = U0u
′, t = T0t

′, and r = R0r
′.

Omitting the primes, the amplitude equation reads

∂tu = µu+ u3 − u5 + ∇2
⊥u (6)

where U0 = (c3/c5)
1/2, T0 = c5/c

2
3, R0 = K

(
c5/c

2
3

)
and

µ = c1c5/c
2
3.

Therefore, the bifurcation is characterized by only one
parameter, the bifurcation parameter µ. In Figure 1 it is
shown the bifurcation diagram of the above equation. For
negative µ and large enough amplitude (µ < −0.25), the
system has only one stable state u (x, t) = u0 = 0. This
state corresponds to a planar unperturbed alignment of
the liquid crystal film. When the bifurcation parameter
is increased, this solution become unstable for positive µ.
The transition is a subcritical pitchfork bifurcation. In our
case it corresponds to a first-order Fréedericksz transition.
As a consequence of this transition, for −1/4 ≤ µ ≤ 0
the previous model exhibits bistability and the stationary
solutions are given by

u0 = 0,

u+,± = ±
√

1 +
√

1 + 4µ
2

,

u−,± = ±
√

1 −√
1 + 4µ

2
.

The states u0 and u+,± are stable whereas and u−,± are
unstable. We note that equation (6) is a variational one
and is characterized by the potential

V (u) = −µu
2

2
− u4

4
+
u6

6
.

For µ = µM = −3/16, that is, at the Maxwell point, the
system satisfies V (u0) = V (u+,±) [29].

Once these three critical points (beginning of the bista-
bility B, Maxwell point µM and FT transition point)
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are determined on the bifurcation diagram, the front dy-
namics is entirely characterized. For −1/4 ≤ µ ≤ 0,
the system has seven main fronts between {u0;u+,±},
{u+,±;u+,∓}, {u0;u−,∓}, and {u+,±;u−,±}, respectively.
For −1/4 < µ < µM , the fronts {u0;u+,±} propagate to-
wards u+,±, respectively. Correspondingly, if the planar
state is perturbed enough, the system relaxes quickly to
different domains between the stable states, and later on
the less favorable domains disappear. For µM < µ < 0,
the direction of front propagation is reversed. At the bi-
furcation point, µ = 0, the fronts connect an unstable and
a stable state, so that they belong to the class of FKPP
fronts.

5.2 1D experiments: measurement of the front velocity

In order to minimize the influence of the 2D curvature
onto the front velocity, we have performed quasi-1D ex-
periments. A ring-shaped mask is introduced in the op-
tical set-up, in contact to the entrance side of the fiber
bundle.

The ring shape of the mask constraints the system
to be quasi-1D and to satisfy periodic boundary condi-
tions [33]. The choice of the ring is for the sake of simplic-
ity, but any closed and smooth domain leads to similar
results for the front velocity. The inner diameter D of the
ring was chosen in between 5 and 10 mm whereas the
ring thickness l was in between 0.5 and 1 mm, so that
the aspect ratio D/l is quite large and the system can be
considered as 1D. The large curvature of the ring mask is
considered not to affect the front propagation that devel-
ops in the transverse direction. Moreover, the ring thick-
ness is considered large enough not to introduce relevant
boundary effects.

The velocity of the front propagating between the two
differently oriented states has been measured by means
of a computer controlled synthesizer. The control pa-
rameter V0 is scanned along the hysteresis region and a
standard movie of the front propagation along the ring
is recorded at the same time. Instantaneous snapshots
recorded for V0 = 3.05Vrms are shown in Figure 9.

Above the Maxwell point, V0 is switched on from zero
and the front nucleates over any inhomogeneities present
in the LCLV. To see the front propagation below the
Maxwell point, the initial condition for V0 is chosen in
the region of well developed reorientation and then V0 is
switched to a lower value, below Maxwell point. In this
case, the front velocity is reversed and the white state
contracts to zero. Instantaneous snapshots recorded for
V0 = 2.84Vrms are shown in Figure 10.

Either below or above the Maxwell point, the front
velocity is measured by unfolding the rings over a line
and by constructing the corresponding spatio-temporal di-
agrams, as shown in Figure 11. The front velocity can be
evaluated by measuring the ratio between the horizon-
tal (space — x) and vertical (time — t) displacements.
Note that LCLV inhomogeneities introduce a pinning of
the front in particular spatial locations, so that the front

1 4

8 18

24 54

Fig. 9. Snapshots of the front propagation, recorded at V0 =
3.05Vrms, above the Maxwell point. The successive instant
times (in seconds) are indicated in the white labels.

0 1

4 8

12 24

Fig. 10. Snapshots of the front propagation, recorded at
V0 = 2.84Vrms, below the Maxwell point. The successive in-
stant times (in seconds) are indicated in the white labels.

stops or largely slow down at these places. When measur-
ing the front velocity, we have considered only the slopes
of the first linear portions on the spatio-temporal plots.
Pinning of the front over LCLV inhomogeneities is also
responsible for the stripe patterning which appears on the
spatio-temporal plots.
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Fig. 11. Spatiotemporal plot showing the propagation of the
front at (a) V0 = 3.05Vrms, above the Maxwell point, and
(b) V0 = 2.84Vrms, below the Maxwell point.

2.7 2.8 2.9 3.0 3.1 3.2
-1.5

-1.0

-0.5

0

0.5

1.0

1.5

2.0 v  (mm/sec)f

V (V     )0 rms

Fig. 12. Front velocity as a function of the bifurcation param-
eter V0. Solid lines are guides for the eyes. Dashed lines mark
the three critical points: B, µM , FT.

The resulting front velocities are plotted in Figure 12
as a function of the applied voltage V0. On this figure,
it is easy to identify the Maxwell point, where the front
velocity goes to zero, and the FT point, beyond which
the fronts become of a FKPP type. The regime of FKPP
fronts is characterized by a transient propagation with a
quite high velocity, which then relaxes to the minimal one.
In Figure 12 the transient and the steady-state velocities
correspond to the upper and lower branch, respectively.
A spatio-temporal diagram for a FKPP front is shown in
Figure 13, where it is possible to distinguish the nonlin-
ear transient characterizing the early times of the front
propagation.

6 Conclusions and discussions

We have studied the first-order Fréedericksz transition in
a LCLV with optical feedback and we have developed a
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Fig. 13. Spatiotemporal plot showing the propagation of a
FKPP front (V0 = 3.23Vrms).

model which is in good qualitative agreement with the
experimental observations. In particular, we have investi-
gated the spatial dynamics related to front propagation
and we have measured the velocity of the fronts in the
case of quasi-1D experiments.

The theoretical model provides all the main qualitative
features of the front dynamics. For µM ≤ µ ≤ 0, the model
predicts fronts of the {u0;u+,±} type which propagate to-
wards the planar state u0. For µ > 0, the system presents
FKPP fronts between the states {u0;u+,±}. These two
kind of fronts have been studied in the experiment. How-
ever, a quantitative comparison with the measured values
of front velocities would requires a more complete analy-
sis, taking into account the backflow effects arising at the
interfaces between differently oriented domains. We ex-
pect these effects to introduce an effective viscosity, that
would renormalized the front velocity, as it was shown for
an optical Fréedericksz transition [11]. Work is in progress
in order to include backflow effects in our model.

Finally, note that spatial inhomogeneities and other
noise sources can influence the stability of the two bi-
furcated states, so that the experimentally determined
Maxwell point could indeed be slightly shifted from its
real position. Another drawback of the experimental pro-
cedure is that it does not allow to distinguish between
the two symmetric liquid crystal reorientations θ and −θ.
Indeed, the measured quantity, i.e. the intensity Iw, is re-
lated to θ through the function cos2(θ). A quantity sen-
sitive to the sign of θ would instead lead to a bifurcation
diagram with two symmetric branches, as the one shown
in Figure 1. However, in the LCLV there is a small sym-
metry breaking related to the rubbing direction on the
surfaces, so that a preferential selection of one of the two
possible states is induced. Thus, the bifurcation is an im-
perfect one. From the experimental side, this is confirmed
by the absence of dark walls, that would instead appear
to separate domains of opposite reorientation.

The Simulation Software developed at INLN has been used for
the study of the normal form equation, equation (5). M.G.C.
thanks the support of Programa de inserción de cient́ıficos
Chilenos of Fundación Andes, FONDAP grant 11980002 and
FONDECYT project 1020782. A.P. acknowledges support
from CNRS. This work has been supported by the ACI Je-
unes of the French Ministry of Research (2218 CDR2).
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Appendix

The complete expression of the coefficients in equation (5)
is as follows. For sake of simplicity, we rename

E(Iw=0) ≡ Ẽ0

and we normalize all the coefficients by the rotational vis-
cosity γ and the dielectric anisotropy εa

γ

εa
c1 = −π

2

d2

K

εa
+ Ẽ2

0

+ 2AαIinẼ0 +A2(αIin)2

+BαIin

(
Ẽ0 + AαIin

)(
2 cosβ +

ε⊥
εa

sinβ
)

+
1
2
B2 (αIin)2

[
(1 + cos 2β) +

ε⊥
εa
β sin 2β

]

3γ
εa
c3 =

π2

d2

K

εa
− 2Ẽ2

0

− 4AαIinẼ0 − 2A2(αIin)2

+BαIin

(
Ẽ0 + AαIin

) [3
2
(
16 + π2

)
β sinβ

−4π2 cosβ − 3
2
π2 ε⊥
εa

(
β sinβ +

8
π2
β2 cosβ

)]

−B2 (αIin)2
[
−2π2 cos2 β +

3
4
(
16 + π2

)
β sin 2β

+
ε⊥
εa

(
3
4
π2β sin 2β + 12 cos 2β

)]

γ

εa
c5 =

2
15
π2

d2

K

εa

−BαIin(Ẽ0 +AαIin)
[
(16 + 2π2)β2 cosβ

+
(

1
3

(
16 +

3
8
π2

)
β sinβ

+
ε⊥
εa

(32β2 sinβ − π2 cosβ)
]

−B2(αIin)2
[
16 + 2π2

)
β2 cos 2β

+
1
6

(
16 +

3
8
π2

)
β sin 2β

+
ε⊥
εa

(
16β2 sin 2β − 2π2β2 cos 2β

)]
. (A.1)

The first terms (first lines, r.h.s.) are the usual expressions,
when there is no feedback correction. In particular, by
setting c1 = 0 we recover the threshold for the Fréedericksz
transition:

Ẽ0F =
π

d

√
K

εa
.

When the feedback is added, there are extra terms pro-
portional to the input light intensity Iin. More precisely,
αIin is the additional electric field applied to liquid crystal
film in the presence of light on the photoconductor. The
geometric factors, due to the specific choice of the polar-
ization angles, are included in the A and B coefficients
whereas the terms in β describe the phase shift experi-
enced by the light which has passed through the liquid
crystal film.

In the presence of the light feedback, and depending on
the specific values of A and B (i.e. on the choice of the po-
larization angles ψ1 and ψ2), c3 can change sign at the bi-
furcation point, thus leading to a subcritical Fréedericksz
transition. However, when c3 becomes positive c5 remains
negative, so that the saturation of the amplitude is as-
sured.
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