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Time-delayed feedback plays an important role in the dynamics of spatially extended systems. In

this contribution, we consider the generic Lugiato-Lefever model with delay feedback that

describes Kerr optical frequency comb in all fiber cavities. We show that the delay feedback

strongly impacts the spatiotemporal dynamical behavior resulting from modulational instability by

(i) reducing the threshold associated with modulational instability and by (ii) decreasing the critical

frequency at the onset of this instability. We show that for moderate input intensities it is possible

to generate drifting cavity solitons with an asymmetric radiation emitted from the soliton tails.

Finally, we characterize the formation of rogue waves induced by the delay feedback. Published by
AIP Publishing. https://doi.org/10.1063/1.5007868

The formation of temporal cavity solitons (CS) and their

relation to optical comb generation in a standard silica

fiber cavity and in a continuous-wave (CW) driven non-

linear optical microresonator has been recently estab-

lished both numerically and experimentally. Optical

frequency combs are sources with a spectrum consisting

of millions of equally spaced laser lines. This unique

property provides a link between the optical and the

radiofrequency band of the electromagnetic spectrum

and it has truly revolutionized a number of research dis-

ciplines, such as precision laser spectroscopy and fre-

quency metrology. In this paper, we show that delay

feedback can control the mobility of cavity solitons lead-

ing to optical frequency comb generation, as well as the

generation of rouge waves in driven cavities such as

whispering-gallery-mode microresonators. In absence of

delay feedback, it is usually hard to reach the rogue wave

regime with a continuous wave injection beam. However,

by using the time-delayed feedback we can reduce the

threshold associated with modulational instability, self-

pulsating cavity solitons and rogue waves generation.

I. INTRODUCTION

In 1987, Lugiato and Lefever (LL) derived a mean-field

model often called the Lugiato and Lefever equation (LLE)

that has been widely used to describe optical dissipative

structures in cavity nonlinear optics.1 Since then, this simple

and universal model has been derived from various optical

systems. The LLE constitutes a well-known paradigm for the

study of dissipative structures that can be either periodic or

localized in the transverse plane of the optical cavity. This

pioneering work established the link between the transverse

instability inherent in broad areas optical systems and

the classical Turing–Prigogine instability well-known in

reaction-diffusion chemical systems.2–4 The wavelength of

the spatially periodic pattern emerging from this instability

is intrinsic to the dynamics which is solely determined by the

dynamical parameters and not by the external effects or

physical geometrical boundaries. The LLE has been derived

for passive diffractive nonlinear cavities filled with liquid

crystal operating in a self-imaging configuration,5 left-

handed materials,6,7 and photonic coupled waveguides.8 It

has been also derived from dispersive systems such as a non-

linear fiber resonator9 and whispering-gallery-mode microre-

sonators leading to optical frequency comb generation.10–15

The modeling of broad area resonators where diffraction and

dispersion have comparative influence leads to the three-

dimensional LLE in Ref. 16–19. Theoretical and experimen-

tal studies have been carried out on spatial and/or temporal

confinement of light leading to the formation of cavity soli-

tons (CS’s). This is a well documented issue as can be seen

from recent overviews.20–29

Here, we investigate the effect of time-delayed feedback

control on the formation of temporal cavity solitons and

rogue waves in the Lugiato–Lefever equation. Time delayed

feedback describes how the state of the system at the current

moment of time is affected by its value at some time in the

past.30 As a matter of fact, this feedback impacts strongly the

space-time dynamics and affects both the modulational insta-

bility threshold and the period of the emerging train of pulses

from this instability. It is well known that delay-induced

motion of CSs has been predicted to manifest itself in the

form of short optical pulses propagating in a cavity31–33 and

a laser34,35 system. Recent studies on vertical cavity surface-

emitting lasers (VCSELs) subjected to injection and to delay

feedback36–38 have shown that the phase of the delayed feed-

back and carrier decay rate strongly impact the parameter

region where CSs become unstable and exhibit a spontane-

ous drift with a constant speed. These theoretical predictions
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remain to be confirmed experimentally. The stability of a

steady-state front subject to a time-delayed feedback control

has been examined in Ref. 39. Time-delayed feedback con-

trol has also been investigated in the reaction-diffusion con-

text.40–43 Stability of plane wave solitons in the complex

Ginzburg–Landau equation with delayed feedback has been

investigated in Ref. 44.

In another line of research it has been shown that in

small area optical cavities where the diffraction is neglected,

the time-delayed feedback can generate temporal rogue

waves.45 Rogue waves are rare optical giant pulses or

extreme events that occur in the supercontinuum generated

by a photonic crystal.46 Since this seminal work, optical

rogue waves have been intensively investigated.47–50 Rogue

waves have been generated in whispering gallery mode reso-

nators leading to frequency comb generation.14 More

recently, rogue waves have been predicted and experimen-

tally observed in a semiconductor microcavity laser with an

intracavity saturable absorber.51,52

In this paper, we analyze the formation of temporal cavity

solitons, self-pulsating cavity solitons, and rogue waves in an

all fiber cavity driven by a coherent injected beam with a

time-delayed feedback loop. We show that the modeling of

this simple device leads to the well known Lugiato–Lefever

model with time-delayed feedback. We, therefore, provide the

temporal analog of the spatial Kerr system cavity. We show

that the delay feedback can induce drift instability leading to

the motion of temporal cavity solitons with a constant speed.

In the absence of time-delayed feedback control, temporal

cavity solitons do not exhibit drift instability. We also show

that the dispersive (Cherenkov) radiation emitted by a drifting

cavity soliton is asymmetric. This is due to the broken reflec-

tion symmetry induced by the time-delayed feedback. Finally,

we show that rogue wave formation can occur for moderate

injected field intensities. This is quite important from a practi-

cal point of view as it facilitates the experimental observation

of temporal dissipative rogue waves in continuous-wave

driven nonlinear optical microresonators.

The paper is organized as follows, after an introduction,

we derive in Sec. II, the Lugiato–Lefever equation with an

additional term that accounts for the time delayed feedback.

In Sec. III, we perform a linear stability analysis. Drifting

cavity solitons and rogue wave generation by the delay feed-

back are discussed in Sec. IV. We conclude in Sec. V.

II. LUGIATO–LEFEVER MODEL WITH TIME-DELAYED
FEEDBACK

Let us consider a nonlinear cavity filled with a Kerr

medium and subjected to an external coherent beam. This cav-

ity can be a fiber resonator or whispering-gallery disk microre-

sonators and is schematically depicted in Fig. 1. It consists of

a cavity of radius r ¼ L=2p. The delayed feedback is intro-

duced by an external loop with a large radius rext ¼ Lext=2p,

as shown schematically in Fig. 1. The delay time s ¼ Lextnf=c
corresponds to the light travel-time in the external loop with c
being the speed of light and nf - the refractive index of the

fiber. A continuous wave of power E2
in is launched into the

cavity by means of a beam splitter, propagates inside the fiber,

and experiences dispersion and Kerr nonlinearity. In what fol-

lows, we assume that the dispersion in the external cavity is

compensated by periodic group velocity dispersion manage-

ment with zero average value. Indeed, we consider that a half

of the external cavity has a normal dispersion (b2 < 0) and

the other operates in the anomalous dispersion regime

(b2 > 0). Light propagation in the cavity is ruled by the

dimensionless nonlinear Schr€odinger equation

@E

@z
¼ ib

@2E

@n2
þ ijEj2E; (1)

where Eðz; nÞ is the slowly varying electric field envelope, z is

the longitudinal coordinate along the optical axis, n is the time

in a reference frame traveling at the group velocity of light in

the Kerr material, and b is the dispersion coefficient inside the

cavity which we assume to be positive, that is, corresponds to

an anomalous dispersion. To simplify further the modeling of

the system, we assume that the length of both loops is equal,

i.e., L ¼ Lext. In this case, the delay time is fixed and we vary

the strength of the delay feedback. At each round trip, the light

inside the fiber is coherently superimposed with the input

beam. This can be described by the boundary conditions that

are compatible with all fiber cavities

Epþ1ðz ¼ 0Þ ¼ TEin þ R exp ð�i/Þ
Epðz ¼ LÞ þ R0 exp ð�i/0ÞEpðz ¼ L; pÞ; (2)

where EpðzÞ is the electric field envelope during the pth pass

in the internal cavity. The parameters R and T (R0 and T0)
are, respectively, the reflection and transmission coefficients

of the cavity (external cavity) beam-splitter.

By averaging of the right-hand side of Eq. (1) over one

cavity length, we get

Epðz ¼ LÞ � Epðz ¼ 0Þ ¼ iLb
@2Epðz ¼ 0Þ

@n2

þ iLjEpðz ¼ 0Þj2Epðz ¼ 0Þ: (3)

The nonlinear Schr€odinger equation supplemented by the

cavity boundary conditions constitutes an infinite-dimensional

FIG. 1. Schematic representation of the setup of a ring nonlinear cavity with

an external feedback delayed loop. Ein is the amplitude of the injected field

and BS denotes the beam splitter.
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map. To simplify the theoretical analysis of the problem, it is

convenient to reduce this map to a single partial differential

equation. To do this, we restrict our analysis to high finesse

cavities, i.e., R� 1 (T � 1� R2=2). In this case, the tempo-

ral evolution of the field inside the cavity is slow with respect

to the round-trip time tr. We can thus consider that this evolu-

tion is continuous and we can replace the map index p by a

slow time scale t for the description of the field evolution at

the point z¼ 0. We therefore replace the round-trip number p
by the continuous variable t such as Epðt ¼ ptr; nÞ ¼ Eðt; nÞ.
We should then define the time derivative as

@E=@t ¼ ðEpþ1 � EpÞ=tr. Further approximations are needed,

in particular, we assume that both linear / and nonlinear cav-

ity phase shift LjEj2 are much smaller than unity.

Furthermore, we assume that the length of the cavity is much

shorter than the characteristic dispersion length of the fiber.

Under these approximations, and by replacing Epðz ¼ LÞ
obtained from Eq. (3) in the cavity boundary condition

expressed by Eq. (2), we get

tr
@Eðt;nÞ
@t

¼TEinþL ib
@2Eðt;nÞ
@n2

þ ijEðt;nÞj2Eðt;nÞ
 !

þ 1�T2

2
� i/

� �
Eðt;nÞ

þR0 expð�i/0ÞEðt�s;nÞ: (4)

The aim of this study is to analyze the impact of delay opti-

cal feedback on the spatiotemporal dynamics in the generic

Lugiato–Lefever (LL) model.1 We implement this optical

feedback in the LLE by considering a single round-trip delay

term.38 This approximation to model the time-delayed feed-

back has been introduced in an early report modeled by

Rosanov,53 Lang and Kobayashi.54 The LLE reads

@E

@t
¼ ib

@2E

@n2
�ð1þ ihÞEþ ijEj2EþEinþgei/Eðt�sÞ: (5)

Here, Eðt; nÞ is the normalized amplitude of the electric field

and h is the frequency detuning between the injected light

Ein and the cavity resonance. Ein is considered as being real

without loss of generality. The feedback is characterized by

the time-delayed s, feedback strength g, and phase /.

Homogeneous steady state (HSSs) solutions ES of Eq. (5)

and their linear stability are analyzed in Ref. 38. Examples

of the impact of the optical feedback on the shape of the

ISðEinÞ curve and its stability are shown in Fig. 2.

III. LINEAR STABILITY ANALYSIS

The homogeneous steady state solutions of Eq. (5)

satisfies

Iin ¼ Is 1� g cos /ð Þ2 þ Is � hþ g sin /ð Þ2
h i

; (6)

where Iin ¼ E2
in and Is ¼ jEsj2. The transmitted intensity as a

function of the input intensity Ein is monostable if

hc� < h < hcþ, where hc6 ¼ 6
ffiffiffi
3
p
þ g sin /7

ffiffiffi
3
p

cos /
� �

. If

0 < h < hc� or h > hcþ, then the system exhibits a second-

order critical point marking the onset of a hysteresis loop.

For the case of no feedback (g¼ 0), the HSS are monostable

(h <
ffiffiffi
3
p

) or bistable (h >
ffiffiffi
3
p

).1 The coordinates of the criti-

cal point associated with bistability are strongly affected by

the time-delayed feedback. The linear stability of the HSS

with respect to finite frequency perturbations of the form

exp ðrtþ ixnÞ indicates that the homogeneous steady state

can be destabilized by a modulational instability. Above the

threshold associated with that instability there exists a finite

band of Fourier modes x2
� < x2 < x2

þ, with

x2
6 ¼ �hþ 2Is þ g sin /6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2
s � ð1� g cos /Þ2

q
; (7)

which are linearly unstable and trigger the spontaneous evo-

lution of the intra-cavity field towards a train of pulses that

are stationary, spatially periodic, and occupy the whole space

available in the double loop cavity. The threshold Ic and the

critical frequency xc at the modulational instability are

obtained when x2
� ¼ x2

þ. The expressions are given by

Ic ¼ 1� g cos /; (8)

xc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hþ gðsin /� 2 cos /Þ

p
: (9)

From the expression of Ic, we see that the threshold associ-

ated with the modulational instability is strongly impacted

by the phase and the amplitude of the delay feedback.

Indeed, for �p=2þ k2p < / < p=2þ k2p with k is an inte-

ger number, the threshold is lowered Ic < 1. In terms of the

injected intensity, the threshold reads

Iic¼E2
ic¼ 1�gcos/½ � 1�gcos/ð Þ2þ ð1�gcos/Þð

h
�hþgsin/Þ2

i
: (10)

The plot of the threshold associated with a modulational

instability as a function of the phase of the feedback is pre-

sented in Fig. 2 for fixed values of the detuning parameter.

From this figure, we can see that delayed feedback can con-

trol and either suppress the modulational instability or reduce

the thresholds associated with this instability. The inclusion

FIG. 2. The threshold Eic as a function of the phase of the delay for different

values of the strength of the delay [Eq. (10)]. (a) monostable case h¼ 1 and

(b) bistable case h¼ 3.
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of the feedback allows the modulational instability to have a

finite domain of existence delimited by two phases of the

delay as shown in Fig. 2. From a practical point of view, it is

difficult to reach the high intensity regime in an experiment

using a driven ring cavity made with an optical fiber operat-

ing with a continuous wave injected beam (CW operation).

Most of the experiments used a synchronous pumping with a

pulsed laser. Without delay feedback, the threshold is essen-

tially determined by the detuning parameter. However, when

considering an external all fiber loop, it is then possible to

reduce drastically the threshold associated with the

emergence of a periodic train of pulses. The most unstable

critical frequency xc evaluated at the modulational

instability threshold [Eq. (9)] provides the period of oscilla-

tion T ¼ 2p=xc of solitons that emerge from the modula-

tional instability. This critical frequency is plotted as a

function of the phase of the feedback in Fig. 3 for a fixed

detuning. We clearly see that the critical frequency is

strongly impacted by the phase. By choosing an appropriate

phase, the output field may have a very small period leading

to the conception of all-optic systems for generation of sig-

nals with a high repetition rate. Finally, the marginal stability

curves together with the characteristic input-intracavity field

intensity are shown in Fig. 4.

IV. DRIFTING CAVITY SOLITONS AND ROGUE WAVES
FORMATION

The LLE equation without delay feedback, i.e., g¼ 0,

supports cavity solitons in a regime where the modulational

instability appears subcritical, i.e., h > 41=30. The formation

of a periodic train of pulses and cavity soliton formation are

closely related. In the subcritical regime, there exists a hys-

teresis loop involving a homogeneous steady state and a peri-

odic train of pulses. Within this hysteresis loop, there exists

a pinning range of injected field intensities for which stable

cavity solitons can be found even in the monostable case

(h <
ffiffiffi
3
p
Þ.55 They are similar to the localized structures and

the localized patterns are found in relation with a generalized

Swift–Hohenberg equation.56 This theoretical prediction has

been confirmed by experimental observation of cavity soli-

tons in a cavity filled with liquid crystals57 and in an all fiber

cavity.58 The interaction between CS’s has been performed

analytically and numerically by Vladimirov and collabora-

tors in Ref. 59. The formation of CSs and their relation to

optical comb generation in a standard silica fiber cavity60,61

and in a continuous-wave driven nonlinear optical microre-

sonators62 has been recently established both numerically

and experimentally. Optical frequency combs are sources

with a spectrum consisting of millions of equally spaced

laser lines. This unique property provides a link between the

optical and the radiofrequency band of the electromagnetic

spectrum and it has truly revolutionized a number of research

disciplines, such as precision laser spectroscopy and fre-

quency metrology. Experiments supported by numerical sim-

ulations of driven cavities such as whispering-gallery-mode

microresonators leading to optical frequency comb genera-

tion have demonstrated the existence of complex spatiotem-

poral dynamics.13 Similar complex dynamics have been

observed in all fiber cavities.63–66 Recently, it has been

shown by using a rigorous tools of the dynamical system the-

ory such as the Lyapunov exponent that this complex

dynamics reported in literature belong to the spatiotemporal

chaos type of behavior.67

In what follows, we focus on the effect of delayed feed-

back on the formation of cavity solitons. We fix the delay

time and the phase, and we vary the strength of the feedback.

In the course of time, we increase the strength of the delay as

FIG. 3. The critical frequency xc as a function of the phase of the delay for

different values of the strength of the delay [Eq. (9)]. (a) monostable case

h¼ 1 and (b) bistable case h¼ 3.

FIG. 4. The transmitted intensity as a function of the input intensity Ein for a fixed detuning parameter h¼ 3 but for different values on the time-delayed feed-

back parameters (a1, a2, and a3) and marginal stability curves (b1, b2, and b3) of the homogeneous solution of the Lugiato–Lefever model [Eq. (5)]. (a1, b1)

without feedback g¼ 0 (a2, b2) feedback strength g ¼ 0:5 and phase / ¼ 0 (a3, b3) feedback strength g ¼ 0:5 and phase / ¼ 0. The stability marginal curves

(b1, b2, and b3) are obtained for zero eigenvalue (r¼ 0). They correspond to the plot of Eq. (7) together with Eq. (6). The red color shading corresponds to

modulationally unstable homogeneous steady states.

114312-4 Tlidi et al. Chaos 27, 114312 (2017)



shown in the s-time map of Fig. 5. The first instability that

appears is the self-pulsating cavity soliton. This behavior

occurs even in the absence of delay feedback. However, a

large intensity of the injected field is necessary to generate

such self-pulsating CSs. Experimental evidence of self-

pulsating structures has been provided for a synchronously

pumped with a pulsed laser. The self-pulsating CS shown in

Fig. 5 has been obtained for a moderate injected field. This

indicates that the delay feedback renders the observation of

self-pulsating CS possible even with the continuous wave

regime with moderate injected power. Self-pulsating CSs

emit radiation in the form of decaying dispersive waves

which are asymmetric from both sides of CS. The asymmetry

of radiation emission is due to the time-delayed feedback.

When further increasing the strength of the delayed feed-

back, a transition towards a complex behavior as shown in

Fig. 5 takes place. This figure has been obtained by using an

initial condition that consists of stationary CSs. If we start

numerical simulations with a periodic train of pulses and

increase the time-delayed feedback, the dynamics leads to

the same complex spatiotemporal regime as shown in numer-

ical simulations of the model Eq. (5) (see Fig. 6). Before

reaching this regime, we can see a drifting and self-pulsating

CSs.

With increasing the injected field intensity, the s-time

map shows a drift of CS—see Fig. 7. This phenomenon has

been reported in.38 The drift instability is attributed to the

time-delayed feedback. It is well know that the CS exhibits

radiation due to the dispersive waves from a localized state

of two counter-propagative fronts. In the absence of delay,

the CS radiates symmetrically from both sides (right and

left). However, when considering the delay feedback, the s-

time maps obtained from a fixed value of the strength of the

delay, show clearly an asymmetric emission of dispersive

waves as visible in Fig. 8. The critical point associated with

the traveling wave coincides with the threshold associated

with the drift instability. This threshold depends on the phase

of the delayed feedback. For instance, for / ¼ p, the thresh-

old is sg ¼ 1.

In the rest of this paper, we focus the analysis on the for-

mation of rogue waves in the LLE with time delayed

FIG. 5. n-time map showing the evolution of jEj2ðn; tÞ in the LLE when

increasing the feedback strength g from g¼ 0 to g ¼ 0:5 with a step of 0.025

at each 300 time units. Cavity detuning is h¼ 3, injection field is Ein¼ 2,

and feedback delay and phase are s¼ 10 and / ¼ 0, respectively. The initial

condition is the stationary cavity soliton.

FIG. 6. n-time map showing the evolution of jEj2ðn; tÞ in the LLE when

increasing the feedback strength g from g¼ 0 to g ¼ 0:5 with a step of 0.025

at each 300 time units. The parameters are the same as for Fig. 7 except for

the initial condition which is a stationary periodic structure.

FIG. 7. n-time maps showing the evolution of jEj2ðn; tÞ in the LLE when

increasing the feedback strength g from g¼ 0 to g ¼ 0:1 with a step of 0.02

at each 3000 time units. Cavity detuning is h¼ 3, injection field is Ein¼ 2.2,

and feedback delay and phase are s¼ 100 and / ¼ p, respectively. The ini-

tial condition is the stationary cavity soliton.

FIG. 8. Drifting CS with an asymmetric radiation of dispersive waves for

g ¼ 0:9 and / ¼ 5p=4. Other parameters are the same as in the figure.
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feedback. They consist of rare giant short optical pulses

propagating in the cavity. The experimental observation of

optical rogue waves has been identified in the context of non-

linear fiber optics as large peaks appearing in the supercon-

tinuum generated by a photonic crystal fiber.46 The

modulational instability mechanism together with pulse col-

lisions has been discussed in an earlier report by Peregrine.68

Experimental confirmation of the collision based mechanism

for rogue wave formation, has been demonstrated in optical

fibers69,70 and in water-wave-tank71,72 systems. In the frame-

work of the nonlinear Schr€odinger equation, an analytical

study of the nonlinear interaction between two frequency

solitons in the form of Akhmediev breathers has been

reported in Ref. 73. The nonlinear Schr€odinger equation is

one of the fundamental equations in nonlinear physics that

describes conservative waves. For instance, this equation has

been largely used as a prototype for the study of rogue waves

in fluid mechanics and in nonlinear fiber optics. However,

the nonlinear Schr€odinger equation is not an adequate model

to describe nonlinear resonators because it does not include

dissipation and pumping. The LLE model is more appropri-

ate for this purpose because it admits dissipative rogue

waves like solitons. This concept has been introduced by

Akhmediev in one-dimensional passively mode-locked laser

systems.74 In dissipative homogeneous systems such as small

area semiconductor devices where dispersion and diffraction

are negligible, numerical simulation supported by experi-

mental results indicate the possibility of formation of rogue

waves.75 It has also been shown that when a delay feedback

is taken into account extreme events are generated.45 Rogue

waves formation resides in the fact the system exhibits a sud-

den appearance or disappearance of a strange attractor, this

mechanism is called as crisis in the dynamical system theory.

This bifurcation occurs when a chaotic attractor is close to a

set of unstable periodic orbits or its stable manifold. In spa-

tially extended systems such as a broad areas laser with satu-

rable absorber, it has been predicted theoretically and proved

experimentally that the emergence of spatiotemporal chaos

leads to the formation of rogue waves.51,52 This mechanism

corresponds to an alternation of regular and irregular dynam-

ics in the course of time evolution. However, depending on

the level of the pumping current, the system can exhibit a

route to spatiotemporal chaos via quasi-periodicity (torus

bifurcation).52,76 A similar experimental result has been

observed in a liquid crystal light valve with optical feed-

back.77 The collision mechanism leading to the formation of

dissipative rogue waves has been establish numerically in

the Lugiato–Lefever model without delay feedback.14

Random formation of coherent structures having proper-

ties of localization in space and time similar to rogue waves

has been proposed in relation with integrable turbulence.78

Defining a rogue wave is still an open issue. Recently, it has

been proposed as an optical pulse whose amplitude or inten-

sity is much higher than that of the surrounding pulses. The

main characteristic of the rogue wave formation is their pulse

height probability distribution: if it possesses a long tail, then

we can qualify this behavior as an evidence for rogue wave

formation. We compute the number of events as a function

of the intensity of the pulses in a semi-logarithmic scale. The

results are shown Fig. 9. When the feedback strength is

small, the pulse height probability distribution is rather

Gaussian as indicated by the red color in Fig. 9(b). When we

increase the feedback strength Fig. 9(b) the pulse height

probability distribution evolves towards an L-shape distribu-

tion with a long tail–see Fig. 9(b). We have estimated the

proportion of extreme events PEE and the excess kurtosis c2.

The values are indicated in Fig. 9(a). These values suggest

that the statistics of rogue wave are far from gaussian distri-

bution. These results are obtained from numerical simula-

tions of the LLE with delay feedback with periodic boundary

conditions. An example of the rogue wave formation is

shown in the s-time map presenting the evolution of

jEj2ðs; tÞ for a moderate intensity of the injected field (cf.

Fig. 10). The modulational instability mechanism together

with pulse collisions is considered in the literature as the

main mechanism for the generation of rogue waves. This is

clearly visible in the n-time map of Fig. 10. The collision

process between pulses is enhanced by the delay feedback.

More recently, two-dimensional dissipative rogue waves

have been reported in the framework of the LLE79 and in the

laser with saturable absorber with delay feedback.80,81 In this

FIG. 9. (a) Probability density function (black dots) of the intensity of the

pulses in the semi-logarithmic scale. The dashed line indicates 2 times the

significant wave height (SWH). The LLE parameters are h¼ 3 and Ein¼ 2.2

and the feedback parameters are s¼ 100, g ¼ 0:9 and / ¼ 0. (b) Probability

density function (blue line and dots) of the intensity of the pulses for a week

feedback with a strength of g ¼ 0:05. The red solid line shows Gaussian fit

to the data.

FIG. 10. Space-time evolution of jEj2ðn; tÞ for fixed LLE parameters of

h¼ 3 and Ein¼ 2.2 and feedback parameters s¼ 100, g ¼ 0:9 and / ¼ 0.

Events with amplitude PðnÞ ¼ jEj2ðn; tÞ > 35 are shown with (white) trian-

gles and with PðnÞ ¼ jEj2ðn; tÞ > 45 with (red) square.
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context, transition from stationary to chaotic two-

dimensional cavity solitons through the period doubling

route has been reported.82

V. CONCLUSIONS

We have investigated the formation of temporal cavity

solitons, self-pulsating cavity solitons, and rogue wave gen-

eration in a standard silica fiber cavity or microresonator.

Both systems are well described by the paradigmatic

Lugiato–Lefever equation. We have analyzed the effect of

time-delayed feedback control of the dynamics of these non-

linear objects. In the spatial cavities, the time-delayed feed-

back has been incorporated to control both drifting cavity

solitons and rogue wave formation in one and in two dimen-

sional settings. In this paper, we have analyzed a temporal

analog of the spatial cavities with a delay feedback leading

to the optical frequency comb generation, namely driven

cavities such as whispering-gallery-mode microresonators

and all fiber cavities. We have shown that the delay feedback

can induce the drift of temporal cavity solitons. In the

absence of time-delayed feedback control, temporal cavity

solitons do not drift. We have shown also that radiation emit-

ted from drifting cavity solitons is asymmetric. This broken

symmetry is clearly attributed to the time-delayed feedback.

Finally, we have shown that a rogue wave regime can be

reached for a moderate injected field intensities. This opens

a possibility of experimental observation of temporal dissi-

pative rogue waves in continuous-wave driven nonlinear

optical microresonators.

Note added in proof. After submission of this paper, we

realized that the work by Julien Javaloyes describes a similar

pattern evolution in a cavity composed of a gain medium

coupled to a saturable absorber.83 We consider that this

paper is relevant for our contribution.
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