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I. I NTRODUCTION

Stochastic geometry is an established branch of mathemat-
ics that studies uncertainty in geometric structures [1], [2]
and is, thus, a befitting framework for autonomous robotic
mapping and the well known Simultaneous Localization and
Mapping (SLAM) problem, where the fundamental concern
is succinctly captured in the title of the 1988 seminal paper
by Durrant-Whyte, ”Uncertain geometry in robotics” [3]. The
theory of random sets has long been used by statisticians in
many diverse applications including agriculture, geology, and
epidemiology [1], [2], [4]–[6]. In addition, there has been
substantial work by probabilists and statisticians, in point
process filtering, such as that by Ikoma et al [7]. Applications
of this are random point pattern methods for multiple object
recognition in image analysis [8], [9], and recent work based
on random set analysis by Vo et al [10], which laid the
foundations for set based multi-object visual tracking by
Hoseinnezhad et al [11], [12]. The application of random sets
in multi-target tracking has led to the development of Finite
Set Statistics (FISST) which provides the basis for novel filters
such as the Probability Hypothesis Density (PHD) filter [13]–
[15] and the Cardinalized (C)-PHD filter [16] which recently
attracted considerable research interest as well as deployment
in commercial applications.
As noted in the field of multi-target filtering by Mahler ([17],
page 571):

“...having a good estimate of target number is half the battle
in multi-target tracking. If one has 1,000 measurements but

we know that roughly 900 of them are false alarms, then the
problem of detecting the actual targets has been greatly

simplified.”

The articles in this special issue advocate that the same
principle applies to feature detection and autonomous mapping
in robotics, where instead of referring to the problem of
target estimation, the problem of map feature or environmental
object estimation are of concern. From here on, map features,
targets and environmental objects of interest will simply be
referred to as “features”. In the case or robotic mapping and
SLAM, realistic feature detection algorithms produce false
alarms and missed detections and estimating the true number
of map features is therefore central to these problems.
A philosophy often encountered within the SLAM community
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Fig. 1. The importance of object number estimation in navigation
tasks.

is that the number of estimated map features is not important
in SLAM, provided that enough are estimated to provide suc-
cessful robot location estimates. In response to this, the reader
is referred to Figure 1 in which a human driver has clearly
not estimated the correct number of objects within his/her
environment. Unfortunate accidents aside, failing to correctly
estimate the true number of objects or features, which have
passed through the field(s) of view of a vehicle’s sensor(s),
can only detriment the location estimation performance of
any SLAM algorithm. This special issue therefore addresses
the concept of Bayes optimality for estimation with unknown
feature number, by formulating autonomous mapping, SLAM
and general tracking algorithms as Random Finite Set (RFS)
estimation problems.
An RFS is simply a finite-set-valued random variable. Similar
to random vectors, the probability density (if it exists) isa
very useful descriptor of an RFS, especially in filtering and
estimation. However, the space of finite sets does not inherit
the usual Euclidean notion of integration and density. Hence,
standard tools for random vectors are not appropriate for ran-
dom finite sets. Mahler’s Finite Set Statistics (FISST) provide
practical mathematical tools and principled approximations for
dealing with RFSs [13], [17], based on a notion of integration
and density that is consistent with point process theory [18].
So what are theadvancesin the applications of stochastic
geometry, advocated in this special issue? In contrast to
state of the art, vector based implementations of Bayesian
filters, which require separate filters/routines to manage and
associate measurements to features, the use of RFSs unifies the
independent filters adopted by previous solutions through the
recursive propagation of a distribution of an RFS of features.
This allows the joint propagation of the estimated feature
density to take place and, in the case of SLAM, leads to
optimal map estimates in the presence of unknown map size,
spurious measurements, feature detection and data association
uncertainty. The proposed framework further allows for the



joint treatment of error in feature number and location esti-
mates as it jointly propagates both the estimate of the number
of features and their corresponding states, and consequently
eliminates the need for feature management and association
algorithms.

II. A B RIEF SUMMARY OF RANDOM SET BASED

IMPLEMENTATIONS IN ROBOTICS

In 2008, Mullane et al first applied the random set concept
to the SLAM problem, in which a first order random set
statistic - the Probability Hypothesis Density (PHD) was used,
from which joint vehicle and feature based map estimates
could be extracted [19]. Referred to as a “Brute force”
approach, it demonstrated a viable RFS based SLAM solution.
For environments with a significant number of features it is
however computationally intractable, and hence a more elegant
and computationally tractable RFS solution, based on Rao
Blackwellization, was published in 2010 and further elabo-
rated in 2011, in which the Cardinalized (C)-PHD and Multi-
Target Multi-Bernoulli (MeMBer) SLAM filtering concepts
were presented [20]–[22]. A simplified version of this work
comprises the first article of this special issue.
In 2012, Lee et al addressed the SLAM problem with a single
cluster PHD filter, which also utilized Rao Blackwellization,
but generated a measurement likelihood function for trajectory
weighting in a different manner. An extension of this work,
applied to underwater SLAM, is the focus of the second
article in this special issue [23]. Also in 2012, Moratuwage
et al extended the RFS concept to multi-vehicle SLAM,
providing demonstrations with two vehicles which collaborate
to estimate a global map based on PHD filtering, along
with their own trajectories [24]. An extension of this work
comprises the fourth article in this special issue. Finally, also
in 2012, Adams et al demonstrated Constant False Alarm Rate
(CFAR) and scan integration feature detection techniques to
provide principled detection statistics for short range radar in
a Rao-Blackwellized PHD Filter SLAM framework [25].
To complement the multiple publications on the applications
of FISST to robotic based problems, the first international
workshop onStochastic Geometry in SLAMwas held at the
2012 IEEE International Conference on Robotics and Automa-
tion (ICRA 2012), in Minneapolis St. Paul, USA. This full
day workshop was opened by the founder of FISST, Ronald
Mahler who presented the foundations behind many of the
FISST based filtering concepts. It also provided a forum for
various FISST based robotic mapping, navigation and control
presentations, some of which are extended in this special issue.
During this workshop, many of the presenters and members
of the audience indicated the importance of publicizing the
recent advances in the application of stochastic geometry to
robotic problems, which has instantiated this special issue.

III. OVERVIEW OF THE SPECIAL ISSUE

The first of the six articles in this special issue.New Con-
cepts in Map Estimation: Implementing PHD Filter SLAM,
focusses on a SLAM implementation which uses the most
basic Bayesian set based estimator - the Probability Hypoth-
esis Density Filter (PHD). The article first demonstrates the
random nature of detections in sensing modalities as diverse as
radar, laser range finders and vision. The information - referred
to as features - provided by any feature detection algorithm

and based on any sensing type, is prone to randomness both
in the quantity of the detected features and their attributes
such as range and bearing or image based quantities such as
contrast levels. It shows that realistic measurement uncertainty
comprises detection uncertainty in the form of false alarms
and missed features as well as the usually considered spatial
(e.g. range and bearing) uncertainty. The ability to account
for all of these in a joint manner provides the motivation
for re-modelling the SLAM problem as a set, rather than a
vector, based framework. The concepts of RFSs are introduced
and the implementation of the PHD filter, in the form of
manipulating sums of Gaussians, is demonstrated through the
use of simple block diagrams. A marine environment, in which
an autonomous kayak estimates the number and location of
objects on the sea surface as well as its own trajectory,
provides the complex setting for SLAM trials. These are based
on the presented sum of Gaussians PHD SLAM algorithm,
with performance comparisons being made with state of the
art Multiple Hypothesis (MH) FastSLAM.
The SLAM problem is treated as a single cluster (SC) process
in the second article, entitledSLAM with SC-PHD Filters: An
Underwater Vehicle Application. Here SLAM is defined as a
particular type of cluster process in which the configuration
of the map features is a daughter process, conditioned on the
state of the vehicle, represented as a single parent process.
The single cluster PHD filter approach can be separated into
a parent and a conditional daughter term, allowing a hybrid
particle filter and Gaussian mixture approach to be used for
SLAM, in a manner similar to that proposed in the first
article. However, in contrast to the first article, a single cluster
process, rather than a Poisson process, is assumed on the prior
map feature cardinality distribution. An implementation of the
concept is demonstrated on an underwater robotic vehicle, the
Girona 500, which utilizes stereo imagery and a speeded up
robust feature (SURF) detector to detect key points in images
for underwater SLAM.
The third article,Playing Fetch With Your Robotis based
on a Segway robotic platform and again uses vision for the
detection of an unknown number of objects, this time based
on shape and colour matching. These are scattered about an
environment for the robot to locate, collect and return to the
user. The work uses a grid with cells containing occupancy
probability values. An RFS is used to represent a set of labels
of occupied cells together with a further set, which contains
every combination of the RFSs from zero to the maximum
number of objects which can be tracked. In contrast to the first
two articles, a Bayesian filter iterates over the distribution of
the RFSs to estimate the varying number of object locations.
This information is then used to automatically instruct the
robot to move to maximize its immediate information gain -
a technique referred to as “information surfing”. The robot
is controlled to move in the maximum gradient of mutual
information between the sensor readings and the cell based
object position estimates based on a quantity known as the
Rényi divergence. This moves the robot and the camera’s field
of view into the direction of objects to be fetched.
The focus of the fourth article,RFS Collaborative Multi-
Vehicle SLAM in Dynamic High Clutter Environments, is
Collaborative Multi-vehicle (CM) SLAM under an RFS frame-
work. Formulated for two vehicles, which collaborate to build
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a single global map and estimates of both trajectories, this
article introduces the concept of the general multi-sensorPHD
update. This update requires the union of the set based mea-
surements from each vehicle to be partitioned into binary sub-
sets. The article high-lights the computational problem which
results in the case of many robots, as all possible combinations
of these subsets would be necessary to form the Bayes optimal
CM-SLAM measurement update. To test the concepts with
two robots, simulations demonstrate the robustness of the RFS
based solution under varying degrees of clutter (false alarms).
In a real experiment, a car park with moving people provides
the scene for the dynamic environment where the proposed
RFS based multi-vehicle SLAM solution is compared against a
state of the art CM SLAM solution which depends on external
feature association and management routines.

The fifth article entitledA New Efficient Topological Ap-
proach to Map Merging Based on a Probabilistic Generalized
Voronoi Diagram, again addresses multi-robot applications
and focusses on grid based map fusion. Occupancy grid maps
from multiple vehicles are merged without prior knowledge of
their relative transformations. This is achieved through graph
matching, in which the graph is a topological representation
of the map and is based on a Generalized Voronoi Diagram
(GVD). Referred to as map fusion, the approach demonstrated
in this article exploits the uniqueness of GVDs to combine
large maps. The confidence values associated with certain ar-
eas of each robot’s map is further encoded into the topological
structure, by building a Probabilistic (P)GVD. Map matching
takes place via a 2D correlation to match laser range finder
based edges. The probabilistic nature of the PGVDs allows
areas of the maps with higher certainty to be preferentially
matched. The technique is verified through four experiments:
First, based on a publicly available data set; second, based
on two real indoor vehicles communicating map information
between them; third, based on three vehicles operating in a
larger indoor environment and finally based on a simulated,
highly cluttered environment.

The estimation of the location and number of objects/features
which can each generate multiple sensor detections, due to
their large size and/or occlusions, is the subject of the final
article Random Set Methods for Multiple Extended Object
Estimation. This article demonstrates how the assumptions of
the earlier articles, in which single objects are assumed toyield
single detections, can be relaxed allowing for multiple detec-
tions per object. This scenario naturally lends itself to the RFS
concept, since a subset of all of the detections can now result
from each object. This in turn requires a partitioning of thefull
set of detections, into subsets, the union of which comprises
the full detection set. During the PHD Filter measurement
update, each partition requires a likelihood, corresponding to
how probable that group of measurements stems from a single
object. There are many ways in which such partitions can
be formed, all of which should theoretically be considered
for Bayes optimality. This article provides algorithms for
limiting the number of partitions to computationally man-
ageable levels without sacrificing estimation performance. By
considering different alternatives for the measurement model,
based for example on assumed geometric extended object
shapes, a multi-object tracking PHD Filter implementation
is demonstrated. The experimental results demonstrate the

ability of the filter to estimate the quantity and location ofan
unknown number of pedestrians, based on laser range finder
data, even when pedestrians occlude each other. This article
models the probability of detection as non-homogeneous in the
sensor surveillance region, based on object location estimates,
yielding good estimates of pedestrian number, even when they
are completely occluded.

IV. L OOKING FORWARD

Stochastic geometry has been applied in diverse engineering
fields for many decades, but only in the last decade have
the tools of Finite Set Statistics (FISST) become available
for set based estimation applications. This special issue is
largely a collection of robotic applications based on these
recently formulated tools. Within the field of robotics, many
avenues exist for further research, based on FISST, including
improved sensor models which take into account object occlu-
sions, generalized mapping concepts such as semantic maps
and active navigation in which vehicles are autonomously
commanded to maximize their information gain. We hope that
this special issue provides motivation for further advances in
the use of stochastic geometry in SLAM and general robotic
applications.
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