
Spontaneous motion of localized structures induced by parity symmetry
breaking transition

A. J. Alvarez-Socorro,1 M. G. Clerc,1 and M. Tlidi2
1Departamento de F�ısica and Millennium Institute for Research in Optics, FCFM, Universidad de Chile,
Casilla 487-3, Santiago, Chile
2D�epartement de Physique, Universit�e Libre de Bruxelles (U.L.B.), CP 231, Campus Plaine, Bruxelles 1050,
Belgium

(Received 15 December 2017; accepted 7 May 2018; published online 29 May 2018)

We consider a paradigmatic nonvariational scalar Swift-Hohenberg equation that describes short

wavenumber or large wavelength pattern forming systems. This work unveils evidence of the tran-

sition from stable stationary to moving localized structures in one spatial dimension as a result of a

parity breaking instability. This behavior is attributed to the nonvariational character of the model.

We show that the nature of this transition is supercritical. We characterize analytically and numeri-

cally this bifurcation scenario from which emerges asymmetric moving localized structures. A gen-

eralization for two-dimensional settings is discussed. Published by AIP Publishing.
https://doi.org/10.1063/1.5019734

The formation of localized structures (LSs) often called

cavity solitons or dissipative solitons is a universal feature

of the self-organized non-equilibrium systems and is of

common occurrence in many fields of nonlinear science

ranging from biology, chemistry, to physics. The impor-

tant issue of our analysis is to reveal the transition from a

stationary to moving localized structures that may occur

in practical systems. We show that an internal parity

symmetry breaking bifurcation allows localized struc-

tures to move in an arbitrary direction. We illustrate this

bifurcation scenario in the paradigmatic nonvariational

Swift-Hohenberg equation that has been derived for

many far from equilibrium systems. These results are

obtained in the particular limit of nascent bistability and

large wavelength or small wavenumber pattern forming

regime. Therefore, the present analysis could be applied

to more realistic models. Understanding the dynamics of

localized structures may allow for the manipulation and

the control of light in advanced optical devices.

I. INTRODUCTION

Localized structures (LS’s) have been theoretically pre-

dicted and experimentally observed in many fields of nonlin-

ear science, such as laser physics, hydrodynamics, fluidized

granular matter, gas discharge system, and biology.1–10

These solutions correspond to a portion of the pattern sur-

rounded by regions in the homogeneous steady state.

However, localized structures are not necessarily stationary.

They can move or exhibit a self-pulsation as a result of exter-
nal symmetry breaking instability induced by a phase gradi-

ent,11 off-axis feedback,12 resonator detuning,13 and space-

delayed feedback.14 This motion has also been reported

using a selective15,16 or a regular time-delay feedbacks.17

We identify an internal symmetry breaking instability

that causes a spontaneous transition from stationary to mov-

ing localized structures in nonvariational systems. In

contrast, variational systems, i.e., dynamical systems character-

ized by a functional, an internal symmetry breaking instability

causes the emergence of motionless asymmetric localized

states.19,20 To investigate this nonvariational transition, we

consider a generic nonvariational scalar Swift-Hohenberg

equation. This is a well-known paradigm in the study of spatial

periodic and localized patterns. It has been derived for that pur-

pose in liquid crystal light valves with optical feedback,21,22 in

vertical cavity surface emitting lasers,23 and in other fields of

nonlinear science.24 Generically, it applies to systems that

undergo a Turing-Prigogine instability, close to a second-order

critical point marking the onset of a hysteresis loop. This equa-

tion reads

@tu ¼ gþ lu� u3 � �r2u�r4uþ 2bur2uþ cðruÞ2:
(1)

The real order parameter u ¼ uðx; y; tÞ is an excess field vari-

able measuring the deviation from criticality. Depending on

the context in which Eq. (1) is derived, the physical meaning

of the field variable u can be the electric field, biomass,

molecular average orientation, or chemical concentration.

The control parameter g measures the input field amplitude,

the aridity parameter, or the chemical concentration. The

parameter l is the cooperativity, and � is the diffusion coeffi-

cient. The Laplace operator r2 � @xx þ @yy acts on the plane

(x, y). The parameters b and c measure the strength of non-

variational effects. The terms proportional to c and b, respec-

tively, account for the nonlinear advection and nonlinear

diffusion, which in optical systems can be generated by the

free propagation of feedback light.21,22

For b¼ c, Eq. (1) is variational,24 i.e., the model reads

@tu ¼ �dFðuÞ=du; with F(u) being the free energy or the

Lyapunov functional. In this case, any perturbation compati-

ble with boundary conditions evolves toward either a homo-

geneous or inhomogeneous (periodic or localized) stationary

states corresponding to a local or global minimum of F(u).
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Therefore, complex dynamics such as time oscillations,

chaos, and spatiotemporal chaos are not allowed in the limit

b¼ c. In particular, in this regime, stationary localized struc-

tures and localized patterns have been predicted.25 An exam-

ple of a stationary LS in one-dimension is shown in the left

panel of Fig. 1. The obtained localized structure has a maxi-

mum value of field u(x, t) located at the position x0. The sta-

tionary LS has been studied for Eq. (1) in one dimensional

(1D) spatial coordinate, as well their snaking bifurcation dia-

gram.26,27 When b 6¼ c, the model equation losses its varia-

tional structure and allows for the mobility of unstable

asymmetric localized structures, rung states, that connect the

symmetric states.26 Indeed, the system exhibits a drift insta-

bility leading to the motion of localized structures in an arbi-

trary direction. However, these states are unstable states for

small nonvariational coefficients.

In this paper, we characterize the transition from stable

stationary to moving localized structures in non-variational

real Swift-Hohenberg equation. Figure 1 illustrates stable

moving localized structures. We show that there exists a

threshold over which a single LS starts to move in an arbi-

trary direction since the system is isotropic in both spatial

directions. We compute analytically and numerically the

bifurcation diagram associated with this transition. In one

dimensional setting, the transition is always supercritical

within the range of the parameters that we explore. The

threshold and the speed of LS is evaluated both numerically

and analytically. In two-dimensional settings, numerical sim-

ulations of the governing equation indicate that the nature of

the transition towards the formation of moving localized

bounded states is not a supercritical bifurcation. It is worth

to mention another type of internal mechanism that occurs in

regime devoid of patterns and may lead to a similar phenom-

enon for fronts propagation through a non-variational Ising

Bloch transition.19,28–30 The Ising-Bloch transition has been

first studied in the context of magnetic walls.19 Soon after, it

has been considered in a various out of equilibrium systems

such as driven liquid crystal,29 coupled oscillators,30 and

nonlinear optic cavity.31 More recently, it has been shown

that non-variational terms can induce propagation of fronts

in quasi-one-dimensional liquid crystals based devices.32

Experimental observation of a supercritical transition from

stationary to moving localized structures has been realized in

two-dimensional planar gas-discharge systems.33

The paper is organized as follows: the numerical charac-

terization of the bifurcation scenarios triggered by an internal

symmetry breaking instability leading to the formation of

asymmetric traveling localized structures is discussed in Sec.

II. At the end of this section, we perform numerical simula-

tions in one-dimensional system Eq. (1). In Sec. III, we per-

form an analytical analysis of the symmetry breaking

instability. Two-dimensional moving bounded localized

structures are analyzed, and their bifurcation diagram is

determined in Sec. IV. Finally, the conclusions are presented

in Sec. V.

II. NUMERICAL CHARACTERIZATION OF PARITY
BREAKING TRANSITION

We investigate the model Eq. (1) numerically in the

case where b 6¼ c in 1D with periodic boundary conditions.

The results are summarized in the bifurcation diagram of

Fig. 1. We fix all parameters and we vary the nonvariational

parameter c. When increasing the parameter c< c�, LS’s are

stationary. There exist a threshold c¼ c� at which transition

from stationary to moving LS’s takes place. This transition is

supercritical. For c> c�, stationary LS becomes unstable,

and the system undergoes a bifurcation towards the forma-

tion of moving localized structures. The direction in which

LS propagates depends on the initial condition used. Indeed,

there is no preferred direction since the system is isotropic.

The spatial profiles of the stationary and the moving local-

ized states are shown in Fig. 2. The shadow regions allow

emphasizing the symmetric (stationary) and asymmetric

(moving) solutions concerning the localized structure posi-

tion. We clearly see from this figure that stationary LS is

FIG. 1. The speed of localized structure v ¼ _x0 as a function of the parameter c. At the transition point, c � c� � 0:319. Dots indicate localized structures

speed obtained from numerical simulations of Eq. (1). Green curves are associated with the analytical results depicted in Sec. III and red curves are associated

with the fit of the numerical values given by: v ¼ _x0 ¼ 0:1467
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� 0:319
p

. Parameters are l¼ g¼�0.02, �¼ 1, and b¼�0.9. Left insets account for the pro-

file and the spatiotemporal evolution of a motionless localized structure. Right top (bottom) insets account for the profile and the spatiotemporal evolution of a

right (left) moving localized structure.
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symmetric concerning its maximum. This can be explained

by the fact that a spontaneous spatial parity breaking symme-

try accompanies the transition from stationary to moving

localized structures. In fact, if the parity with respect to its

position
Ð x0þL

x0�L uðx; tÞdx is positive (negative), it moves to the

right (left).

We have measured the speed of moving LS solutions of

Eq. (1) numerically, by varying both c and b parameters. The

results are summarized in Fig. 3. There are three different

dynamical regimes. When increasing both parameters b and

c, the stationary localized structures are stable in the range

delimited by the curve C1. These structures exhibit a sponta-

neous motion leading to the formation of moving LSs solu-

tions in the range of parameters delimited by the curves C1

and C2. By exploring the parameter space (b, c), we see

clearly from Fig. 3 that the bifurcation towards the formation

of moving LSs remains supercritical.

After the numerical characterization, we perform an

analytical analysis of the transition towards moving LS. For

this purpose, let us consider the linear dynamics around

stationary LS; ulsðx� x0Þ located at x¼ x0. The linear opera-

tor reads

Lu � l� 3u2
ls � �@xx � @xxxx þ 2buls@xx

� �
u

þ 2cð@xulsÞ@xuþ 2bð@xxulsÞu: (2)

Note that the operator L is not self-adjoint (L 6¼ L†). Due

to the lack of analytical solutions of LS for Eq. (1), we com-

pute numerically the spectrum and eigenvectors associated

with L; L2, and L†. The spectrum of L always has an eigen-

value at the origin of the complex plane (the Goldstone mode)

as shown in Fig. 4(a). The corresponding eigenfunction

denoted by jv0i � @zulsðx� x0Þ is depicted in Fig. 4(a-i).

When approaching the parity breaking transition threshold,

another mode collides with the Goldstone mode as shown in

Fig. 4(a). The corresponding eigenfunction of this mode is

depicted in Fig. 4(a-ii). Note, however, that the profiles of both

eigenfunctions are almost the same. At the threshold, these

eigenfunctions are identical. This degenerate bifurcation has

been reported in the Swift-Hohenberg equation with delayed

feedback.17,18 The spectrum of L2 operator is obtained by

using the Jordan matrix decomposition as shown in Fig. 4(b).

There are two eigenfunctions jv0i and jv1i ¼ uasðx� x0Þ,
which satisfy

Ljv1i ¼ jv0i;
L2jv1i ¼ 0:

(3)

The profiles of jv0i and jv1i are plotted in Figs. 4(b-i)

and 4(b-ii), respectively. From this figure, we can see that

for jv0i mode, the integral
Ð x0þL

x0�L jv0idx ¼ 0, while for jv1i
mode, the integral

Ð x0þL
x0�L jv1idx 6¼ 0. This indicate that the

profile of jv1i is asymmetric. This asymmetric mode has

been reported in Refs. 19, 20, 26, 30, and 33. The eigenval-

ues and the critical eigenfunctions associated with the adjoint

operator L† are depicted in Fig. 4(c).

Introducing the canonical inner product

hgjf i ¼
ð1
�1

f ðxÞgðxÞdx (4)

numerically, we have verified that critical modes are orthog-

onal hv0jv1i ¼ 0.

III. ANALYTICAL DESCRIPTION OF PARITY
SYMMETRY BREAKING TRANSITION

To provide an analytical understanding of the parity

symmetry breaking bifurcation, we focus our analysis on the

one-dimensional setting. To do that, we explore the space-

time dynamics in the vicinity of the critical point associated

with the transition from stationary to moving LS at c¼ c� by

defining a small parameter � which measures the distance

from that critical point as c ¼ c� þ �2c0. Our objective is to

determine a slow time and slow space amplitude equations.

We expand the variable u(x, t) as

uðx; tÞ ¼uls x� x0ð�tÞð Þ þ �A0ð�2tÞuasðx� x0ð�tÞÞ
þwðx; x0;A

0Þ; (5)

FIG. 2. Profile of localized structures obtained from numerical simulations

of Eq. (1). Parameters are l¼ g¼�0.02, �¼ 1, and b¼�0.9. (a) Stationary

and (b) moving localized structure.

FIG. 3. The speed v ¼ _x0 as a function of the nonvariational parameters c
and b obtained by numerical simulations of Eq. (1). Parameters are

l¼ g¼�0.02, and �¼ 1; for each curve, different fixed values of the

parameter b are considered, which are indicated in the upper part of the

respective curve. The two segmented curves (C1, C2) limit the region where

moving localized structures are observed. The line C1 marks the transition

from stationary to moving localized structures.
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where ulsðx� x0ð�tÞÞ is the stationary localized structure,

and x0 stands for the position of the localized structure. We

assume that this position evolves on the slow time scale �t.
The function uasðx� x0ð�tÞÞ � jv1i is the generalized eigen-

function corresponding to the asymmetric mode. The ampli-

tude A0 is assumed to evolve on a much slower tine scale �2t,
and wðx; x0;A

0Þ is a small nonlinear correction function that

follows the scaling w� �A0 � 1. By replacing the above

ansatz (5) in the corresponding one-dimensional model of

Eq. (1) and linearized in w, after straightforward calculations

we obtain

�Ljwi¼ � _x0jv0i��3 _A0 jv1iþ‘�A0jv1i
þc0 @zulsjv0iþ�2A02@zuas@zjv1iþ2�A0@zuasjv0i

� �
��3A03u2

asjv1i�3�2A02uasulsjv1iþc��2A02@zuas@zjv1i
þ2bð�A0Þ2uas@zzjv1i; (6)

where we have introduced the notation _x0 ¼ @tx0; _A0 ¼ @tA
0;

z � x� x0ðtÞ that corresponds to the coordinate in the

co-moving reference frame with speed _x0, and jwi
� wðx; x0;A

0; �Þ.
At order �, the solvability condition34 reads

FIG. 4. Spectrum of linear operators.

Real and imaginary parts of the eigen-

values associated with the linear opera-

tors (a) L, (b) L2, and (c) L†.

Parameters are l¼�0.02, �¼ 1.0,

b¼�0.9, and c¼ 0.318. Inset figures

are the real part of the eigenfunction

jv0i; jv1i; jw0i, and jw1i for the

Goldstone and the asymmetric mode

associated with the zero eigenvalue,

respectively.
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_x0 ¼ �A0: (7)

To determine the equation of the amplitude A0 of the asym-

metric mode, we apply on Eq. (6) the linear operator L and

we obtain

�L2jwi ¼ ��3 _A0Ljv1i þ c0L@zulsjv0i þ cð�A0Þ2L@zuas@zjv1i

þ 2Dc�A0L@zuasjv0i � ð�A0Þ3Lu2
asjv1i

þ c�ð�A0Þ2L@zuas@zjv1i þ 2bð�A0Þ2Luas@zzjv1i

� 3ð�A0Þ2Luasulsjv1i:

The application of the solvability condition at the next order

leads to

_A0 ¼ 2c0hw1jL@zuasjv0i
hw1jv0i

A0 � hw1jLu2
asjv1i

hw1jv0i
A03: (8)

To simplify further Eqs. (7) and (8), we propose the follow-

ing scaling and change of parameters:

A � hw1jLu2
asjv1i

hw1jv0i
A0; s � hw1jv0i

hw1jLu2
asjv1i

t;

r � 2c0

hw1jL@zuasjv0ihw1jLu2
asjv1i

hw1jv0i2
;

(9)

we get the dynamics for the critical modes

_AðsÞ ¼ rA� A3; (10)

_x0ðsÞ ¼ �A: (11)

The parameter r / ðc� c�Þ measures the distance from the

critical point associated with the parity symmetry breaking

transition. The stationary speed of amplitude Eqs. (10) and

(11) is v ¼ 6
ffiffiffi
r
p
/ ðc� c�Þ1=2

. This implies that the asym-

metric mode undergoes at the onset of the instability a drift-

pitchfork bifurcation,35,36 as result of parity breaking sym-

metry.19,20,26,30,33 This bifurcation scenario is in perfect

agreement with the results of direct numerical simulations of

Eq. (1) presented in Sec. II [see the bifurcation diagram of

Fig. 1]. Note that the interaction between symmetric station-

ary LSS has been investigated in the variational Swift-

Hohenberg equation by Aranson et al.36

IV. BOUNDED MOVING LOCALIZED STATES IN TWO
SPATIAL DIMENSIONS

Most of the experimental observations of localized

structures have been realized in two-dimensional systems,4,5

in which stationary localized structures are observed.

Experimentally, it has been reported a supercritical transition

from stationary to moving localized structures in a planar

gas-discharge system.33

An example of two-dimensional moving localized

states obtained by numerical simulations of Eq. (1) is

depicted in Fig. 5(a). In this figure, a time sequence of two-

dimensional moving bounded states obtained for periodic

boundary conditions is shown. The two spots are bounded

together in the course of the motion. The nonvariational

effects render this localized moving spots asymmetric.

There is no preferred direction for this motion since the sys-

tem is isotropic in the xy plane. We characterize this

motion by computing the speed ( _x0 ) as a function of the

nonvariational parameter c. The result is shown in Fig.

5(b). The existence domain of this moving structures occurs

in the range of c1< c< c2. For c< c1, the system undergoes

a well documented curvature instability that affects the cir-

cular shape of LS and in the course of time leads to a self-

replication phenomena.37 This behaviour is illustrated in

Fig. 6(a). However, for c> c2, bounded localized structures

become unstable and we observe in this regime transition to

homogeneous steady state as shown in Fig. 6(b).

FIG. 5. Moving bounded localized structures obtained from numerical simu-

lations of Eq. (1). (a) Temporal sequence of the moving bounded LSs in (x,

y) plane obtained at t1¼ 0, t2¼ 1500, t3¼ 3000, t4¼ 4500, and t5¼ 6000

time steps. Parameters are g¼�2, �¼�1, l¼�0.092, b¼�2.8, and

c¼ 3.2. (b) The speed of bounded moving LSs as a function of the parameter

c. Other parameters are the same as in (a). The red dots indicate localized

structures speed obtained from numerical simulations of Eq. (1) and the blue

curve shows an interpolation obtained from these dots.
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V. CONCLUSION

We have considered the paradigmatic real nonvaria-

tional Swift-Hohenberg equation with cubic nonlinearity.

We have investigated the transition from stable stationary to

moving localized structures. We have shown that the sponta-

neous motion of localized structures induced by parity sym-

metry transition and nonvariational effects is supercritical

and occurs in wide range of the system parameter values. In

one dimensional setting, the analytical and the numerical

bifurcation diagrams have been established. We have derived

a normal form equation to describe the amplitude and the

speed of moving localized structures. We have estimated the

threshold as well as the speed of moving asymmetric local-

ized structures. A similar scenario has been established for

cubic-quintic Swift-Hohenberg equation with only the non-

variational nonlinear advective term.38 In this paper, a drift

pitchfork bifurcation of localized states has been discussed

where the resulting traveling states are linearly stable.

However, in two-dimensional systems, we have shown

through numerical simulations that the transition towards

bounded moving localized state is rather subcritical. We

have shown that there exist a finite range of parameters

where bounded LS is stable. Out of this parameter range, the

2D bounded localized state self-replicates or exhibits transi-

tion towards a stationary homogeneous steady state.

Our results are valid in the double limits of a critical

point associated with nascent bistability and close to short

wavenumber or large wavelength pattern forming regime.

However, given the universality of model (1), we expect that

the transition considered here should be observed in various

far from equilibrium systems.
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