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The Maxwell-Bloch description of 1r1 resonances
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Abstract

We discuss the generic 1r1 resonance of a reversible system weakly perturbed by dissipative terms. We show that the
Maxwell-Bloch equations are the asymptotic normal form of the system when the energy is injected by coupling with a zero
frequency mode. q 1999 Elsevier Science B.V. All rights reserved.

PACS: 42.65.-k; 05.45.-a

A particularly common instability occurs in re-
versible systems when, for a critical parameter value,
the frequencies of two modes coincide. It is the 1r1
resonance and the instability sets in because the
frequencies become complex. The crossing of two
eigenvalues, although not generic, is frequently ob-
served when mechanical or electrical oscillators are

w xcoupled. As was noted by Rocard 1 , an asymmetri-
cal coupling of the two oscillatory modes with an
external field is necessary to observe the instability.
From a physical point of view the energy flows from
an external source into the oscillatory modes through
resonant couplings. The properties of the resonance
persist when weak dissipation is taken into account.
Fluids, elastic membranes and optical cavities among
others provide examples of systems which exhibit
such ‘‘quasi-reversible’’ behaviour. One has in fact

) Corresponding author.
1 Professeur a l’Institut Universitaire de France.

w xtwo generic instabilities 2,3 in ‘‘quasi-reversible’’
systems: the ‘‘Lorenz’’ case where the crossing of
the eigenvalues is at zero frequency, and the 1r1
resonance where the crossing occurs at a finite fre-
quency. It should be pointed out that in a series of

w xremarkable papers Gibbons and collaborators 4
Žstudied the dispersive instability crossing at finite

.frequency weakly perturbed by dissipation in ex-
tended systems. We shall see here that we can arrive
at the same conclusions and results with a singularity
theory approach which allows us to classify quasi-re-
versible systems according to their symmetries.

In this paper we focus on the instability at finite
frequency called ‘‘confusion of frequencies’’ by Ro-
card and we show that it is described by a set of
amplitude equations which are formally equivalent
through a simple change of variables to the

Ž .Maxwell-Bloch MB equations describing the inter-
action of the electromagnetic field and an assembly
of two-level atoms. We recall that the MB equations
are equivalent to the Lorenz complex equations as

w xshown by Haken 5 and that Abraham and Weiss
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have presented experimental evidence of Lorenz dy-
w xnamics in lasers 6 . In the context of optics the MB

equations are derived from the microscopic equa-
tions where from the beginning the electromagnetic

Ž .field is treated classically the semi-classical model .
One then uses the slowly varying envelope approxi-

w xmation and obtains the MB equations 7 . In fact any
reversible system displaying the 1r1 resonance will
be described when it is weakly perturbed by terms
violating time reversal and when energy is injected
through a zero frequency mode by the MB equations
since these equations are equivalent to its normal
form.

In the first, mainly pedagogical part we describe
the 1r1 resonance. Then we derive the normal form
and show its equivalence to the MB equations. We
conclude with some implications of these results.

A reversible system is a dynamical system which
is invariant by time reversal. If the dynamical system

Ž n.is ugR

E us f u , 1Ž . Ž .t

w xreversibility means mathematically 8 that one has a
transformation P of Rn such that P 2 s identity
Ž .involution and

Py1 f P u syf u . 2Ž . Ž . Ž .
Ž .Then one can immediately check that Eqs. 1 are

invariant by t™yt, u™P u. The most important
property of reversibility is restricting the stability
spectrum of reversible solutions that is symmetrical
with respect to the imaginary and the real axis in the
complex plane. A solution is reversible if it is invari-
ant under the reversibility transformation. Let us

Ž .suppose that Eq. 1 has the simple solution us0.
This solution is clearly reversible. The Jacobian op-

Df Ž .erator LL' 0 anti-commutes with P . The trivialDu

solution is stable only if the eigenvalues of the
Jacobian matrix lie on the imaginary axis. Let us
assume that for some value of a parameter two of
these eigenvalues coincide. Generically the corre-
sponding eigenvectors coincide also. For this param-
eter value the Jordan form of the Jacobian reads

iV 1 0 0 0
0 iV 0 0 0

, 3Ž .0 0 yiV 1 0
0 0 0 yiV 0� 0
0 0 0 0 L

Ž .where L is a diagonal matrix of dimension ny4 .
In the basis of eigenvectors and generalized eigen-

Ž .vectors of LL Eq. 1 linearized around the trivial
solution reads

E As iV AqB , E Bs iV B , E ÕsLÕ , 4Ž .t t t

with
lsny4

usAFqBCq c.c. q Õ x . 5Ž .Ý l l
ls1

Here the x are the eigenvectors corresponding tol

the eigenvalues iv , F the eigenvector correspond-l

ing to the eigenvalue iV , and C the generalized
Ž .eigenvector LLCs iVCqF . Linearly the modes

Õ decouple and the time reversal transformation for
Ž .the first variable in Eq. 4 is t™yt, A™A, B™

ŽyB A and B are the complex conjugates of A and
.B . The change of variables

˜ ˜AsAexp iV t , BsBexp iV t 6Ž . Ž . Ž .
Žrenders the linear equation in the form omitting the

.tildes

A s0 . 7Ž .t t

Then the solution restricted to the generalized iV

eigenspace reads

us AFqA C exp iV t q c.c. 8Ž . Ž . Ž .t

Close to the confusion of frequencies the reversible
linear unfolding depends on two small parameters d

and e and one has

A s id A qe A , 9Ž .t t t

whose interpretation is the following:
Ø The parameter d is the ‘‘detuning’’. When es0,

Ž .the amplitude equation 9 reads

A s id A . 10Ž .t t t

Its general solution is

AsA qA exp id t ,Ž .0 1

where A and A are arbitrary complex numbers.0 1

The solution is then

usA exp iV t FqA exp i V tqdŽ . Ž .Ž .0 1

=w xFq idC ,

which explicitly shows that d is the mismatch
frequency between the frequencies of the two
modes.
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Ø The parameter e is the control parameter. The
dŽ .change of variables AsAexp i t transforms Eq.2

Ž .9 in

d 2

A s ey A . 11Ž .t t ž /4

Its general solution reads

2d
AsA exp yi ye t(y ž /4

2d
qA exp i ye t ,(q ž /4

where A represent two arbitrary complexq,y
numbers. The effect of negative e is to split away
the frequencies. The minimum distance between
the two eigenvalues is reached when d s0 and it

'is given by Dvs2 e . Positive values of e lead
to instability. More precisely, the instability oc-

' 'curs when y2 e -d-2 e . In this parameter
regime the amplitude grows exponentially and its

dfrequency is locked on Vq .2

The simplest example of a 1r1 resonance is an
w xaircraft wing. Following Rocard 1 we can model

the behaviour of a wing with a flexion and a torsion
mode. From elasticity theory it follows that these
two modes are coupled symmetrically when the plane

w xis at rest 1 . However, if the aircraft is in motion
with constant velocity, the modes acquire an asym-
metric coupling through a term proportional to the
velocity squared. Let u and u represent the torsion1 2

and the flexion modes, v and v the equilibrium1 2

frequencies of these two modes, and V the velocity
of the aircraft. The equations of motion are

d2u d2u1 2 2 2q I syv u yrV u ,1 1 22 2dt dt

d2u d2u2 1 2q I syv u , 12Ž .2 22 2dt dt

where I is the moment of mutual inertia and r a
parameter.

We can easily understand that the asymmetric
term is responsible for the instability, writing the

Žequations in the form we take v sv sV for1 2
.simplicity

d2u12 2 2 21y I syV u q IV yrV u ,Ž . Ž .1 22dt

d2u22 2 2 21y I s IrV yV u q IV u , 13Ž . Ž .Ž . 2 12dt

where we can see directly that for some values of
IrV 2 the aircraft wing becomes unstable. When the

2 2 2'Ž .parameters satisfy IrV s2V 1y 1y I which
fixes VsV , the system presents an instability withc

Ž 2 .1r4finite frequency "V 1y I . A linear change of
˙ ˙Ž . Ž .variables from u ,u ,u ,u to A, A, A , A gives1 1 2 2 t t

for the amplitude A the equation

2 IrV DV 2 IrV DVc c
A s Ay i A , 14Ž .t t t1r424 4V 1y IŽ .
where DVsVyV , and we see that the system isc

unstable for positive DV.
Ž .The limitation of the amplitude A in Eq. 9

arises from the nonlinear unfolding of the instability
whose asymptotic normal form reads at leading order

< < 2A s id A qe Aya A A , 15Ž .t t t

where we have assumed that the eigenmodes associ-
ated with the frequencies v uncouple from thel

dynamics. This is the generic situation since it corre-
sponds to the case in which these frequencies are not
rationally related to V . The truncation of the ampli-
tude equations is obtained assuming the following
scaling relations between the parameters, the time

'and the amplitude: E ;d; e ;A. The sign of thet
Ž .nonlinear term in Eq. 15 controls the saturation of

the instability: when a is positive we have satura-
tion, and if a is negative the instability is not
saturated. The mechanism of saturation is, as usual,
an amplitude frequency effect. When the amplitude
grows the frequency changes, reaching the border of

2 d 2
< <the resonance when a A sey . Besides thes 4

Ž .stationary solution Eq. 15 has periodic and
quasiperiodic solutions. In order to calculate the
normal form up to cubic order we must calculate the

Ž Ž ..solution u see Eq. 9 up to quadratic order:

˙ 2us AFqAC q c.c. qA F exp 2 iV tŽ .Ž . 20

2 ˙ 2 2̇< < < <q A F q A C qA C q c.c. , 16Ž .11 11 20
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and one can show that in this case the normal form
w xto any polynomial order reads 9

2< <A s iA f A ,i AA yAAŽ .ž /t t t t t

2< <qAg A ,i AA yAA , 17Ž .Ž .ž /t t

where f and g are real-valued functions of their
arguments. This system is an integrable dynamical

w xsystem 10 . One can easily check that the asymp-
Ž .totic form of the general reversible normal form 17

Ž .the above mentioned scalings is Eq. 15 . We remark
that in the case of non reversible, i.e., generic dy-
namical systems, f and g are complex-valued func-

w xtions 9 .
Weak dissipation breaks the reversibility transfor-

Ž .mation t™yt, A™A, and if we add to Eq. 15
the terms which break the time reversal invariance,

'two new parameters m; e and n;e will appear.
The asymptotic amplitude equation then reads

< < 2A s id A ym A qe Aq in Aya A A . 18Ž .t t t t

Positive values of m will correspond to the standard
Ž .dissipation, and linear stability analysis of Eq. 18

leads to the stability condition

22 2 2(m y4eG m q4e q16n . 19Ž .Ž .
Ž .The term in A in Eq. 18 can be eliminated by

n˜putting AsAexp i t , and from now on we ignoreŽ .m

it.
We now turn to the particularly important ques-

tion of the energy. In the amplitude equation the
energy injection depends on the parameter e . If
es0 and a is positive, all solutions converge to
zero, while for negative a the initial conditions
above a certain amplitude diverge in finite time. The
resonant couplings have a finite frequency: for ex-
ample if one considers the effect of a parametric

Ž .forcing at frequency 2 VyD , we end up with an
amplitude equation which reads

2< <A s id A ym A ya A A qg Aexp y2 iDt ,Ž .t t t t

20Ž .

where g measures the intensity of the forcing. A
more interesting question concerns the possibility of
coupling the system of oscillators with a time-inde-

pendent source. In order to realize such a coupling
we have to assume the existence of a zero frequency
mode which can directly couple with the external
field. Additional neutral modes can generically exist
in the case of reversible dynamical systems and are
usually associated with fundamental symmetries. Let
us assume that at the bifurcation the Jordan block of
the Jacobian operator is

iV 1 0
. 21Ž .0 iV 0ž /0 0 0

For the time reversal transformation t™yt, A™

A, z™z, where z is the amplitude of the neutral
mode, the reversible amplitude equation in leading
order will be

< < 2A s id A qz Aya A A , z s0 , 22Ž .t t t t

< < 2and asymptotically z; A . The interpretation is
now very clear: the additional neutral mode is actu-
ally a conserved quantity z, and for values z )0 of0

this quantity the instability sets in. We recall that in
the case of aircraft wings the conserved quantity is
related to the kinetic energy of the plane.

We now turn our attention to the more realistic
situation where weak dissipation is taken into ac-

Ž .count. We introduce in Eqs. 22 terms breaking time
reversal invariance and we obtain

< < 2A s ymq id A qz Aya A A ,Ž .t t t

< < 2z syn zyz qh A . 23Ž . Ž .t 0

We have here dissipation terms allowed by the
asymptotic normal form and also a forcing term z0

which measures the distance to the instability thresh-
old. These equations are the asymptotic normal form,
i.e., the leading order truncation, of the instability

Ž .associated with the Jordan block given by 21 . Two
new dissipative parameters appear in the equations:
n;A associated with the relaxation of the conserved
quantity, and h;A associated with the feedback of
the oscillation on the zero frequency mode.

We recall now that physically the resonance be-
tween an electromagnetic cavity mode and the atomic
oscillators is at the origin of the laser phenomenon.
0ne of the simplest descriptions of lasers consists in
the study of the interaction of an assembly of two-
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level atoms, described by the Bloch equations, and
the electromagnetic modes described classically by
the Maxwell equations. In the frame of the semi-
classical approximation and using the slowly varying
envelope approximation, the equations describing the
laser instability take the simple form of five ampli-
tude equations known as the Maxwell-Bloch equa-

w xtions 7 :

E EsykEqP , E Psy g qiD PygNE ,Ž .t t H

E Nsyg NyN q EPqEP , 24Ž . Ž .Ž .t I 0

where E, P and N represent, respectively, the elec-
tric field, the polarization and the population inver-
sion, k and g , g are the damping constants, D isH I
the detuning, and N is the pump parameter. If we0

remark now that dissipative effects are weak in
lasers, we have a quasi-reversible system whose

Ž .linear part at threshold is the matrix 21 since
energy is injected here through the population inver-
sion which is a zero frequency mode. We should

Ž .expect then Eqs. 24 to be equivalent to the normal
Ž .form 23 and this is easily proved by the following

change of variables:

Dk A
PskEqE E , Esexp yi t ,t ž /gqk 'g

zyDo 2< <Ns q E , 25Ž .
g

where

22D k DkŽ .
D 'gkq y ,o

gqk gqk

Ž . Ž .which transform Eqs. 23 in the MB equations 24 .
This shows then that the complex Lorenz equations
are together with the MB equations alternative ways
of writing the asymptotic normal form of the quasi-
reversible 1r1 resonance instability with a zero fre-

Ž .quency mode. We also remark that Eqs. 23 with
Ž .real coefficients ds0, i.e., no detuning are the

normal form when the eigenvalues coincide at zero
Ž . w xfrequency in the presence of the O 2 symmetry 2 .

Physical examples of this last situation are the weakly
w xdissipative baroclinic instability 11 , and the self

focusing in the quasi-reversible Ginzburg-Landau
w xequation studied by Malomed et al. 12 .

In conclusion, we have shown that the classical
1r1 resonance in quasi-reversible systems is de-
scribed by amplitude equations which are formally
equivalent to the Maxwell-Bloch equations describ-
ing the interaction between two-level atoms and the
electromagnetic field. An immediate consequence of
this result is the possibility of constructing a mechan-
ical or electrical analog of lasers. On the other hand,
since the Maxwell-Bloch equations appear as an
asymptotic normal form, it is possible to generalize
easily these equations by adding next order terms or
spatial effects. As a simple example, the term iaNA
in the equation for the complex amplitude of the
oscillation is known as the a effect and it is used in

w xthe modelling of semi-conductor lasers 13 . It de-
scribes an N-dependent detuning effect and in our
language it appears as a higher order dissipative
resonant term in the normal form. Another example

w xis the additional term used in Ref. 14 to generalize
the MB equations for a Raman laser.

Acknowledgements

The authors acknowledge support from the
CNRS-CONICYT program, the Fondecyt Interna-
tional Cooperation project, ECOS and Catedra Presi-´
dencial and the EU through the TMR grant FMRX-

Ž .CT96-0010. One of us P.C. thanks the support of
the ‘‘Institut Universitaire de France’’.

References

w x1 Y. Rocard, L’instabilite en mecanique, Masson et Cie., Paris,
1954.

w x2 M. Clerc, P. Coullet, E. Tirapegui, Lorenz bifurcation, sub-
mitted.

w x3 M. Clerc, P. Coullet, J.M. Gilli, E. Tirapegui, N. Vanden-
berghe, to appear in the P. Berge Memorial Volume.

w x Ž .4 J.D. Gibbons, M. McGuinness, Phys. Lett. A 77 1980 295;
Ž . Ž .Proc. R. Soc. London A 377 1981 185; Physica D 7

Ž .1983 126; A.C. Fowler, J.D. Gibbons, M. McGuinness,
Ž .Physica D 4 1982 139.

w x Ž .5 H. Haken, Phys. Lett. 53A 1969 77.
w x Ž .6 N.B. Abraham, C.O. Weiss, Optics Commun. 66 68 1988

437.
w x7 A. Newell, J. Moloney, Nonlinear Optics, Addison-Wesley,

Redwood, CA, 1992.
w x Ž .8 R. Devaney, Trans. Amer. Math. Soc. 218 1976 89.



( )M. Clerc et al.rOptics Communications 167 1999 159–164164

w x9 C. Elphick, E. Tirapegui, M. Brachet, P. Coullet, G. Iooss,
Ž .Physica D 29 1987 95.

w x Ž .10 G. Iooss, M.C. Peroueme, J. Differential Eqs. 102 1993 62.
w x Ž . Ž .11 J. Pedlosky, J. Atmos. Sci. 28 1971 587; 29 1972 680.
w x Ž .12 B. Malomed, A. Nepomnyashchy, Phys. Rev. A 42 1990

6238; M. Zaks, B. Malomed, A. Nepomnyashchy, Phys. Scr.
Ž .76 1996 143.

w x Ž .13 C. H Henry, IEEE J. Quamtum Electrom. QE-18 1982 259.
w x Ž .14 R.G. Harrison, W. Lu, P. Gupta, Phys. Rev. Lett. 63 1989

1372.


