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We consider coupled-waveguide resonators subject to
optical injection. The dynamics of this simple device are
described by the discrete Lugiato–Lefever equation. We
show that chimera-like states can be stabilized, thanks to
the discrete nature of the coupled-waveguide resonators.
Such chaotic localized structures are unstable in the con-
tinuous Lugiato–Lefever model; this is because of dispersive
radiation from the tails of localized structures in the form of
two counter-propagating fronts between the homogeneous
and the complex spatiotemporal state. We characterize
the formation of chimera-like states by computing the
Lyapunov spectra. We show that localized states have an
intermittent spatiotemporal chaotic dynamical nature.
These states are generated in a parameter regime character-
ized by a coexistence between a uniform steady state and a
spatiotemporal intermittency state. © 2017 Optical Society
of America

OCIS codes: (070.5753) Resonators; (190.4370) Nonlinear optics,
fibers; (190.3100) Instabilities and chaos; (140.1540) Chaos;
(230.7370) Waveguides.
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The existence of conservative discrete solitons in periodic non-
linear systems such as discrete arrays of coupled waveguides
[1,2] or Bose–Einstein condensate [3] has been abundantly
discussed and is by now fairly well understood. Most of the
theoretical studies have been developed using the discrete non-
linear Schrödinger equation. However, when dielectric mirrors
are placed at the input and output facet of waveguide arrays, it
is possible to stabilize dissipative discrete solitons, thanks to the
balance between losses and injection of light beams. This sim-
ple optical device can be seen as interacting microcavities in
photonic crystals. The dynamics of this dissipative system can-
not be described by the nonlinear Schrödinger equation, but
rather by the discrete Lugiato–Lefever equation which admits
both stationary and oscillating discrete dissipative solitons
often called discrete localized structures [4–6]. Recently, the
observation of spatiotemporal localized chaotic states has been

reported [7,8]. Similar behavior has been reported in a
broad-area vertical-cavity surface-emitting-laser with saturable
absorption subject to time-delayed optical feedback [9]. In
the continuous limit, the Lugiato–Lefever equation exhibits
fronts between steady states. These fronts are motionless at
a single point often called the Maxwell point [10]. Near this
point, one expects to find localized states as the result of front
interaction [11–14].

Coupled oscillators under the influence of injection and dis-
sipation of energy exhibit a coexistence between coherent and
incoherent behavior, known as chimera states [15,16]. More
recently, it has been shown that the discrete nature of coupling
is a key ingredient in the emergence of chimera-like states [17].
Hence, the existence of chimera states in the discrete Lugiato–
Lefever equation is expected.

In this Letter, we show that the discrete Lugiato–Lefever
equation supports chimera-like states in an array of coupled-
waveguide resonators. They consist of spatiotemporal chaos
embedded in a homogeneous background. They correspond
to a coexistence in the same system of coherent and incoherent
states. We characterize chimera-like states by computing
Lyapunov spectra. Note, however, that in the continuous
Lugiato–Lefever model, it is not possible to stabilize chimera-
like state because of the radiation emanating from localized
state in the form of two counter-propagating fronts between
the homogeneous and the complex spatiotemporal states
[18,19]. Therefore, we attribute the formation of chimera-like
states to the discrete nature of interacting microcavities in
photonic crystals.

We consider an array of weakly coupled nonlinear wave-
guides where mirrors at the input and the output facet
back-fold the light path, thus forming an array of coupled-
waveguide resonators, which is excited by an external driving
field E0. Figure 1 depicts an array of coupled-waveguide reso-
nators. The resonators are then endowed with a self-focusing
Kerr medium. The slowly varying envelope ψn of the field cir-
culating in the nth waveguide resonator can be derived by using
the mean-field approach developed in [4,5]

∂Tψn ! E0 − "1# iΔ$ψn − ijψnj2ψn − iC"ψn#1 −2ψn#ψn−1$:
(1)
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Here, the evolution time t ! T τph is measured in the photon
lifetime unit τph; Δ ≡ ω − ω0 accounts for detuning between a
resonance frequency ω0 of the cavities and the carrier of the
pumping field frequency ω. The parameter C denotes the
nearest-neighbor coupling constant. The parameter E0 can
be considered as a positive and real in order to fix the origin
of the phase.

The continuous counterpart of the discrete model Eq. (1),
C → ∞, is known as the Lugiato–Lefever equation [20] or the
driven damped nonlinear Schrödinger equation [21] in the op-
tical and nonlinear coupled oscillators frameworks, respectively.
In the continuous limit, theoretical [13,19,20] and experimen-
tal [22] investigations have revealed a coexistence between the
flat solution and the spatiotemporal chaotic state. Hence, one
expects to observe complex spatiotemporal dynamical behavior
in the discrete model Eq. (1). Figure 1 shows the profile and
spatiotemporal evolution of a complex localized state obtained
from the numerical simulation of discrete Eq. (1). All numeri-
cal simulations were conducted using finite difference code
with the Runge–Kutta fourth-order algorithm and Neumann
boundary conditions that are compatible with a finite array
of coupled waveguides. These localized structures correspond
to a coexistence of coherent and incoherent states. In the con-
text of coupled oscillators, this type of localized state is usually
termed a chimera state [15–17]. Considering a homogeneous

initial condition with a small (large) intensity, the system
exhibits as an equilibrium solution a uniform state (complex
spatiotemporal state). For an inhomogeneous perturbation of
the homogeneous state, it is possible to generate a chimera-like
state. Figure 2 displays different chimera states obtained by
numerical simulations for the same parameter values, but with
different initial conditions. From this figure, we can see that the
larger the incoherent domain (size of the chimera), the broader
the Lyapunov spectrum indicating increasing complexity in the
spatiotemporal evolution of the system.

As a matter of fact, in the continuous limit, these intrigued
localized states are not observed. That is, when increasing the
nearest neighbor coupling constant C , depending on the other
parameters, the complex localized structure shrinks or spreads
so that the system exhibits only one type of extended state as an
equilibrium, being either a homogeneous state or a spatiotem-
poral complex state. Therefore, chimera-like states are a conse-
quence of the discrete nature of the system under study [17].
The complex dynamical behavior can be characterized by the
numerical calculation of Lyapunov exponents. These provide
information about permanent dynamic with sensitivity to ini-
tial conditions [23]. When the largest Lyapunov exponent is
positive, the system develops chaotic dynamics, but not neces-
sarily a spatiotemporal chaos [23]. To distinguish between
chaos and spatiotemporal chaos, it is necessary to determine
the Lyapunov spectrum. This spectrum is composed of a set
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Fig. 1. Chimera-like states in an array of coupled-waveguide reso-
nators obtained by numerical simulations of Eq. (1). (a) Schematic
representation of an array of coupled-waveguide resonators driven
by an external electrical field intensity E2

0 with operating frequency
ω close to the resonance cavity frequency ω0. (b) Intensity
profile of the electric field amplitude ψn"t$ at a fixed time.
(c) Spatiotemporal evolution of the intensity jjψn"t$jj2. The parame-
ters are E0 ! 6.2, Δ ! 7.0, and C ! 1.9.
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Fig. 2. Lyapunov spectra of different localized states obtained from
numerical simulations of the model Eq. (1). The Lyapunov exponents
are denoted by fλig, where i labels the exponents (i ! 1;…; N ), N
accounts for the number of waveguides, and λp ≤ λq (p ≥ q). Γ1, Γ2,
Γ3, Γ4, and Γ5 stand for localized structures with different widths. Γ1

is stationary, and Γ2 is the oscillatory localized state. Γ3;4;5 are chimera
states. The insets describe the profile and the spatiotemporal evolution
of the Γl localized structure (l ! f1; 2; 3; 4; 5g). The parameters are
E0 ! 6.2, Δ ! 7.0, and C ! 1.9.
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of exponents. Spatiotemporal chaos has a Lyapunov spectrum
with a continuous set of positive values. In contrast, chaos pos-
sesses a Lyapunov spectrum with a discrete set of positive val-
ues. Another feature that distinguishes these dynamic behaviors
is when one increases the system size; for spatiotemporal chaos,
the number of positive Lyapunov exponents grows (extensive
property) and, for chaos, positive Lyapunov exponents remain
constant (intensive property). To understand the nature of the
predicted chimera-like states from the point of view of the
dynamical system theory, we have computed numerically
the Lyapunov exponents of localized states, using the strategy
proposed in [24,25]. Figure 2 shows Lyapunov spectra of differ-
ent chimera-like states. Therefore, we infer that complex local-
ized structures are of spatiotemporal chaotic nature. Namely,
the dynamical behaviors presented in Figs. 1 and 2 correspond
to localized spatiotemporal chaos. Figure 2 shows that chimera-
like states with a small size have a smaller number of positive
Lyapunov exponents. Hence, the dynamical behavior of a larger
chimera is more complex. Indeed, the dimension of the asso-
ciated strange-attractor is larger [26]. This type of behavior for
chimera states of different sizes has been reported [17]. The
largest Lyapunov exponents for the different chimera sizes
are similar, as shown in Fig. 2. Indeed, it is a manifestation that
the most unstable mode for the different chimera states is
similar.

Another feature that can be seen from the spatiotemporal
diagrams in Figs. 1 and 2 is the spatiotemporal intermittent
nature of chimera states. The intermittent type of dynamics
is characterized by orderless alternations between a regular
and an irregular behavior in their spatiotemporal evolution.
Likewise, the spatiotemporal diagram exhibits a Sierpinski car-
pet type structure (see Fig. 3). This complex dynamic is usually
related to defect turbulence of an oscillatory dynamics [27],
which is consistent with our numerical observations. Indeed,
smaller localized states are stationary or oscillatory, preventing
the emergence of defects in the localized state. In contrary,
localized states with larger size favor the emergence of defects
leading to more complex spatiotemporal dynamical behavior.
Figure 3(a) depicts the coexistence within the same system
of three localized states: stationary, self-pulsating, and chi-
mera-like state. The bifurcation diagram of localized states
as a function of the waveguide number is presented in
Fig. 3(b). Notice that there is a minimum width below which
chimera states cannot exist.

In the continuous system, front interaction is attractive, and
then spatiotemporal localized states are unstable. However,
when considering a moderate nearest-neighbor coupling con-
stant [C ∼ O"1$], it is possible to stabilize spatiotemporal local-
ized states in the form of a chimera-like state. It has been shown
that local coupling in dissipative systems causes a propagation
failure or pinning of fronts, in a large region of parameters
known as a pinning range [28,29]. Namely, fronts connecting
different states become motionless in a large parameter space.
This phenomenon, a result of discreteness, induces an effective
potential on the front dynamics, which is characterized by the
overlap of the attractive interaction of fronts and the Peierls–
Nabarro potential [30]. Hence, the local coupling prevents the
irregular state to invade the coherent one. Indeed, the Peierls–
Nabarro potential induced by discreteness generates a family
of stable localized spatiotemporal chaotic states with different
sizes.

Therefore, these chimera states exhibited by an array of
coupled-waveguide resonators are the result of local coupling.

Quantitatively, the spatiotemporal intermittency is charac-
terized by a power law decay in the spectrum [27]. Figure 4
displays the temporal average power spectrum of chimera-like
states computed from numerical simulations of the model

(a)

(b)

Fig. 3. (a) Coexistence of three localized states: a stationary, an
oscillatory, and a spatiotemporal intermittent localized state obtained
from numerical simulations of model Eq. (1) by E0 ! 6.2, Δ ! 7.0,
and C ! 1.9. The top panel shows the instantaneous profile of
jjψn"t$jj2, and the bottom panel depicts the spatiotemporal evolution
of the amplitude of a slowly varying envelope. (b) Bifurcation diagram
of localized states as a function of the number of the waveguides, where
max"λi$ accounts for the largest Lyapunov exponent.
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Fig. 4. Log–log plot of average power spectrum of chimera-like state
amplitude F %jjψ jj2& as a function of the wavenumber k, obtained from
numerical simulations of model Eq. (1) with E0 ! 6.2, Δ ! 6.0, and
C ! 1.9, after considering 16,000 temporary steps. The dashed line is
a k−1∕4 fit slope. kls accounts for the typical wavelength of a single
peak. For small wave numbers, the system exhibits a power law that
is a manifestation of the spatiotemporal intermittency.
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Eq. (1). One can infer that for small wave numbers, the system
exhibits a power law characterized by a 1/4 decreasing exponent
(see the dashed curve in Fig. 4). This tendency persists until
the system reaches the typical wavelength kls corresponding
to the distance between the oscillating pulses forming the
chimera-like state. This behavior contrasts strongly with the
continuous limit where the power spectrum exhibits a triangu-
lar shape [31].

In conclusion, we have shown the existence of chimera-like
states in the discrete Lugiato–Lefever model describing an array
of coupled-waveguide resonators. These states consist of a local-
ized spatiotemporal chaos embedded in a homogeneous back-
ground. We have established Lyapunov spectra to show that
these localized complex states exhibit a spatiotemporal chaos.
In turn, based on the spatiotemporal evolution, we have shown
that complex dynamics are of a spatiotemporal intermittency
type. We have analyzed the dynamics of an array of coupled-
waveguide resonators, with a coupling parameter of order 1.
However, at the weak coupling limit, one expects to find a rich
spatiotemporal dynamics. A study in this direction is in
progress. Experimentally, it is difficult to get cavities with iden-
tical properties. Numerically, we have conducted simulations
with inhomogeneous parameters and an additive noise. We
observe that the chimera states are robust.
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