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Mechanical Laser

Two coupled spherical pendulain
agravitational field, with a support,
which can rotate around the vertical
axis. The lower pendulum is cons-
trained to movein aplanethat is
orthogonal to the plane of the upper
pendulum.
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Nonlinear optical cavity : Light
Amplification by the Stimulated
Emission of Radiation
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where the terms proportional to «,~v. and v are dissipatives.
The nonlasing solution (equilibrium) is
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Stability of Equilibria

When all solutions of linearized equation at equilibrium are
stable (Lyapunov), the equilibrium is said to belinearlly stable
or linearized stable.
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Stable equilibrium " Codimension-One bifurcations
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Hamiltonian and time reversible systems

o If I isan eigenvalue, then sois-I.

characteristic spectrum spectral stability
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O There are two codimension-one spectral instabilities

1) Stationary instability 11) 1.1 resonance
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( The spectral instability can predict instability, but not stability! )

1:1 Resonance

Nearby thisinstability the system is decribed
by the normal form

OHA = QA+ B
HB = OB+ f(JA,i(AB* BA%),{\}) A+
ig (|A|,i(AB*  BA"),{\}) B,

wheref and g arereal functions, and { 1} is
a set of parameters.




The linear evolution around the zero solution(A = B = 0)

O A = iQA+ B,
0B =i (Q+8)B+eA,

introducing the rotating variables A = Ae™* = (z + iy) e*¥
and B = 8tAeiQt = (8,5:1: + ’l,aty) eiQt
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© Gyroscopic system.
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The gyscopic system is hamiltonian
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The eigenvalues of this equilibrium are

o= 11/2\/45 — 262 + 26/6% — 4e

Bifurcation Diagram
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The conservatitive quantities

2 2
)
E — (8t33) ;’ (8ty) % (x2 _|_y2) : J — 8t£€y xaty i 5 (332 + y2) :

Bifurcation
diagram




L atent Bifurcation

The instability Is present but non
perceptible with the spectrum, and
requieres alarge time in come into
view.

There is not resonance between
the frequencies.
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Dissipation induced instability

The equations under the presence of small dissipative terms read
(m<<1)

O = ex — 0Oy — o,
Oiy = €y + 00sx — oy,

o Bifurcation
diagram




Observations

! A Im() ) o The unperturbed system is marginal,

e—— the eigenvalues with larger frequency
move to the left of the imaginary axis
S——— and these are the furthest from this
axis.

\-

O The destabilizing effects through positive or negative total
dissipative perturbation was know along time ago (Lord
Kelvin, 1897).

© The asymptotic normal form of 1:1 resonance
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Mechanical Laser
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The vertical solution

91:9220,@75:90

exhibits a 1:1 resonance when
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withw, = £1/gm2/lm, frequencies. The system is described by
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Semiclassical Laser Model
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where the terms proportional to «,v. and v are dissipatives.
The nonlasing solution (equilibrium) is
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Non dissipative semiclassical model
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where P — u/QP, E - Q/uE, t — t/Q, z — z/Q
This model has Hamiltonian density
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With E = 8,4 = D — (1/Q)* P.

and the Poisson-bracket
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Energie-Casimir Method

O {®(N?*+P?+G?*),F} =0
O The effective energie
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Thus, adighty pumping optical )
cavity Is unstable (D,>0) when
one take into account the dissi-
pative effects and the nonlassing
solution exhibits a latent bifur-
cation for D, equal to zero.
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Baroclinic instability

Thisinstability gives rise waves motion due to vertical shear of
the basic current in the presence of Coriolis and buoyancy forces

Baroclinic Stability- Baroclinic Instability -




Quasi-Geostrophic Two-layer Model

N two layers of immiscible, incom-

lg pressible, homogeneous fluid of

o slightly different densities (r>r ).
P The dimensionless quasi- geostrophl C
Voy vorticity equations are
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o Thissystemis Lagrangean
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constrained to Euler-Poincare variations
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Where the stream functions depent of the horizontal coordinate
and time. The respective Hamiltonian is
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If one considers perturbations of the geostrophic basic flow of

the form
Y1 = —Ury + Re Ae?*(@=t) gin (mmy) ,

Wy = —Usy + RevyAe' @~ sin (mrry)

then dispertion relation is
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where o2 = o2 + m272 and AU = U, — Us.

O Bifurcation diagram for small viscosity
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o references(E.O. Holopainen 1961, Romea 1977).




CR3BP -Circular Restricted Three-body Problem

test particle

Equations of Motion
{nondimensional; rotating frame)
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© Using synodic coordinates, that is, we consider the rotating reference
frame with the same frequency as primaries, one finds that the evolution

of the test particle is described by
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LAGRANGE POINTS

o Librations pointsin the
planar circular restricted
three-body problem. The
stability of these points
Isclassical problemin
Celestial Mechanics.

O Equilateral libration points
are marginal stable!, whenm issmall.
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o Equilateral libration points are stable! ( Murray 1994).




Dissipation induced instabilities

Nebular drag force
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The Poyting-
Roberson effect
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OEquilateral libration points are unstable!




FOUCAULT PENDULUM

= _ © As consequence of Earth
e rotation, the vertical solution
exhibits alatent bifurcation!.
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Conclusion

O Latent bifurcation.

O Dissipation indu-
ced instability.

o Applications : sim-
ple mechanical sy-
stem, Laser, res-
tricted three-body
problem, Foucault
pendulum, Chemi-

Without dissipation

With dissipation

cal systems, nuclear physics and Baroclinic instability.






