
Tutorials and Reviews

International Journal of Bifurcation and Chaos, Vol. 11, No. 3 (2001) 591–603
c© World Scientific Publishing Company

THE STATIONARY INSTABILITY IN
QUASI-REVERSIBLE SYSTEMS AND THE

LORENZ PENDULUM

M. CLERC, P. COULLET∗ and E. TIRAPEGUI†
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We study the resonance at zero frequency in presence of a neutral mode in quasi-reversible
systems. The asymptotic normal form is derived and it is shown that in the presence of a
reflection symmetry it is equivalent to the set of real Lorenz equations. Near the critical point
an analytical condition for the persistence of an homoclinic curve is calculated and chaotic
behavior is then predicted and its existence verified by direct numerical simulation. A simple
mechanical pendulum is shown to be an example of the instability, and preliminary experimental
results agree with the theoretical predictions.

1. Introduction

The stationary and Hopf bifurcation are the only
two local bifurcations which occur generically in
one parameter families of finite dimensional dissipa-
tive dynamical systems [Guckenheimer & Holmes,
1983]. In reversible systems, i.e. systems which
are invariant under a time reversal transformation
(see Appendix), linearization at a reversible equi-
librium stable gives a matrix with purely imaginary
eigenvalues whose number is equal to the dimen-
sion of the system. In this kind of systems the in-
stabilities in one parameter families are: (a) The
stationary instability denoted by (02) in Arnold’s
notation [Arnold, 1980], which we use from now
on, corresponding to a resonance at zero frequency;
and (b) the confusion of frequencies (iΩ2) [Rocard,
1943] which corresponds to a resonance at a finite
frequency.

We shall be interested here in quasi-reversible
systems which are systems in which the terms that
break the time reversal symmetry, i.e. irreversible

effects, are small and can be considered as perturba-
tive terms near instabilities. We find then in quasi-
reversible systems the same instabilities which oc-
cur in reversible systems and irreversible terms will
appear as unfolding terms in their normal forms
and in some situations they will be responsible for
asymptotic chaos as it has been remarked by Gib-
bon [Gibbon & McGuinness, 1982]. In this paper
we focus on the stationary instability in the pres-
ence of a neutral mode which we denote (02)(0),
i.e. we have in the reversible system an eigenvalue
zero of multiplicity three with linear part0 1 0

0 0 0
0 0 0


while the other eigenvalues are in the imaginary axis
and correspond to nonzero frequencies. If the sys-
tem has an odd number of variables one necessar-
ily has the zero frequency mode. We shall discuss
in the Appendix the appearance and coupling of
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this zero frequency mode when the reversible sys-
tem is a Hamiltonian one and we will see that the
mode will automatically be there if the Hamilto-
nian system has a conserved quantity. In Sec. 2 we
shall derive the normal form of this instability with-
out additional symmetries and when symmetries are
present. In the first case genericity arguments show
that we can have the scenario of Shilnikov chaos in
the irreversible unfolding of the asymptotic normal
form and in the second case reflection symmetry
of the variables associated with the Jordan block
lead to an asymptotic normal form equivalent to the
well-known real Lorenz equations which will present
the classic scenario in their region of validity. In
Sec. 3 we study in detail this last situation, which
we call Lorenz Bifurcation [Clerc et al., 1999], and
we show that we can predict chaos analytically since
we can explicitly calculate the condition for persis-
tence of an unstable homoclinic curve through a
Melnikov condition. The calculation can be done
because we are in a quasi-reversible situation and
we know analytically the homoclinic solution of the
reversible equations. In Sec. 4 we shall give a simple
mechanical example of the Lorenz bifurcation which
consists of a pendulum oscillating in a fixed vertical
plane with respect to a rotating support submitted
to a constant torque: the Lorenz pendulum. Fi-
nally in Sec. 5 we present an asymmetric physical
pendulum oscillating in a fixed vertical plane with
respect to a rotating support.

2. Normal Form of the (02)(0)
Instability

Let x and y be the variables corresponding to the
Jordan block (y = dx/dt) and z the variable repre-
senting the neutral mode. It is simple to show that
the other critical variables associated with the pure
imaginary eigenvalues with finite frequencies can be
eliminated when the dissipative irreversible unfold-
ing terms are considered. The relevant variables
will then be {x, y, z} and from the global charac-
terization of normal forms in [Elphick et al., 1987]
we have that the normal form can be written as

d2x

dt2
= F (x, z) +

dx

dt
G(x, z)

dz

dt
= K(x, z) .

When these equations are invariant under the time
reversal transformation t→ −t, x → x, z → z, the

function K(x, z) ≡ 0, z is constant, and the equa-
tions are integrable. This property is lost when one
adds the terms breaking the time reversibility as it
has been remarked by Gibbon [Gibbon & McGuin-
ness, 1982]. The asymptotic reversible normal form
which is obtained from the previous equations is

d2x

dt2
= ε− x2 + azx± z2,

dz

dt
= 0

where ε is the small parameter measuring the dis-
tance to the threshold of the instability, a is of order
one, x and z will be of the order ε1/2 and d/dt of
order ε1/4. If we add now the irreversible unfolding
terms we obtain

d2x

dt2
= ε− x2 + azx± z2 − ν dx

dt
,

dz

dt
= −µz + γx+ ρ (1)

where (ν, µ, γ) are of order ε1/4 and ρ is order ε3/4.
These equations have a saddle node bifurcation and
the stable branch can then lose stability through a
Hopf bifurcation. When the limit cycle, created in
the Hopf bifurcation, intersects the unstable initial
fixed point an homoclinic orbit appears and we can
have Shilnikov chaos. This scenario is easily ob-
served numerically through simulation of the previ-
ous equations (see Fig. 1).

We consider now the case of reflection sym-
metry in the (x, dx/dt) plane. If one has the in-
variance x → −x, dx/dt → −dx/dt, the reversible
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Fig. 1. Numerical simulation of Eq. (1) where ε = 1, a = 1,
ν = 0.1, ρ = 0, µ = 0.5, δ = 0.205.
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asymptotic normal form will be

d2x

dt2
= εx− x3 − zx ,

dz

dt
= 0 ,

where ε is the small parameter measuring the dis-
tance to threshold. Now z is of order ε, x and d/dt
are of order ε1/2. The sign of the cubic term has
been chosen to have a supercritical instability and
we remark that although one has dz/dt = 0 the role
of the neutral mode is not trivial since it renormal-
izes the threshold parameter ε in the first equation
and in fact we shall see that it will be responsible for
the instability when it couples with the other modes
through the small irreversible terms. Adding these
terms the asymptotic normal form becomes

d2x

dt2
= εx− x3 − zx− ν dx

dt
,

dz

dt
= −µz + ηx2, (2)

where we choose {ν, µ} positive (they represent
then dissipative effects), η positive or negative, and
the three parameters are of order ε1/2. When η is
negative the system has a Lyapunov function [Abar-
banel et al., 1993]. These equations are equivalent
to the Lorenz model through the change of variables

x =
x′

τo

y = (y′ − x′)η + µ

τo

z = z′
η + µ

τo
− x′2

τ2
o

where τo = |(η + µ)/(ν − (η + µ))|, σ = η + µ,
r = (ε − (η + µ)2 + ν(η + µ)), b = µ/τo, which
put Eqs. (2) in the standard Lorenz form

∂tx
′ = σ(y′ − x′)

∂ty
′ = Rx′ ∓ y′ − x′z′ (3)

∂tz
′ = −bz′ + x′y′

where the sign “∓” is determined by the sign of the
expression −ν + (η + µ). Equations (2) will be dis-
cussed in detail in the next section where we show
that they present Lorenz type chaos. These equa-
tions can be obtained in a very simple way due to

the symmetries of the problem: consider a dynam-
ical system of three variables (x, y, z) where the
origin loses stability through the (02)(0) instability,
which is invariant under the time reversal transfor-
mation t → −t, x → x, y → −y, z → z and which
has reflection symmetry in the (x, y) plane. Then
the system has necessarily the form

ẋ = y + yf(x2, y2, z) ,

ẏ = xg(x2, y2, z) ,

ż = xyh(x2, y2, z) , (4)

where f , g, and h are nonlinear functions. Since we
are interested in the quasi-reversible situation we
add small terms that break the time reversal sym-
metry and we expand in Taylor series

ẋ = y + f2,1,0yx
2 + f0,3,0y

3 + f0,1,1yz + f0,1,2yz
2

+µf1,0,0x+ µf1,0,1xz + · · · ,
ẏ = εx+ g3,0,0x

3 + g1,2,0xy
2 + g1,0,1xz

+ g1,0,2xz
2 + µg0,1,0y + µg1,0,0yz + · · · ,

ż = h1,1,0xy + h1,1,1xyz + µh0,0,1z + µh0,0,1x
2

+µh0,2,0y
2 + · · · .

Here g1,0,0 is the small control parameter term mea-
suring the distance to criticality and all the other
constants fa,b,c, gd,e,i and hj,k,l are of order one. The
parameter µ is small since it appears in all terms
breaking time reversal invariance (quasi-reversible
system). If we call ε the small parameter g1,0,0 then
we can easily check in the previous equations that
we must have ∂t ∼ O(

√
ε), x ∼ O(

√
ε), y ∼ O(ε),

z ∼ O(ε), µ ∼ O(
√
ε). We can then keep in the

equations the dominant terms in ε and obtain the
asymptotic form [Arneodo et al., 1985]

ẋ = y + µf1,0,0x ,

ẏ = g1,0,0x+ g3,0,0x
3 + g1,0,1xz + µg0,1,0y ,

ż = h1,1,0xy + µh0,0,1z + µh0,0,1x
2 , (5)

where the first equation is O(ε), the two other ones
of order O(ε

√
ε). The term µf1,0,0 can be eliminated

by the change of variables y′ = y + µf1,0,0x which
yields a renormalization of all the coefficients of the
previous equations. In the same way the term h1,1,0

can be eliminated putting z′ = z − h1,1,0(x2/2),
and if we make a final rescaling we obtain the nor-
mal form as given before in Eqs. (2). The analysis
we have done suggests that if in a quasi-reversible
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system a limit cycle becomes unstable when two
Floquet multipliers exp(±iω) collide at the point
(−1), a codimension one situation, the normal form
should be the Lorenz equations if the phase variable
associated with motion on the limit cycle decouples.
In this case, the reflection invariance is imposed au-
tomatically by the time dependent transformation
to the new variables which changes sign after one
period. These considerations explain the appear-
ance of the Lorenz attractor in the Poincaré section
of the problem studied in [Moon, 1997]. We shall
consider this problem elsewhere.

A prototype of reversible physical systems are
the Hamiltonian systems where the number of vari-
ables is always even. We shall show in the Ap-
pendix that the presence of a cyclic variable in the
Lagrangian of the system ensures the existence of
a neutral mode which is a conserved quantity and
reduces the number of first-order differential equa-
tions from 2n to (2n− 1).

3. Appearance of Chaos in the
Asymptotic Normal Form of the
(0)20 Instability with Reflection
Symmetry

Making appropriate scalings the asymptotic normal
form (2) can be written for ε > 0 as

dx

dt
= y

dy

dt
= x− x3 − xz − ν√

ε
y

dz

dt
= − µ√

ε
z +

η√
ε
x2 (6)

The reversible system, which corresponds to ν =
µ = η = 0, has the homoclinic solution

x0 = sech

(
(t− t0)√

2

)
z0 = 0 (7)

which is an unstable two-dimensional curve in the
(x, y) plane. We shall obtain now the condition of
persistence of this homoclinic curve when we con-
sider the irreversible terms, i.e. when ν,µ and η
do not vanish. We first write the equation for z in
integral form imposing the appropriate boundary
conditions for the homoclinic (x(t), y(t) and z(t)

must tend to zero for t→ ±∞)

z(t) =
η√
ε

∫ t

−∞
eµ
∗(s−t)x2(s)ds (8)

where µ∗ = µ/
√
ε. Replacing this expression in

the equation for x we obtain an exact integro-
differential equation

ẍ = x− x3 − ν√
ε
ẋ+

η√
ε
x

∫ t

−∞
eµ
∗(s−t)x2(s)ds

Let us consider ν/
√
ε and η/

√
ε as small quantities.

We put x = x0 + w in the latter equation, with w
of order O(ν/

√
ε, η/

√
ε). Then, keeping only linear

terms in w, we obtain the linear equation

Lw ≡
(
d2

dt2
+ 3x2

o − 1

)
w = I ,

I ≡ − ν√
ε
ẋ+

η√
ε
x(t)

∫ t

−∞
eµ(s−t)x2(s)ds . (9)

The solvability condition for w in the previous
equation gives a Melnikov type condition for the
persistence of the homoclinic. The condition is
〈I, dx0/dt〉 = 0, where 〈·, ·〉 is the usual scalar prod-
uct. Explicitly one obtains the following relation

ν = 2η

1− µ√
ε

∫ ∞
−∞

dtx2
o(t)

∫ t

−∞
dseµ(s−t)x2

o(s)∫ ∞
−∞

dt(∂txo)
2

 .
(10)

We remark that this result is valid for arbitrary
µ since the homoclinic (7) is a solution of (6) for
ν = η = 0 and Eqs. (8) and (10) make no assump-
tions on µ.

Numerical calculation of the integral and its in-
terpolation are shown in Fig. 2. The relation can
be approximated by

ν = 2η

{
1− 3

2

µ√
ε

[
1.9996 − 1.92052

µ√
ε

+1.2441

(
µ√
ε

)2

− 0.387

(
µ√
ε

)3
]}

. (11)

It is obvious that the (02)(0) instability has an
homoclinic curve since it contains the (02) instabil-
ity which has one. From the previous formula we see
that when µ/

√
ε is small (µ � √ε) the persistence

condition reduces to

ν = 2η (12)
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Fig. 2. Numerical calculation of integral of the right side of
Eq. (10) and its interpolations.

The plane homoclinic (7) of the reversible
system becomes slightly three-dimensional for the
quasi-reversible system. Its explicit perturbed form
at lowest order is

xo = sec h

(√
t− to√

2

)
,

zo =
η√
ε

√
2e(1−µ∗

√
2)(t−to) sec h(t− to) . (13)

The linearization of Eq. (6) around the origin 0
(x = 0, y = 0, z = 0) tells us how the homo-
clinic behaves near the origin. We have one positive
eigenvalue λ1 and two negative eigenvalues (λ2, λ3).
They are

λ1 =
1√
ε

√ε+
ν2

4
− ν

2



λ2 = − 1√
ε

√ε+
ν2

4
+
ν

2


λ3 = − µ√

ε
(14)

The eigenvectors corresponding to (λ1, λ2) de-
termine two lines L1 and L2 in the (x, y) plane and
the eigenvector associated to λ3 has the direction of
the z-axis. The linear stable manifold of the origin,
i.e. the tangent plane at 0 to the stable manifold of
the origin, is the plane determined by (L2, z), and
the linear unstable manifold is the line L1. We have
two situations:

(a) If 0 < µ <
√
ε+ (ν2/4) − ν/2 the homoclinic

approaches the origin asymptotically by the z-
axis because |λ3| < |λ2| and it is unstable since
|λ3| < |λ1|.

(b) If 0 <
√
ε+ (ν2/4)− ν/2 < µ the homoclinic is

always stable and we can distinguish two cases:
if |λ3| < |λ2| the stable homoclinic approaches
the origin by the z-axis and if |λ3| > |λ2| it
approaches the origin by the line L2.

We shall analyze case (a) which is easy to real-
ize taking µ small enough and adjusting η to have
ν = 2η. In a sufficiently small neighborhood of the
origin the unstable homoclinic will then be asymp-
totically in the (L1, z) plane and a trajectory near
to the homoclinic is shown schematically in Fig. 3
where we have drawn a small square OCFA in the
plane (L1, z) in order to construct a useful map
to study the behavior of the system. If the tra-
jectory goes inside the square crossing the line l1
at point B its evolution will be essentially deter-
mined by the linear part of Eq. (12) till E where
it leaves the square. We make the natural assump-
tion that point E is reinjected isometrically in the
square at point B′, i.e. |CE| = |AB′| = u′. The
part of the trajectory joining E to B′ goes out of
the plane (L1, z) and since the homoclinic is unsta-
ble we have u′ = |AB′| > |AB| = |CD| = u. With
our assumptions the map u→ u′ is of the form

u′ = αuσ , σ =
µ

λ1
< 1 , (15)

where α is a constant depending on the details of
the system.

We recall here that due to the original reflec-
tion invariance one has, together with the curve of
Fig. 3, the symmetric situation through reflection
which corresponds to the equation u′ = −α|u|σ .
The latter equation is the map for the values of
the parameters for which the unstable homoclinic

Fig. 3. Schematic representation of the dynamical evolution
near the homoclinic solution.
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exists, i.e. the persistence condition (10) is satisfied.
If we perturb slightly the system the map u′ → u
becomes

u′ =

{
αuσ + ρ , u > 0 ,

−α|u|σ − ρ , u < 0 ,
(16)

where ρ can be positive or negative. When ρ is neg-
ative complex behavior appears and we have drawn
in Fig. 4 the two qualitatively different forms of
the map which correspond to |OQ| > |OP | and
|OQ| < |OP |. The lower branch of the map ob-
tained by reflection in the figures is due to the
original reflection symmetry (x → −x, y → −y) of
Eqs. (6).

The asymptotic normal form (2) shows that
for ε < 0 the origin O with coordinates (x = 0,
y ≡ dx/dt = 0, z = 0) is a stable fixed point
which loses stability through a pitchfork bifurca-
tion at ε = 0. For ε > 0 we have then the stable
solutions

(x, y, z) =

(
x± = ±

√
εµ

µ+ η
, y = 0, z =

εη

µ+ η

)
(17)

u

u'

P

0

P'
uP

-uP

Q

Q'

(a)

u'

u

P

P'

uP

-uP 0

Q

Q'

(b)

Fig. 4. Schematic representation of the mapping (16).

Linear stability analysis around these new solutions
leads to the characteristic polynomial

λ3 + λ2(µ + ν) + λ

(
µν + 2

ε

µ + ν

)
+ 2µε = 0

(18)

whose roots will be the eigenvalues associated with
the linear equation. Studying these roots we can
check that the solutions (17) will lose stability to un-
stable limit cycles through a Hopf bifurcation when
the following condition is satisfied

(ν + µ)

(
ν + 2

ε

η + µ

)
= 2ε (19)

If (η/
√
ε, ν/

√
ε, µ/

√
ε) � 1 the latter condition

reduces to

ν = η (20)

and recalling condition ν = 2η for the persistence of
the homoclinic (formula (12)) we shall see using the
map (16) that between these two conditions we shall
have, successively, “metastable” chaos, coexistence
of a chaotic attractor with the two point attractors
given by (17) and finally only a chaotic attractor
after the Hopf bifurcation. This well-known sce-
nario is represented schematically in Fig. 5 where
A corresponds to the pitchfork bifurcation giving
the solutions (17), B to the persistence condition
ν = 2η (relation (10) in general), C to the change
from case (a) to case (b) in Fig. 4, and D to the Hopf
bifurcation at ν = η (relation (19) in general). In
the region between B and C we have “metastable”
chaos as it can be seen from the map [Fig. 4(a)]
since for initial conditions in the interval (−uP , uP )

Fig. 5. Bifurcation diagram of the Lorenz model: (A) pitch-
fork bifurcation, (B) the homoclinic bifurcation, (C) appari-
tion of chaos and (D) inverse Hopf bifurcation.
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the system will remain for some time in that interval
until it finally goes out of it and tend to one of the
two point attractors given by expression (17) (it is
this kind of transient erratic behavior that is called
“metastable” chaos [Yorke & Yorke, 1979] and here
it corresponds to the time the system spends in the
interval (−uP ,uP )). When we approach point C in
Fig. 5 (which corresponds to |OQ| = |OP | in Fig. 4)
the time that the system remains in (−uP ,uP ) for
an initial condition in that interval increases and
when we cross C we have |OQ| < |OP | [Fig. 4(b)]
and the system never leaves the interval. We have
then between C and D a strange attractor coexist-
ing with the two point attractors given by (17) and
as we proceed from C to D the basin of attraction
of the strange attractor grows until D becomes the
only attractor

In case (b) the Hopf bifurcation will be super-
critical to stable limit cycles leading to a stable ho-
moclinic curve through a first homoclinic bifurca-
tion. A cascade of homoclinic bifurcations ending
in chaos will then occur in the gluing scenario de-
scribed in [Arneodo et al., 1981]. This scenario is
only possible with the plus sign in the second equa-
tion of the Lorenz model as given by (3).

4. A Mechanical Example of the
(02)(0) Instability with Reflection:
the Lorenz Pendulum

The system consists of a pendulum oscillating in a
vertical plane fixed with respect to a support which
rotates around a fixed vertical axis [Clerc et al.,
1999]. A constant external torque τ (see Fig. 6)
is applied to the support. The kinetic energy of the
system is

T =
1

2
(I +ML2 sin2 θ)φ̇2 +

1

2
ML2θ̇2 (21)

where M is the mass of the particle, L is the length
of the pendulum, and I is the moment of inertia
of the support with respect to its vertical axis of
rotation. The potential energy due to gravity is

V = −Mgl cos θ (22)

and the Hamiltonian is

H =
1

2

P 2
1

ML2
+

1

2

P 2
2

(I +ML2 sin2 θ)

−Mgl cos θ (23)

in terms of the generalized momentum

P1 =
∂L
∂θ̇

= ML2θ̇ ,

P2 =
∂L
∂φ̇

= (I +ML2 sin2 θ)φ̇ (24)

where L ≡ T − V is the Lagrangian. Hamilton’s
equations are

Ṗ1 =
ML2

2
sin(2θ)

(
P2

I +ML2 sin2 θ

)2

−MgL sin(θ) , (25)

θ̇ =
P1

ML2
,

Ṗ2 = 0 ,

φ̇ =
P2

(I +ML2 sin2 θ)
, (26)

and we see that we are in the situation described
in the Appendix since φ is a cyclic variable corre-
sponding to the conservation of the total angular
momentum with respect to the vertical axis which
is here P2. We can then consider the dynamical sys-
tem formed by the first three equations of the latter
set of equations which are invariant under the two
time reversal transformations (see Eqs. (A.12) and
(A.17))

t→ −t, θ → θ, φ→ φ, P1 → −P1, P2 → ±P2 ,

(27)

θ

φ

Fig. 6. Schematic representation of Lorenz pendulum.
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and also have the reflection symmetry (θ → −θ,
P1 → −P1). We can write the dynamical system as

ML2θ̈ =
ML2

2
sin(2θ)

(
P2

I +ML2 sin2 θ

)2

−MgL sin(θ) , (28)

Ṗ2 = 0 , (29)

These equations have a stationary solution where

P2 is an arbitrary constant P
(0)
2 and θ = θ̇ = 0. We

put P
(0)
2 ≡ IΩ, where Ω, which is defined by the

last equality, is the angular velocity with respect to

the vertical axis. Displacing P2 = P
(0)
2 + p2, scaling

the time as t′ =
√
g/Lt, and defining θ̃(t′) = θ(t),

ς(t′) = p2/P
(0)
2 , we obtain the dimensionless form

d2θ̃

dt′2
= sin(2θ̃)Ω̃2 1 + 2ς + ς2

(I + α sin2 θ̃)2
− sin(θ̃) ,

dς

dt′
= 0 , (30)

with Ω̃ ≡ Ω
√
L/g, α ≡ML2/I. The stationary so-

lution is now (θ̃ = dθ̃/dt′ = ς = 0) and expanding
around it we obtain the truncated form

d2θ̃

dt′2
= εθ̃ − σθ̃3 + 2Ω̃ςθ̃

dς

dt′
= 0 , (31)

where ε ≡ Ω̃2 − 1 is the bifurcation parameter and
σ is

σ ≡ 4Ω̃2 − 1

6
+ 2Ω̃2α . (32)

We see immediately that at ε = 0 the latter equa-
tions present the (02)(0) instability since linearly
they are

d

dt′


θ̃

dθ̃

dt′

ς

 =


0 1 0

0 0 0

0 0 0




θ̃

dθ̃

dt′

ς

 (33)

For ε positive the solution is unstable and σ is pos-
itive: the bifurcation is supercritical. We can now
justify the truncated form (31) since for ε small one
has ∂t ∼

√
ε, θ̃ ∼ √ε, ς ∼ ε, and then one can

check that the other terms in the Taylor expan-
sion of (30) are of higher order in ε. The scaling
(θ̃ = x/

√
σ, ς = −z/(2Ω̃2)) gives the final form

d2x

dt′2
= εx− x3 − zx

dz

dt′
= 0 , (34)

which is invariant under the time reversal transfor-
mation

t′ → −t′, x→ x, z −→ z (35)

in agreement with formula (A.24) of the Appendix.
We shall add now the small irreversible terms

which will break the invariance under (35). These
terms will be of two types: dissipative effects and
injection of kinetic energy. We go back to Eqs. (28)
and (29) where P2 = (I + ML2 sin2 θ)φ̇ is the to-
tal angular momentum with respect to the vertical
axis and since we inject energy through a constant
external torque τ applied to the support Eq. (29)
will get a term τ on the right-hand side. Dissipation
will occur through two mechanisms:

• friction in the rotation of the support around its
axis which will add a term −µ̃φ̇ to Eq. (29).

• loss of energy due to the motion of the pendu-
lum of mass M in the fluid surrounding it (for
example the atmosphere).

This last effect is modelized by Stokes’s law
which says that the force on the sphere moving in
the fluid is F = −λu, where λ is a constant and u
the velocity of the center of mass. This force will
then add terms −ν̃θ̇ in Eq. (28) and −ν̃ sin2(θ)φ̇ in
Eq. (29), with ν̃ ≡ λL2. We obtain the equations

ML2θ̈ =
ML2

2
sin(2θ)φ̇2 −MgL sin(θ)− ν̃θ̇

d

dt
[(I +ML2 sin2 θ)φ̇] = τ − µ̃φ̇− ν̃ sin2(θ)φ̇

(36)

we put τ = µ̃Ω, with Ω the order one, since we want
the injection of energy to be of the same order of
the dissipations characterized by the small coeffi-
cient (µ̃, ν̃) which we take to be of the same order
(notice that all the coefficients as written in the lat-
ter equations are positive). We rewrite finally our
equations in terms of the angular momentum P2

which we used in the reversible case, where it was



The Stationary Instability in Quasi-Reversible Systems 599

� � � � � � � �
� � � �

�
� � � �

� � 
 �

 � 

�

Fig. 7. Numerical simulation of Lorenz pendulum [Eq. (36)]
with Ω = 1.4142, ν = 0.1210, I = 0.3770, µ = 0.037.

a conserved quantity. Equations (28) and (29) are
then replaced by

θ̈ =
1

2
sin(2θ)

(
P2

I +ML2 sin2 θ

)2

− g

L
sin(θ)− ν̃

ML2
θ̇

Ṗ2 = µ̃

(
Ω− P2

I +ML2 sin2 θ

)

− ν̃ sin2(θ)P2

I +ML2 sin2 θ

The stationary solutions is (θ = θ̇ = 0, P2 = IΩ),
where Ω, which was a free parameter for the re-
versible system, is now fixed by the external torque
τ. Doing the same scaling as before, i.e. all the steps
leading to Eqs. (34) starting from Eqs. (28) and
(29), we obtain

d2x

dt′2
= εx− x3 − zx− ν dx

xt

dz

dt′
= −µz + ηx2, (37)

where

µ =
µ̃

I

√
g

L
, ν =

ν̃

αI

√
g

L
,

η =
2Ω̃2(ν − µ)

4Ω̃2 − 1

6

I

ML2
+ 2Ω̃2

(38)

We have then exactly obtained the normal form
of the (02)(0) instability of Sec. 3 and we can have η
positive which is necessary in order to have chaotic

behavior. Numerical simulations of Eqs. (36) are
shown in Fig. 7. It is simple to check here that
one can satisfy the condition ν = 2η for the persis-
tence of the homoclinic curve (formula (10)), but it
is not possible to satisfy the condition of Hopf bifur-
cation (ν = η) and consequently the whole Lorenz
scenario cannot be observed. We shall see in the
next section that the replacement of the ideal pen-
dulum used here by an asymmetric physical pendu-
lum introduces a new parameter which eliminates
the previous problem.

5. The Physical Lorenz Pendulum

We shall make here some changes in the pendulum
of the previous section. The difference is that we
replace the ideal pendulum, i.e. the homogeneous
sphere of mass M attached by a rod of negligible
mass to the support, by a physical pendulum. The
system at rest is represented schematically in Fig. 8,
where O is the point of contact of the physical pen-
dulum with the support, OZ is the vertical axis of
rotation of the support, and P is the center of mass
of the pendulum which is in the z-axis. We assume
OP is one of the principal axis of inertia of the pen-
dulum at the point O, then the two other principal
axis can be chosen as (OX, OY ), where OX is or-
thogonal to the plane (OY, OZ) of the drawing and
gravity acts in the direction of the negative z-axis.
We denote by (I∗1 , I

∗
2 , I

∗
3 ) the moments of inertia

X
Y

Z

O

P
Fig. 8. Schematic representation of physical Lorenz
pendulum.
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with respect to (OX, OY, OZ), respectively. Let
φ be the angle measuring the rotation of the sup-
port around the fixed vertical axis OZ measured
as before and I the moment of inertia of the sup-
port with respect to OZ. We consider the frame
of reference (OX, OY, OZ) as fixed with respect to
the support. The pendulum oscillates in the plane
(OX,OZ) and we call θ the angle between the line
OP , which is contained in the plane, and the neg-
ative z-axis (see Fig. 6 where θ is indicated for the
ideal pendulum). The kinetic energy of the support
is then T (S) = (1/2)I(dφ/dt)2. The kinetic energy
T (P ) of the pendulum will be

T (P ) = +
1

2
(I∗3 + (I∗1 − I∗3 ) sin2(θ))

(
dφ

dt

)2

1

2
I∗2

(
dθ

dt

)2

(39)

and the total kinetic energy T of the system will be
T = T (S) +T (P ). If L = |OP | and M is the mass of
the pendulum one has

I∗1 = ML2 + I1, I
∗
2 = ML2 + I2, I

∗
3 = I3 (40)

where (I1, I2, I3) are the moments of inertia with
respect to axis parallel to (OX, OY, OZ) passing
through the center of mass P of the pendulum. For
an anisotropic pendulum I1 6= I2 and in that case
Stokes’s law will give two different coefficients ν̃ and
χ̃ in the equations for θ̈ and φ̈ as a consequence of
different contact sections with the fluid. The other
forces and the torque will be the same as before and
the new equations of motion for θ and φ will be

(ML2 + I2)θ̈ =
(ML2 + I1 − I3)

2
sin(2θ)φ̇2

−MgL sin(θ)− ν̃θ̇

d

dt
[(I + I3 + (ML2 + I1 − I3) sin2 θ)φ̇] =

τ − µ̃φ̇− χ̃ sin2(θ)φ̇ (41)

The reversible system (τ = µ̃ = χ̃ = ν̃ = 0) has the
Hamiltonian

H =
1

2

P 2
1

I2 +ML2
−Mgl cos θ

+
1

2

P 2
2

(I + I3 + (ML2 + I1 − I3) sin2 θ)
(42)

and the corresponding Hamilton’s equation are

Ṗ1 =
sin(2θ)(ML2 + I1 − I3)

2

×
(

P2

(I + I3)(1 + α sin2 θ)

)2

−MgL sin(θ) ,

θ̇ =
P1

I2 +ML2
,

Ṗ2 = 0 ,

φ̇ =
P2

(I + I3)(1 + α sin2 θ)
, (43)

where α ≡ (ML2+I1−I3)/(I+I3). We are again in
the case of the Appendix, and the three first equa-
tions above are a dynamical system which is invari-
ant by the time reversal transformations (t → −t,
θ → θ, P1 → −P1, P2 → ±P2). Putting τ = µ̃Ω we
add now the irreversible terms to obtain Eqs. (41)
which we write now in the form

θ̈ =
sin(2θ)(ML2 + I1 − I3)

2(ML2 + I2)

×
(

P2

(I + I3)(1 + α sin2 θ)

)2

−MgL sin θ

I2 +ML2
− ν̃

(ML2 + I2)
θ̇ ,

Ṗ2 = µ̃

(
Ω− P2

(I + I3)(1 + α sin2 θ)

)

− χ̃ sin2(θ)P2

(I + I3)(1 + α sin2 θ)
(44)

These equations again have the fix point (θ =

θ̇ = 0, P2 = P
(o)
2 = (I + I3)Ω). We define the new

variables

x(t′) =
√
σθ(t), z(t′) = − 2Ω̃

P
(o)
2

(P2 − P (o)
2 ) ,

t′ = t

√
MgL

ML2 + I1
(45)

where Ω̃ ≡
√

(ML2 + I2 − I3)/MLgΩ, σ =
(4Ω̃2 − 1)/6 + 2Ω̃2α. The fixed point is now
(x = dx/dt = z = 0) and expanding around it we
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obtain as expected

d2x

dt′2
= εx− x3 − zx− ν dx

xt

dz

dt′
= −µz + ηx2, (46)

where the bifurcation parameter ε ≡ Ω̃2 − 1 and

ν =
ν̃(ML2 + I1 − I3)

α(I + I3)(ML2 + I1)

√
MLg

ML2 + I1

µ =
µ̃

I + I3

√
MLg

ML2 + I2
, η =

2Ω̃2(χ− µ)

σ

χ =
χ̃

I + I3

√
MLg

ML2 + I2
(47)

We have again the (02)(0) instability at ε = 0 but
now we have a new parameter χ which will allow
us to realize the condition of the Hopf bifurcation
which could not be realized with the ideal pendulum
of the previous section.

6. Conclusion

We have considered in this paper the stationary in-
stability (resonance at zero frequency) in the pres-
ence of a neutral mode for quasi-reversible systems.
We have shown that when one has reflection sym-
metry for the variables associated with the reso-
nance the asymptotic normal form is the Lorenz
model which has then a universal character. Due
to this the Lorenz equations will describe numerous
physical systems near the threshold of this insta-
bility. Some examples studied are (a) The Lorenz
pendulum (this paper); (b) the onset of chaos in the
one-dimensional reversible Ginzburg–Landau equa-
tion [Clerc et al., 2000]; (c) the quasi-reversible
limit cycle which loses its stability through period
doubling [Moon, 1997]; (d) the interaction of two
Bose condensates of attractive atoms [Coullet &
Vandenberghe].
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Appendix

We consider a dynamical system

dq

dt
= A(q) , q ≡ (q1, . . . , qn) (A.1)

where A = (A1(q), A2(q), . . . , An(q)) is an n-
dimensional vector field. The system (A.1) will be
time reversal if there exists a linear transformation
S (an n× n matrix) such that

A(q) = −SA(Sq), S2 = 1 (A.2)

Then the transformation

t′ = −t, q′(t′) = Sq(t) (A.3)

leaves Eqs. (A.1) invariant. Any transformation of
the form (A.3) with S2 = 1 is called a time reversal
transformation and we say that a dynamical system
is reversible if it is invariant under some time rever-
sal transformation (reversibility is then defined with
respect to a given time reversal transformation).
Let q(0) be a fixed point of (A.1), i.e. A(q) = 0.
Putting q = q(0) + q′ we can obtain from (A.1) the
equation for q′ which is

dq′

dt
= Jq′ +O(q′2) (A.4)

where J has matrix elements

Jµν =
∂Aµ

∂qv

∣∣∣∣
q′=q′(0)

(A.5)

The eigenvalues of J determine the stability of the
fixed point. If Sq(0) = q(0), i.e. if the fixed point
is invariant under S, one has the property that if
λ is an eigenvalue of J then −λ is also one (this is
a direct consequence of (A.2)). Furthermore since
Eqs. (A.1) are real we have that λ and λ∗ are
eigenvalues simultaneously. Consequently a com-
plex eigenvalue λ = a + ib generates three others:
λ∗ = a−ib, −λ = −(a+ib), and −λ∗ = −a+ib. We
see then that for reversible systems linear growth
can only be avoided if all eigenvalues are in the
imaginary axis and in that case we call the fixed
point an equilibrium. If we have eigenvalues with
real parts the system will be unstable. It follows
from the previous properties that if a reversible sys-
tem has an odd number of variables (n = 2m + 1
in (A.1) with m an integer) then it has necessar-
ily a zero eigenvalue. An important example of
reversible dynamical systems are the Hamiltonian

systems when the Hamiltonian is quadratic in the
momentums, i.e. if it has the form

H(p, q) =
gµν(q)

2
pµpν + V (q) (A.6)

where we sum over repeated indices from 1 to
n, q = (q1, . . . , qn), p = (p1, p2, . . . , pn). The
time reversal transformation which leaves Hamil-
ton’s equations invariant is

t→ −t, qµ → qµ, pµ → −pµ µ = 1, . . . , n

(A.7)

We shall discuss now the appearance of a neu-
tral mode at zero frequency in reversible Hamilto-
nian systems. If the variable qn is cyclic, i.e. it does
not appear in H(p, q), gµν(q) = gµν(q1, . . . , qn−1),
V (q) = V (q1, . . . , qn−1), one has a conserved quan-
tity which is the conjugate momentum pn since
ṗn = 0. The Hamilton’s equations will be (Latin
indices go from 1 to (n − 1), Greek indices from 1
to n, ∂µ = ∂/∂qµ)

q̇j = gjµ(q1, . . . , qn−1)pµ, j = 1, . . . , n− 1 (A.8)

ṗj = −∂jV (q1, . . . , qn−1)− ∂jg
µν(q)

2
pµpν (A.9)

ṗn = 0 (A.10)

q̇n = gnµ(q1, . . . , qn−1)pµ (A.11)

Equation (A.10) can be integrated giving pn =

p
(o)
n = constant. We can then replace pn(t) by

p
(o)
n in Eqs. (A.8) and (A.9) and we obtain a

set of 2(n − 1) autonomous first order differen-
tial equations for (p1, . . . , pn−1; q1, . . . , qn−1) in

which p
(o)
n appears as a parameter. Once we know

(p1, p2, . . . , pn−1, q
1, q2, . . . , qn−1) as functions of t

through integration of Eqs. (A.9) and (A.10) the
variable qn(t) is determined by direct integration
from (A.11). We see then that the system is re-
duced to the (2n−1) equations (A.8)–(A.10) which
are a time reversible dynamical system invariant
under the time reversal transformation

t→ −t, qj → qj, j = 1, . . . , n− 1 ;

pµ → −pµ , µ = 1, . . . , n (A.12)

We now make the further assumption that the sym-
metric matrix gµν is such that

gnj = 0 , j = 1, . . . , n− 1

gnn 6= 0 (A.13)
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Equations (A.8)–(A.10) take now the form
(j, k, l = 1, . . . , n− 1)

q̇j = gjk(q1, . . . , qn−1)pk (A.14)

ṗj = −∂jV (q1, . . . , qn−1)− ∂jg
kl(q)

2
pkpl

− ∂jg
nn(q)

2
p2
n (A.15)

ṗn = 0 (A.16)

and we can check that they are invariant under the
new time reversal transformation

t→ −t , pn → pn

(qj, pj)→ (qj , −pj) , j = 1, . . . , n− 1 ; (A.17)

The set of equations (A.14)–(A.16) are then invari-
ant under two time reversal transformations: (A.12)
and (A.17). Fixed points of these equations are of
the form

p1 = p2 = . . . = pn−1 = 0 ,

pn = p(o)
n ; q = q1

(o), q
2 = q2

(o), . . . , q
n−1 = qn−1

(o)

(A.18)

where {qj(o)} satisfy the set of (n − 1) equations

(j = 1, . . . , n− 1)

∂jg
nn(q(o))

2
p2
n = −∂jV (q1

(o), . . . , q
n−1
(o) ) (A.19)

We remark that for p
(o)
n 6= 0 these fixed points

are time reversal invariant, i.e. invariant under S,
only for the time reversal transformation (A.17).

They will also be invariant under (A.12) if p
(o)
n = 0.

Let us write now our equations in terms of the

displaced variables (p1, . . . , pn−1, Pn; Q1, . . . , Qn)
defined by

pn = p(o)
n + Pn

qj = qj(o) +Qj, j = 1, . . . , n− 1 ; (A.20)

We put

Ṽ (Q1, . . . , Qn) ≡ V (q1
(o) +Q1, . . . , qn(o) +Qn) ,

g̃µν(Q1, . . . , Qn) ≡ gµν(q1
(o) +Q1, . . . , qn(o) +Qn) .

The new equations are

Q̇j = g̃jk(Q1, . . . , Qn)pk (A.21)

ṗj = −∂jṼ (Q1, . . . , Qn)

− ∂j g̃
jk(Q1, . . . , Qn)

2
pkpl

− ∂j g̃
nn(q)

2
(p(o)
n + Pn)2 (A.22)

Ṗn = 0 (A.23)

The time reversal transformation (A.17) implies
now that Eqs. (A.21)–(A.23) will be invariant under
the time reversal transformation

t→ −t , Pn → Pn

(qj, pj)→ (qj , −pj) , j = 1, . . . , n− 1 ; (A.24)

This last case corresponds exactly to the exam-
ple of the pendulum we have presented in Sec. 3
and we have remarked that in the final vari-
ables (p1, . . . , pn−1, Pn; Q1, . . . , Qn) obtained af-
ter the displacement (A.20) only one time reversal
transformation leaving the new equations invariant
survives, namely (A.24).


