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Abstract. Driven nonlinear optical cavities can exhibit complex spatiotemporal dynamics. We consider the
paradigmatic Lugiato-Lefever model describing driven nonlinear optical resonator. This model is one of
the most-studied nonlinear equations in optics. It describes a large spectrum of nonlinear phenomena from
bistability, to periodic patterns, localized structures, self-pulsating localized structures and to a complex
spatiotemporal behavior. The model is considered also as prototype model to describe several optical
nonlinear devices such as Kerr media, liquid crystals, left handed materials, nonlinear fiber cavity, and
frequency comb generation. We focus our analysis on a spatiotemporal chaotic dynamics in one-dimension.
We identify a route to spatiotemporal chaos through an extended quasiperiodicity. We have estimated the
Kaplan-Yorke dimension that provides a measure of the strange attractor complexity. Likewise, we show
that the Lugiato-Leferver equation supports rogues waves in two-dimensional settings. We characterize
rogue-wave formation by computing the probability distribution of the pulse height.

1 Introduction

This paper is devoted to the analysis of complex phenom-
ena in the pioneering model proposed by Luigi Lugiato
and René Lefever in 1987 [1]. The paradigmatic Lugiato-
Lefever equation (LLE) has led to a rich literature that
analyses mathematical, computational and experimental
aspects of the coupling between nonlinearity, transport
process such as diffraction or dispersion, and dissipation.
This work also paves a way towards possible applications
in encoding/storing information in all optical devices and
all-optical memories in fiber based devices.

Recently, complex spatiotemporal dynamics have been
a subject of experimental investigations in frequency comb
generation [2] and in all fiber cavities with a Kerr-type me-
dia [3]. Both systems are well described by the LLE. In
most of these studies, complex phenomena are character-
ized by Fourier spectra, wave vector distributions, filtered
spatiotemporal diagrams, power spectra, length distribu-
tions, Poincaré maps and number of defects as a function
of the parameters. However, these tools are not adequate
to characterize for instance spatiotemporal chaos. A rigor-
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ous tools have been proposed in the literature to charac-
terize the spatiotemporal chaos by using Lyapunov expo-
nents or Lyapunov spectrum [4–6]. Lyapunov exponents
characterize the exponential sensitivity to initial condi-
tions. When the largest Lyapunov exponent is positive, the
complex behavior is chaotic. Furthermore, the spatiotem-
poral chaos is characterized by a continuous set of positive
exponents that constitute the Lyapunov spectrum.

Another line of research is devoted to studying com-
plex phenomena often called rogue waves or extreme
events. Rogue waves (RWs) are rare pulses of amplitude
much exceeding the average one and they belong to ex-
treme events field of research. They are characterized by
a long tail in the probability distribution of pulse ampli-
tude. The formation of RW in optics has been the sub-
ject of intense research since the pioneering work by Solli
et al. [7] (see the latest overviews on this issue [8–11]).
Evidence of rogue waves formation in the framework of
LLE have recently been provided in one dimensional set-
ting in both the absence [12] and presence of time-delayed
feedback [11].

The goal of this paper is twofold, first, to show that the
model LLE supports 2D dissipative rogue waves and sec-
ond, to identify a new route towards spatiotemporal chaos
via extended quasiperiodicity. The term dissipative rogue
waves have been introduced by Akhmediev in the con-
text of one-dimensional passively mode-locked lasers [13].
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They have been generated in the LLE [14] and in reaction
diffusion systems [15]. Here, we show that 2D rogue waves
can be generated without any optical feedback and we
characterize them by estimating the probability distribu-
tion of the pulse height. This distribution possesses a long
tail that is considered as the main signature of rogue wave
formation. In last part of the manuscript, we show a new
route towards spatiotemporal chaos. We characterize this
complex regime in one dimensional settings by computing
the Lyapunov spectrum.

The paper is organized as follows. In Section 2, we
introduce the diffractive and dispersive LLE. The char-
acterization of the spatiotemporal chaos in term of the
Lyapunov spectrum is presented in Section 3. The two-
dimensional rogue waves are discussed in Section 4. We
conclude in Section 5.

2 Dispersive and/or diffractive
Lugiato-Lefever equation

In their seminal paper [1], Luigi Lugiato and René Lefever,
derived a simple and at the same time a very rich model
that undergoes a large spectrum of dynamical behaviors
often called the LL model. They have considered a one-
dimensional nonlinear optical cavity filled with a Kerr
medium and driven coherently by an injected signal [1].
More importantly, they established a link between the
well know Turing-Prigogine instability in the context of
chemical reaction-diffusion systems and the optical spa-
tial instability [1]. Contrarily to the Rayleigh-Bénard in-
stability [16] where the characteristic wavelength of the
spatial periodic structures is determined by the geometry,
the Turing-Prigogine instability [17,18] possesses a wave-
length that is intrinsic to the dynamics of the system.
In this case, the wavelength is solely determined by the
dynamical parameters and not by the external effects or
physical geometrical boundaries. The formation of spa-
tial structures is attributed to the balance between a non-
linear process such as chemical reaction or light matter
interaction that tends to amplify inherent spatial fluctua-
tions and a transport process such as diffusion or diffrac-
tion that tends on the contrary to restore uniformity.
In addition, when the system operates far from equilib-
rium, dissipation plays an important role in the stabiliza-
tion of the spatial strictures (hence the name dissipative
structures [18,19]).

The LL model has been derived for various systems
such as all fiber cavity [20], whispering gallery-mode res-
onators or Kerr frequency-comb generation [12]. In these
two systems the diffraction term modeled by the Laplace
operator is replaced by chromatic dispersion. The LL
model has also been derived for a cavity filled with left-
handed material [21–23] or a liquid crystal operating in
a self-imaging configuration [24]. In these two systems
diffraction coefficient is negative.

The LLE model is valid under the following approxi-
mations: the cavity possesses a high Fresnel number, ex-
ternal power can be coupled into the cavity only if the sys-
tem is close to resonance. This implies that both the linear

cavity detuning and the nonlinear cavity phase shift must
be much smaller than unity. In addition, we assume that
the cavity is much shorter than the diffraction, dispersion
and nonlinearity spatial scales. Furthermore, a single lon-
gitudinal mode operation is assumed. In its general form
the LLE reads [25,26]

∂E

∂t
= i

(
a∇2

⊥ + β
∂2

∂τ2

)
E−(1+ iθ)E+ i|E|2E+Ei. (1)

Here E(x, y, t, τ) is the normalized slowly varying enve-
lope of the electric field that circulates within the cav-
ity and Ei is the amplitude of the injected field which
is real and positive in order to fix the origin of the
phase. The time variable t corresponds to the slow evo-
lution of E over successive round-trips. τ accounts for the
fast dynamics that describes how the electric field enve-
lope changes along the fiber. The parameter δ is the cav-
ity detuning with respect to the injected field. β is the
chromatic dispersion coefficient that can be either positive
or negative depending whether the dispersion is anoma-
lous or direct, respectively. The diffraction process acting
in the transverse plane (x, y) is modeled by the Laplace
operator ∇2

⊥ = ∂2/∂x2 + ∂2/∂y2. When the chromatic
dispersion is neglected, i.e., β = 0, it has been shown
that the coupling between diffraction and nonlinearity
may lead to appearance of stable periodic patterns such
as hexagons that emerge from a Turing-Prigogine insta-
bility [27]. Indeed, a pattern selection and relative sta-
bility analysis in two-dimensional settings show that only
hexagonal structures are stable over other periodic pat-
terns [28,29]. When diffraction is neglected, e.g., the in-
tracavity field is spatially stabilized by using guided-wave
structures, i.e., a = 0, theoretical studies indicate that the
coupling between dispersion and Kerr nonlinearity may be
the source of a temporal modulational instability leading
to the appearance of a periodic train of pulses [20]. When
however, the dispersion and the diffraction have a com-
parable influence, nonlinear analysis of the model equa-
tion (1) have revealed the occurrence of a variety of three-
dimensional structures in the amplitude of the cavity field
among which the body-centered cubic (bcc) lattice struc-
ture in the (x, y, τ) space plays a dominant role [25,30].

Beside period distribution of light inside the cav-
ity, equation (1) supports localized structures often
called cavity solitons in one and in two-dimensional set-
tings [31] when the Turing-Prigogine instability appears
sub-critically, i.e., θ > 41/30. In regime devoid of Turing-
Prigogine instability, localized structures have been found
experimentally and theoretically when the homogeneous
steady states are bistable, i.e., θ >

√
3 and when the in-

jected field is inhomogeneous [24].

3 Spatiotemporal chaos in LLE

In this section, we characterize a new route towards a
spatiotemporal chaos in one dimensional LLE via ex-
tended quasiperiodicity. Recently a characterization of the
spatiotemporal chaos in LLE has been performed using
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a rigorous tool of dynamical system theory based on the
Lyapunov spectra [32]. In this work, the destabilization of
an oscillatory localized state through radiation of counter
propagative fronts between the HSS and the spatiotempo-
ral chaos has been established.

Let us consider a one-dimensional diffractive LLE
where ∇2

⊥ = ∂2/∂x2 by using a waveguide along the
y transverse direction or a dispersive LLE with a = 0
and β �= 0. The homogeneous steady state (HSS) so-
lutions IS = |ES |2 of equation (1) are given by Ii =
IS

[
12 + (IS − θ)2

]
with Ii ≡ E2

i . The saddle-node (fold)

bifurcation on the HSS dIi/dIS = 0 is given by I
SNh1,2
S =

2θ/3±√
θ2 − 3/3 and therefore, IS as a function of Ii is ei-

ther monostable for θ ≤ √
3 or bistable for θ >

√
3 [1]. The

linear stability of the HSS results in the quadratic equation
for the eigenvalue λ: λ2 +2λ+1+(θ−2IS +k2

⊥)2−I2
S = 0

with k⊥ being the transverse wavenumber. When the
eigenvalues are purely real and one of them changes sign
from negative to positive, this unstable eigenvalue could
correspond either to zero, k2

⊥ = 0, or to nonzero wavenum-
ber, k2

⊥ > 0. In the first case, we have saddle-node bi-
furcations, which correspond to the turning points of the
bistable curve and imply that the part of this curve hav-
ing negative slope is always unstable. The second case in-
dicates the onset of Turing-Prigogine-like instability giv-
ing rise to a patterned state. For λ = 0 we obtain
k2
⊥ = −θ + 2IS ± √

I2
S − 1 and the existence of real so-

lutions for the wavevector k⊥ indicates the presence of
Turing-Prigogine instability. In the limit when marginally
stable eigenvalues of the Turing-Prigogine instability tend
to zero, k2

⊥ → 0 we recover the conditions of the saddle-
node bifurcations, i.e. I

T (k2=0)
S = I

SNh1,2
S . We fix the de-

tuning parameter to θ = 2 for the rest of the paper, i.e. the
lower HSS is stable while the upper HSS is totally unsta-
ble with respect to Turing-Prigogine instability. Indeed,
this can be seen from Figure 1: (a) presents the HSS IS

as a function of the input intensity and (b) presents the
marginal stability curve.

We now consider bifurcation scenario of a localized
structure in LLE as a function of the injection field
Ei = 1.3. For small values of injection (Ei = 1.3), lo-
calized structures are stable. They are similar to the ones
that have been predicted in [31]. When increasing the in-
jected field amplitude, transition to a self-organized struc-
ture appears at t ≈ 1200 and Ei ≈ 1.42 as shown in the
space-time map of Figure 2a. This map shows the evolu-
tion of the intracavity field intensity |E|2(x, t) obtained
from numerical simulations of the LLE by changing Ei

with a step of 0.02 at each 200 time units. All numeri-
cal simulations are obtained by using periodic boundary
conditions. The numerical integration is based on Runge-
Kutta method combined with a spectral method (pseudo
spectral algorithm). At a time of t ≈ 5700 the periodic
structure becomes unstable and each peak starts to os-
cillate harmonically – see the time trace and the corre-
sponding power spectrum for the first peak in Figures 2c1
and 2c2, respectively. These figures clearly reveal that the
pattern maximum experience period one oscillating dy-
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Fig. 1. Linear stability analysis of the Lugiato-Lefever model
equation (1). (a) Steady-state curves of the homogeneous solu-
tion IS as a function of the injected field Ei. Plane-wave stable
(unstable) branch is shown with solid (dotted) line and saddle-
node bifurcation by diamond symbols. (b) Wavevector square
k2
⊥ as a function of the injected field Ei (red shaded area en-

compasses all unstable wavevectors). The detuning parameter
is θ = 2.

namics, i.e. the first temporal instability encountered is
an Andronov-Hopf bifurcation with a frequency f1. Dur-
ing these oscillations, the neighboring maxima in the pat-
tern oscillate in antiphase; i.e., when one is increasing the
neighboring ones are decreasing and vice versa. Increas-
ing further Ei, the oscillating pattern undergoes a Torus
bifurcation with a new, smaller frequency f2 appearing as
shown in Figures 2d1 and 2d2 for a time trace and power
spectrum of the third peak. Increasing further Ei, the sys-
tem follows an extended quasiperiodic route to chaos with
a similar time dependence for each well separated peak of
the oscillating pattern – see Figures 2e1 and 2e2 for the
time trace and the power spectrum of the fifth peak. For
still stronger injection field, the neighboring pattern peaks
start to interact strongly with some of them disappear-
ing and reappearing as shown in the bottom regions of
Figure 2a. Similar route has been identified from hexag-
onal patterns in LLE [33] and in non-variational Swift-
Hohenberg equation [34]. Note however that in the case of
a complex Ginzburg-Landau equation the route to chaos
depends on the way of crossing the boundary of the re-
gion of chaos [35]. In the case of LLE, by varying the
injected field intensity, the route to spatiotemporal chaos
depends on the detuning parameter. Two routes have been
identified either through period doubling [36] or through
extended quasiperiodicity. The route to the chaos of spa-
tially localized light structures through period doubling
has been reported for a laser with saturable absorber and
delay feedback [37].

In Figure 2b the simulation starts from the high inten-
sity regime (Ei = 3.3) and the injected field amplitude Ei

is reduced with a step of 0.02 at each 200 time units. First,
the system develops a complex behavior. By reducing the
injected field amplitude, a transition from the complex

http://www.epj.org
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Fig. 2. Space-time maps showing the evolution of |E|2(x, t) in the LLE when changing Ei with a step of 0.02 at each 200 time
units. Cavity detuning is θ = 2. (a) Ei is increased from 1.3 to 3.3. (b) Ei is decreased from 3.3 to 1.3. (c1), (d1) and (e1) show
time traces for an isolated peak from the periodic pattern for Ei = 1.85, Ei = 1.9 and Ei = 2.1, respectively. (c2), (d2) and
(e2) show the corresponding power spectra.

spatiotemporal behavior to a periodic pattern appears.
This transition is subcritical and a hysteresis exists as
evidenced by comparing Figures 2a and 2b. Interesting
switchings between patterns of different wavelength can
be seen in Figure 2a for t ≈ 2700 and 5600. Such transi-
tions have been discussed in details in this issue by Périnet
et al. This change of the wavelength is associated with an
Eckhaus instability. In addition, as can be seen by compar-
ing the forward and backward scans in Figures 2a and 2b,
the system undergoes a multistable behavior between pat-
terns of a different wavelength.

The characterization of the complex spatiotemporal
behavior described above can be achieved by estimating
Lyapunov exponents. These exponents provide informa-
tion about the sensitivity of the LLE to the initial condi-
tions. The Lyapunov exponents are labeled by {λi}, where
i = 0, 1, . . . , N with N being the grid number and λp ≤ λq

(p ≥ q). The Lyapunov exponent λi plotted as a function
of i constitutes the Lyapunov spectrum – see Figure 3a.
This spectrum has a continuous set of positive values and
therefore we can conclude that the complex spatiotem-

poral behavior described in Figure 1 has a spatiotemporal
chaotic nature. In addition, we compute the Kaplan-Yorke
dimension (DY K) defined by [38]

DKY ≡ p +
∑p

i=0 λi

λp+1
, (2)

where p is the largest integer that satisfies
∑p

i=0 λi > 0.
The Yorke-Kaplan dimension is an extensive quantity
which increases with the system size [4]. In addition, the
Kaplan-Yorke dimension provides a measure of the strange
attractor complexity. To check the convergence of the nu-
merical method used to establish the Lyapunov spectra,
we plot Lyapunov exponents as a function of the integra-
tion time as shown in Figure 3b. Finally, the Kaplan-Yorke
dimension is plotted as a function of the integration time
in Figure 3c to show that it converges towards a value
DY K = 85.

Figure 4 shows the dependence of the largest Lyapunov
exponent λ0 (on the left axis) and of the Kaplan-Yorke di-
mension DKY (right axis) on the strength of the injection
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Fig. 3. LL model with θ = 2, Ei = 5. (a) Spectrum of
Lyapunov exponents; (b) Lyapunov exponents versus time and
(c) Kaplan-Yorke dimension DKY versus time.

E
i

2 4 6 8 10

λ
0

0

1

2

3

4

D
K

Y

0

50

100

150

200

Fig. 4. LL model with θ = 2. Dependence of the largest
Lyapunov exponent λ0 (left axis) and Kaplan-Yorke dimen-
sion DKY (right axis) on the strength of the injection field Ei.

field Ei. While the largest Lyapunov exponent indeed in-
creases almost linearly from 0.27 to 3.19, the tremendous
increase of Kaplan-Yorke dimension DKY from about 20
to 170 is mainly due to the development of spatiotempo-
ral chaos with many more positive exponents appearing
in the Lyapunov spectrum as Ei increases.

The above analysis allows us to infer that the spa-
tiotemporal complex behavior reported in the LLE and

describes by Figure 2 belong to a spatiotemporal chaos
and it is not a low dimensional chaos or turbulence. In the
case of spatiotemporal chaos, the Lyapunov spectrum has
a continuous set of positive values as shown in Figure 3b.
This is consistent with the definition proposed in [5,6]. In
the case of a low dimensional chaos, the Lyapunov spec-
trum has a discrete set of a few positive values. On the
other hand, the turbulence or weak turbulence are char-
acterized by a power law cascade [39]. The power spec-
trum in the chaotic regime is characterized by displaying
an exponential law [40]. On the basis of the Lyapunov
and power spectrum, we cannot conclude that the system
develops a turbulence. A classification of spatiotemporal
complex behaviors can be found in [4–6,34,41,42].

4 Rogue waves in two-dimensional
Lugiato-Lefever model

The 2007 experimental demonstration of rogue waves in
fiber optics has motivated several groups to investigate
this intriguing phenomenon [7]. Rouge waves correspond
to large intensity pulses in the time domain of resonant
fiber cavity. RW formation is also a well documented is-
sue in oceans [43]. Among various mechanisms that have
been proposed to be responsible for the generation of rogue
waves, the modulational instability mechanism together
with pulse collisions remain the main ingredient for the
creation of rogue waves as shown by Peregrine [43]. The
long tail probability distribution of the wave amplitude is
the fundamental characteristics accounting for the gener-
ation of rogue waves. In addition, Peregrine solitons are
considered as a prototype of rogue waves. Experimental
confirmation of Peregrine solitons has been demonstrated
in optical fiber [44,45] and in water wave tank [46,47] sys-
tems. Small amplitude pulses may grow to large ampli-
tudes if their frequencies belong to a band of unstable
mode with a positive gain. Nonlinear interaction between
unstable frequencies may lead to a complex wave dynam-
ics. Analytical study of the nonlinear interaction between
two frequency solution of the nonlinear Schrodinger equa-
tion in the form of the Akhmediev breathers has been
reported in [48].

Most of the above mentioned studies have been con-
ducted in one-dimensional systems and in the framework
of the Schrodinger nonlinear equation. However, when
considering two-dimensional transverse problem, the non-
linear Schrodinger equation is not sufficient to describe
rogue waves due to collapse dynamics. Moreover, systems
modeled by the LLE are dissipative and operate far from
equilibrium regime. In this case, stable two dimensional
patterns are possible in the LLE [27]. Patten selection
analysis demonstrate that only hexagons are stable over
other two-dimensional patterns such as stripes, rhomboids
or honeycomb [29]. Two-dimensional spatial confinement
of light in the transverse section of the cavity in the form
of localized stationary pulses have been theoretically pre-
dicted for LLE [31] and experimentally proved in [49]. Sev-
eral studies have been devoted to studying localized struc-
tures often called cavity solitons in the transverse section
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Fig. 5. A snapshot of the optical intensity in logarithmic scale
for the two-dimensional Lugiato-Lefever model with an ex-
treme event captured. The parameters are θ = 2 and Ei = 5.

of spatially extended systems (see recent overviews on this
issue [26,50–55]). The interaction of well-separated local-
ized structures has been also investigated [56]. Localized
structures can exhibit a self-pulsating instability and spa-
tiotemporal complex phenomena [57,58].

We fix the detuning parameter in the LLE and only
vary the strength of the injected field. A single or mul-
tipeak stationary localized structures are formed. They
can be either isolated or randomly distributed in the
transverse plane peaks appearing in a cluster [31]. When
further increasing the injection field Ei, very high ampli-
tude pulses appear in the region of well developed spatial-
temporal chaos (see the snapshot of the optical intensity
shown in Fig. 5 for θ = 2 and Ei = 5). A statistical
analysis, shown in Figure 6, shows that there is a consid-
erable number of events with spatiotemporal maxima of
intracavity intensity more than twice the significant wave
height (SWH) and even events with amplitude as high as
6 times the SWH. This figure shows a non Gaussian statis-
tics of the wave intensity, with a long tail of the proba-
bility distribution typical for rogue wave formation. We
infer that the large intensity pulses generated in Figure 5
belong to the class of rogue waves or extreme events. We
would like to emphasize that rogue waves are only formed
in the LL model when the spatiotemporal chaos is well
developed, i.e. when the neighboring pulses in the oscillat-
ing pattern are interacting strongly. For example, Figure 7
displays the statistics of pulse heights in the quasiperiodic
and chaotic regimes discussed in the previous section for
the 1D LL model. Even when the pulse peaks clearly dis-
play chaotic dynamics as in the case of Ei = 2.1 (Fig. 2e),
no rogue wave are formed in the system, that is, the tail of
the pulse height distribution stays well bellow 2 × SWH
line. Recently, it has been demonstrated both experimen-
tally and theoretically that intermittency plays a key role
for the rogue waves formation in spatially extended mi-
crocavity laser with saturable absorber [41,42]. More re-
cently, two-dimensional dissipative rogue waves have been
reported in the framework of the LL model and in the
laser with saturable absorber with delay feedback [14].
After submission of the present manuscript, a paper by
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Rimoldi et al. [59] appeared which describes a similar two-
dimensional rogue waves for a laser with a saturable ab-
sorber without delay feedback.

After reaching a maximum, both the proportion of EEs
and the kurtosis of the pulse height probability distribu-
tion start to decrease as a function of laser injection cur-
rent μ that drives the system into spatiotemporal chaos,
i.e. the Kaplan-Yorke dimension increases with μ. It is in-
teresting to check if such a behavior is also observed in
the LL model. We have carried out simulations for in-
creasing injection field for the 2D LL model and we have
observed different tendency: while the kurtosis indeed de-
creases with Ei, the number of EE after an initial sharp
decrease begins to gently increase, see Figure 8. Indeed,
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while the kurtosis is an indicative of the deviation of the
statistical distribution from Gaussian, the proportion of
the EE is an indicative of only the very far tail of the dis-
tribution with very large amplitude events (if existing).
Therefore, kurtosis and EE proportion are different in-
dicators that can, in principle, behave differently. Addi-
tional work is in progress to elucidate the differences in
this respect between the LLE and the laser with saturable
absorber systems [41,42].

5 Conclusions

In this paper, we have investigated the spatiotemporal
complex behavior of the one and two-dimensional Lugiato-
Lefever equation. A rigorous tool of dynamical system the-
ory, such as Lyapunov spectra, have been used. We have
quantitatively shown that the complex behavior observed
experimentally in frequency comb generation [2] and in
all fiber cavities with a Kerr-type media [3] belong to
the spatiotemporal chaos. The Kaplan-Yorke dimension
associated with spatiotemporal chaos has been estimated.
We have identified a route to spatiotemporal chaos from
a periodic structure trough an extended quasiperiodicity.
Finally, we have identified different operating regimes, in
particular, the coexistence between spatiotemporal chaos
and the self-organized periodic structure. In the last part
of the paper, we have shown that two-dimensional dissipa-
tive rogue waves are possible in the LLE. We have charac-
terized this behavior by performing a statistical analysis
showing a non-Gaussian profile of the probability distribu-
tion with a long tail and pulse intensity height well beyond
two times the significant wave height.
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