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Abstract

In autonomous applications, a vehicle requires reliable estimates of its location and information about the world around it.

To capture prior knowledge of the uncertainties in a vehicle’s motion response to input commands and sensor measurements, this

fundamental task has been cast as probabilistic Simultaneous Localizationand Map building (SLAM). SLAM has been investigated

as a stochastic filtering problem in which sensor data is compressed into features, which are consequently stacked in a vector,

referred to as the map.

Inspired by developments in the tracking literature, recent research in SLAM has recast the map as a Random Finite Set (RFS)

instead of a random vector, with huge mathematical consequences. With the application of recently formulated Finite Set Statistics

(FISST), such a representation circumvents the need for fragile feature management and association routines, which are often the

weakest component in vector based SLAM algorithms.

This tutorial demonstrates that true sensing uncertainty lies not only in the spatial estimates of a feature, but also in its

existence. This gives rise to sensor probabilities of detection and false alarm, as well as spatial uncertainty values. By re-addressing

the fundamentals of SLAM under an RFS framework, it will be shown thatit is possible to estimate the map in terms of true feature

number, as well as location. The concepts are demonstrated with short range radar, which detects multiple features, but yields many

false measurements. Comparison of vector, and RFS SLAM algorithms shows the superior robustness of RFS based SLAM to such

realistic sensing defects.

Index Terms

Autonomous Navigation, Random Finite Set (RFS), SLAM, robotic mapping, short range radar, Finite Set Statistics (FISST).

I. I NTRODUCTION

Due to the imperfect nature of all real sensors, the lack of predictability in real environments and the necessary approximations

to achieve computational decisions, robotics is a science which depends on probabilistic algorithms. Autonomous vehicles have

now evolved beyond tasks within factory environments, and therefore require a robust computational representation oftheir

complex surroundings and their related uncertainties. Such a representation is referred to as the map. Also of crucial importance

to any autonomous task is the vehicle’s positional estimate. In indoor and under water environments, GPS does not function, and

in urban areas, satellite outages and multi-path reflections result in unacceptable GPS positional errors for autonomous vehicle

applications. Therefore, in many applications, the fundamental necessity to autonomously acquire an environmental map, and

infer vehicle location exists, which has been referred to asthe “Holy grail” of autonomous robotics research -Simultaneous

Localization and Map Building(SLAM) [1].
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2This tutorial demonstrates that the commonly used vector based methods for feature map representation in SLAM, summarized

in Figure 1, suffer many fundamental disadvantages when applied to realistic situations. These correspond to situations in which
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Fig. 1: Vector based feature mapping and its mathematical restrictions, for a single update cycle, in SLAM.

an a-priori unknown number of features are to be estimated, in the presence of realistic sensor and/or feature detectiondefects

such as missed detections and false alarms, as well as spatial sensing errors. The tutorial therefore reviews the basic estimation

principles of SLAM and, stemming from developments in the tracking community [2], summarizes recent SLAM investigations,

which suggest that a landmark map is more appropriately represented as asetof landmarks, requiring the tools of Random Finite

Set (RFS) theory, known as Finite Set Statistics (FISST) [3], [4]. An RFS is a random variable that take values as finite sets.

It is defined by a discrete distribution that, importantly, characterizes the number of elements in the set, and a family of joint

distributions which characterize the distribution of the element’s values, conditioned on the number [5].

While defining a vector or set valued feature map representation may appear to be a trivial case of terminology, it will be

demonstrated that the vector valued feature map has numerous mathematical consequences, namely an inherent rigid ordering of

variables and a fixed length. This has caused robotics researchers to resort to SLAM state vector re-ordering and augmentation

methods based on fragile feature management rules and association methods, as high-lighted in the yellow boxes (Figure1),

which necessarily occur before and after the SLAM Bayesian recursion. Bayes optimality can only take place with thep map

states, which are considered to exist according to the external map management heuristics/filters. The RFS on the other hand,

offers a powerful map representation, which will be shown tonaturally encapsulate all possible permutations of a feature map and

measurements thus circumventing the necessity of fragile feature management and association heuristics/methods. This results

in more robust SLAM estimates in the presence of realistic sensor defects and clutter1.

1Returned sensor readings incorrectly interpreted as useful features.
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3The SLAM experiments presented in this tutorial rely on short range, millimeter wave (MMW) radar as the exteroceptive

sensor. Contrary to the spatial modelling school of thoughtprimarily adopted by robotic engineers, to radar engineers, received

power values at successive range, bearing, and possibly elevation, values are related to the possibleexistenceof an object in

space. Hence, uncertainty in the sensing process is primarily formulated in terms of the decision itself as to whether ornot

a landmark even exists at the range, bearing/elevation coordinates in question. Such an analysis usually gives rise to the well

known concepts (in the radar domain) of probabilities of detection and false alarm, and significantly less emphasis, if any, is

placed on the possible spatial uncertainty of a hypothesized landmark. Therefore, this tutorial will examine various measurement

models, which are applied to range finding sensors. The fundamental difference betweendetectionand spatial error modelling

will also be shown, together with the unique ability of the RFS concept to capture both error models in a joint manner.

For comparison purposes both FISST based SLAM and state of the art vector based SLAM techniques are compared in an

urban environment.

II. RELATED WORK & M OTIVATION

A. Prior Work in SLAM

There is a plethora of work in SLAM, with the origins of the feature based map representation being traced back to the seminal

work of Smithet. al. [6]. This inspired a Gaussian approximation to Bayes theorem in the form of the Extended Kalman Filter

(EKF) for the propagation of the SLAM state, and its assumed Gaussian, spatial uncertainty. An extension to this philosophy was

advocated in [7], in which a Gaussian Mixture (GM) implementation of Bayes theorem was applied to SLAM. Non-parametric

approximations to Bayes theorem followed with a Rao-Blackwellized (RB) particle filter yielding a Factored Solution ToSLAM

(FastSLAM) [8]. Further approximations to Bayesian SLAM have adopted Graph Based methods [9] and the Sparse Extended

Information Filter (SEIF) [10].

An RFS formulation for SLAM was first proposed in [11] with preliminary studies using ‘brute force’ implementations also

appearing in [12]. The approach modelled the joint vehicle trajectory and map as a single RFS, and recursively propagated its

first order moment, known as the Probability Hypothesis Density (PHD). More refined approaches which adopted a factored

concept, in the form of a particle representation of the vehicle state, each maintaining its own PHD filter for the estimation of

the map state, are detailed in [3], [4]. Recent work by Leeet al. has modelled the SLAM problem with a single cluster PHD

filter, which models the vehicle state as a parent process andthe map state as a Poisson spatial point daughter process [13].

B. Motivation & Prior Work in Robotic Navigation with Radar

The prime motivation for radar in the experimental analysisof this tutorial, as opposed to laser, vision and ultrasonicbased

sensors, is its ability to operate in environments containing high levels of dust, rain, fog or snow. In contrast to the other sensors,

radar has the ability to penetrate such atmospheric effectsand also has the potential to provide more information, thanfor

example laser range finders, as it provides multiple line-of-sight data. As an example, Figure 5 shows superimposed laser range

data (black points) and received power data (plotted in color) from the car park environment of Figure 6 (left). Two of thelamp

posts in the scene are missed by the laser range finders (labelled) as are the occluded trees, which are shielded by the shrubs.

The radar data however yields significant received power values from these, as well as the occluding, objects, albeit at areduced

angular resolution. The specific details of how radar measurements can be used in SLAM are left until Section V.
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4Because of these advantages, radar sensors have been adopted by quite a number of research groups worldwide. [1] used a

W-band radar sensor for feature based SLAM experimental analyses, while reflectivity patterns from leisure craft were examined

in [14]. Further SLAM and mapping investigations using W-band radar were presented in [15], [16] examining the signal statistics

and their influence on the resulting localization and map estimates. Further motivation for, and a review of, the use of radar in

SLAM, with an introduction to related processing methods, is given in [17].

III. R EVISITING SLAM FUNDAMENTALS

The aim of SLAM is to concurrently estimate the pose (position and orientation) of a vehicleXk and the positions of its

surrounding features, typically stacked in a map vectorMk at time k. Due to the uncertainty in vehicle motion and sensor

measurements, SLAM estimates a joint probability density function (PDF) on these valuespk(Xk,Mk). As a vehicle acquires

more measurements, this distribution is updated accordingto Bayes Theorem:

pk|k(Xk,Mk|Z
k, Uk−1, X0) = cpk|k−1(Xk,Mk|Z

k−1, Uk−1, X0)g(Zk|Mk, Xk) (1)

where pk|k(Xk,Mk|Z
k, Uk−1, X0) is an estimate of the joint PDF onXk and Mk, given all measurementsZk up to and

including timek, all input valuesUk−1 used to control the vehicle motion, up to and including timek − 1 and the vehicle’s

initial poseX0. c is a normalizing value to ensure thatpk|k(Xk,Mk|Z
k, Uk−1, X0) is a PDF andg(Zk|Mk, Xk) is the sensor

measurement likelihood, given the map and vehicle location.

Primarily, this tutorial demonstrates the performance of recent experimental results which remodel the measurementvector

Zk as an RFSZk and the map vectorMk as an RFSMk. To motivate these changes, sensor measurement models are initially

examined in Sections IV and V, followed by justifications fora set based model in Section VI.

IV. M EASUREMENTS AND THEIRTRUE UNCERTAINTIES

This section high lights the importance of a sensor’s and/orfeature detection algorithm’sdetectionuncertainty as well as

the usually consideredspatial uncertainty. This plays a key role in the principled incorporation of measurements into stochastic

SLAM algorithms.

Active sensors, such as laser range finders, sonars and radars transmit various forms of energy into their environments.After

transmission, the receiver section of the sensor then converts any power incident on its aperture into a received signal. In some

sensors, this received signal, as a function of range from the sensor, is available for processing. For example, the recent Sick

LMS 5xx laser range finders, yield the largest 5 received power spikes at different ranges. Underwater sonars also provide such

received power arrays. In the case of radar, the received power, as a function of distance from the radar, is called an “A-Scope”.

Many active sensors however keep this signal “hidden” from the user, and apply their own form of detection theory to provide

a simple range decision - i.e. a range value, which is typically interpreted as corresponding to the detection of a valid feature.

Importantly, in any sensor, the output is directly related to the time varying power measured at its receiver and, whether hidden

from the user or not, vital information about an environmentdepends on how this signal is processed.

A. Interpreting Received Power versus Range Signals

As a case study, an A-Scope is examined, which resulted when aradar pointed in the directionθ of a landmarki. Note that this

signal could be the (usually internal) received power signal, as a function of range in any active range finder. The A-Scope is illus-

trated in Figure 2, Graph (a), which plots an array of linearized power valuesSlin
k (θ) = [S lin

k (1) S lin
k (2) . . . S lin

k (q) . . . S lin
k (Q)],
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5with elementsS lin
k (q) containing the received power corresponding to a particular range bin2 q, recorded at discrete timek. Graph

(a) A−Scope display at chosen radar bearing angle 

Area under dist. = 1

Area under dist. = 1

(b) Detection theory applied to A−Scope from (a)
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Fig. 2: The interpretation of measurement detection in robotics and radar/tracking research.

(b) illustrates the concept of detection theory, applied tothe A-Scope in Graph (a). Most detection theoretic methods aim to

identify power signals emanating from true targets, with a constant (typically very small) probability of false alarm (incorrectly

2A range bin is a discretized segment of the range space, in which a single received power value is received. It corresponds to the range resolution of the

sensor.
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6declaring a target) and a quantifiable probability of detection (probability of correctly declaring a target). Such methods are

referred to asConstant False Alarm Rate(CFAR) processors. Note that in the example of Figure 2(b), the received power

from the true target at rangerik exceeds the detection threshold, as does another power value further down range. Graph (c)

illustrates the way in which most of the spatial modelling approaches in the robotics literature have interpreted this information.

Its interpretation exists only in the spatial domain. A probability distribution is created in the range space with its mean located

at the range bin of the closest range detection, and spatial variance based on prior information about the sensor. Note that by

definition, the area under the distribution must be unity, implying that one landmark is assumed to exist with unity probability

somewhere in the range space - i.e. a unityProbability of Detection(PD = 1) is assumed.

Work by Fox et. al. proposed a sensor likelihood to represent the spatial information, from sensors yielding single range

values, based on error densities associated with object detections as well as false, missing and unexpected data as illustrated in

Graph (d) [18]. The distribution is the weighted sum of that in Graph (c) corresponding to a correct detection corrupted with

Gaussian noise, as well as an exponential distribution to model unexpected objects, a uniform distribution over the sensor’s

operating range to model false alarms and finally a Dirac distribution at maximum range to model missed detections. While this

model offers a significant advance over that of Graph (c), it still assumes the existence of asingleobject over the sensor’s range

space, and is only valid for sensors which yield maximum range when a missed detection occurs.

Graph (e) illustrates the different way in which most of the detection modelling approaches in the radar and tracking literature

have interpreted this form of measurement information. Based on a pre-chosenProbability of False Alarm, Pfa, from which the

detection threshold (dashed line in Figure 2(b)) is derived, every range binq is accompanied by a calculatedPD and a hypothesis

valueH0 or H1 corresponding to “No landmark detected” or “landmark detected” respectively. Hence, in the interpretation in

Graph (e), two landmarks would be hypothesized to exist. Once it is acknowledged that detections may not correspond to true

objects, the concept of multiple line of sight detections makes sense3

The question naturally arises as to which interpretation iscorrect? Since, in Graph (e), more than one range bin can be

associated with hypothesisH1, contrary to the spatial interpretation (Graphs (c) or (d)), no assumption on the number of possible

landmarks is made. However under this interpretation it is not clear how any prior knowledge of spatial uncertainty could be

incorporated into the measurement information. Thereforeall interpretations fail to representall of the available information.

The fundamental difficulty in applying standard, vector based, estimation theory to this problem is that the information to be

estimated has different dimensions. It is necessary to estimate thenumberof features due to detection uncertainty, which is a

dimensionless quantity, and thelocation of the features themselves due to spatial uncertainty, which have spatial dimensions.

An RFS framework can readily overcome these issues. For example, the PHD approximation of an RFS does not maintain an

existence estimate on each feature, but instead propagatesa density which represents the mean number of features in themap as

well as their spatial densities. Fundamentally, the concept of a set basedmeasurement and state representation will be introduced,

which allowsall of the measurement information, spatial and detection, to be incorporated into joint Bayesian navigation and

mapping frameworks.

Before introducing an RFS based solution to SLAM, the following sections clarify the differences between the measurement

models under each of the above interpretations and introduce a set based measurement model.

3It should also be noted that radar has the ability to penetrate certain materials, and has a wider beam width than laser range finders, thus providing the

potential for received power spikes from multiple objects down range.
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7V. V ECTOR AND SET BASED MEASUREMENTMODELS

A. Relating Spatial Measurements to the Map/SLAM State

Spatial modelling is the standard method of incorporating measurements into the SLAM estimation problem in autonomous

robotics research. For the simple planar motion and sensingcase, a range/bearing measurement from featurei is shown

diagrammatically in Figure 3. Such a measurement corresponds to an assumed detection (PD = 1) at range valuerik and
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Fig. 3: Relating target location to vehicle motion.

bearing angleθik, and in robotics research, is often interpreted in a stochastic manner in which the sensed object is “smeared”

in the range (as in Graph (c) in Figure 2) and bearing space, according to a multi-variate Gaussian distribution. From Figure 3

it can be seen that it is possible to relate the spatial measurement vector[rik θik]
T to the vehicle poseXk = [xk yk φk]

T and the

ith environmental featuremi
k = [xi

k yik]
T states

r i
k =

√

(x i
k − x radar

k )2 + (y i
k − y radar

k )2 + (wr
k)

i (2)

θ i
k = arctan

[
y i
k − y radar

k

x i
k − x radar

k

]

− φk + (wθ
k)

i (3)

where
(
x radar
k , y radar

k

)
are the coordinates of the sensor and(wr

k)
i and (wθ

k)
i are the, assumed additive, spatial measurement

random noise terms in range and bearing respectively.

The range/bearing Equations 2 and 3 can be written as a singlevector equation. When augmented for all landmarks detected

at different sensor bearing angles within a scan, it takes the form of a stacked vector ofspatial values, which relates to the map

and vehicle states via

Zk =




rik

θik



 = hspatial(Mk, Xk) + w
spatial
k (4)

wherehspatial() is generally a non-linear function, mapping the landmark and vehicle locations into the relative range and bearing

measurements withwspatial
k being the additive augmented vector of range and bearing measurement noises over all detected

April 24, 2013 DRAFT



8features within a scan. To demonstrate such spatial measurements, Figure 4 shows a vehicle4 carrying a360o scanning, radar5,

capable of range measurements of up to 200m with a range bin resolution of 25cm. The vehicle also has two180o scanning

360   scanning radaro
180o scanning laser range finders

Fig. 4: A vehicle carrying 2 laser range finders and a 360oscanning MMW radar.

laser range finders6 (labelled).

Experiments were conducted in a car park, causing radar returns from trees, lamp posts, buildings as well as clutter fromground

measurements, due to the rolling of the vehicle during maneuvers. The results of a single,360o laser scan of the environment

are shown in Figure 5. Laser range decisions are shown as black dots, relative to the robot location at the origin.

B. Relating Power Measurements to the Map/SLAM State

Sensing methods exist, which yield measurements that are not spatial in nature. As examples, cameras produce pixel intensity

values corresponding to objects within a scene and radar primarily produces received power values from an object, even though

range can be inferred. In the case of radar, linearized received power measurementsSlin can be used as the measurements at

specific range binsq, which are also related to the position of the vehicleXk and a map stateMk. For example, if the map state

Mk were defined to incorporate point landmarkRadar Cross Sections(RCSs), as well as spatial locations, then the measurements

obtained from a radar scan of an environment could take the form

Z
power
k = S

lin
k (θ : 0 → 2π) = hpower(Mk, Xk) + w

power
k (5)

whereZpower
k now corresponds to a stacked vector of A-Scope power valuesS

lin
k (θ : 0 → 2π) at timek, taken at each discrete

bearing angleθ. Based on a stateMk containing landmark RCSs and spatial coordinates,hpower() could be a vector of functions

4The vehicle is called the “RobuCAR” from Robosoft (http://www.robosoft.com).

5The radar is from Navtech Radar Ltd, and is a 77GHz, FrequencyModulated Continuous Wave (FMCW) device.

6The laser range finders are the Sick LMS 200 devices, capable of reported range measurements of up to 80m, with a distance resolution of 10mm.
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9

Shrubs

Bush Occluded treesUndetected lamp posts (laser)

CarVehicle location

Fig. 5: Received laser range and radar power data superimposed on the samescan. Note the missed detections by the laser range finder.

based on the radar equation, which relates received power totarget RCS and range.wpower
k could then be the received power

noise associated with each power measurement.

To demonstrate receivedpower type measurements, a single,360o scan from the radar on board the vehicle of Figure 4 is

superimposed onto the laser data of Figure 5. The received power values from the radar are shown as color values, with dark

blue indicating minimum, increasing to light blue and yellow to red indicating maximum received power. Such a display can be

envisaged as the top view of several A-Scopes (Figure 2(a)) swept about the origin, where color represents received power. In

radar terminology, this is known as a sectorPlan Position Indicator(PPI) plot.

C. Relating Detection Measurements to the Map/SLAM State

In a radar based application, it can be more convenient to consider the measurementZk to be the simple binary detection

hypothesesH0/1 corresponding to detection/no detection. The measurements in this case can be defined as

Zdet
k = H0/1 = hdetection(Slin

k (θ : 0 → 2π)), (6)

whereZdet
k now corresponds to a vector of binary detection hypothesesH0/1 with elementsHθ

0/1(q) corresponding to each

range binq at each bearing angleθ. In this case,hdetection() would correspond to a vector of functions derived from a chosen

detector. Note thatSlin
k (θ : 0 → 2π) is then related to the mapMk and vehicleXk states through Equation 5. Each detection

measurement is accompanied by uniquePD andPfa values. For those measurements corresponding to an assumeddetection,

they can be located spatially according to Equations 2 and 3.
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10To illustrate this form of measurement, Figure 6 (right) shows detectionsproduced by a standard radar detection method,

known as theOrdered Statistics(OS)-CFAR processor, superimposed after three consecutive loops within a car park environment.

At this stage, the detections are superimposed onto the known ground truth trajectory of the vehicle, to demonstrate thequality

Vehicle Trajectory

Meters

M
et

er
s

Multi−Vehicle Pose OS−CFAR Detections

Shrubs

Coconut TreesEntrance

Concrete Wall

Fig. 6: (Left) Photograph of a car park scene, with the vehicle’s trajectory and objects labelled. (Right)OS-CFAR radar detections, superimposed

onto the vehicle’s multi-loop trajectory, within the car park environment.

of the radar detections alone, without including the vehicle localization errors. Many of the true objects in the photo (left) can be

identified among the radar detections (right) and some are labelled. Also clearly evident however, are manyfalse alarmsin the

radar data, which can result from incorrect detector behavior, noise and pitching of the vehicle, causing random groundreturns.

D. Set Based Measurements

It is interesting to note that for SLAM, measurement Equations 4, 5 and 6 fail to completely encapsulate all of the information

provided in a general feature measurement7. Equation 4 fails to incorporate detection and false alarm probabilities, while Equations

5 and 6 fail to explicitly make use of any knowledge of a sensor’s spatial uncertainty.

To encapsulate detection uncertainty, as well as spatial measurement noise, the detected features from a vehicle with poseXk,

at timek, can be mathematically modelled by an RFSZk. This is formed by the union of a set of measurements expectedto

7This actually applies to any sensor when landmarks are extracted using realistic landmark extraction algorithms. Such algorithms are always accompanied

by non-unity probabilities of landmark detection and non-zero probabilities of false alarm, which may be quantifiable, andshould then be used.
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11be generated under the current map estimate and a set of clutter (false alarm) measurements. Importantly, each set encapsulates

the aforementioned detection and spatial uncertainties and hence

Zk
︸︷︷︸

=
⋃

m∈Mk

Dk(m,Xk)
︸ ︷︷ ︸

∪ Ck(Xk)
︸ ︷︷ ︸

All Feature Clutter
Measurements Measurements

(7)

whereDk(m,Xk) is the RFS of measurements generated by a feature at locationm and Ck(Xk) is the RFS of the spurious

measurements at timek, which may depend on the vehicle poseXk. Zk = {z1k, z
2
k, . . . , z

zk

k } consists of a random number,zk, of

spatial measurementszik, whose order of appearance has no physical significance withrespect to the estimated map of features.

For each feature,m ∈ Mk, andzik ∈ Zk,

Dk(m,Xk) = {zik} (8)

with probability densityPD(m,Xk)g(z
i
k|m,Xk) andDk(Xk,m)=∅ with probability 1−PD(m,Xk), wherePD(m,Xk) is the

probability of the sensor detecting featurem from poseXk andg(zik|m,Xk) represents the sensor’s likelihood of detectingzik,

given m andXk. Note the principled association of both detection (PD(m,Xk)) and spatial (g(zik|m,Xk)) uncertainties with

the RFSDk(m,Xk). Spatial uncertainty termg(zik|m,Xk) would reflect the statistics of the spatial noise processes(wr
k)

i and

(wθ
k)

i in Equations 2 and 3. Similarly, the spurious measurement rate statistics corresponding toCk(Xk) are typically a priori

assigned based on an expectedPfa, available from the chosen detection equations.

1) Case Study: Landmark Extraction with MMW Radar:Prior to the selection of radar based landmarks, received power

values at specific range binsq are classified into detection,H1 hypothesis, and the no detection or clutterH0 hypothesis, via an

OS-CFAR detector (Figure 2(b)). Many power spikes in the radar A-Scopes correspond to clutter. IfS lin is the linearized received

radar signal amplitude8, then the empirical clutter amplitude,p(S lin |H0) can be obtained by Monte Carlo (MC) analysis over

a large number of sample scans, using manually selected received power values containing only radar returns from areas free

of landmarks. The OS-CFAR detector locally estimates the exponential distribution moment, in each range bin,q, and derives

an adaptive threshold value,SOS-CFAR(q) (Figure 2(b)).SOS-CFAR(q) can be derived as a function of the desired false alarm rate

POS-CFAR
fa . Typically POS-CFAR

fa is chosen to be low, and in the experiments here is set to10−5. A landmark is considered detected

in range binq if the received powerS lin(q) ≥ SOS-CFAR(q). Based on this detection criterion, each received power valueS lin(q)

is accompanied by a probability of detectionPOS-CFAR
D (q). Importantly, bothPOS-CFAR

fa andPOS-CFAR
D (q) will be utilized in the

RFS based SLAM concept, rather than assumingPOS-CFAR
fa = 0 andPOS-CFAR

D (q) = 1 as is necessary in vector based SLAM.

OS-CFAR detections, based upon multiple radar scans as a vehicle traversed three loops of a car park environment, were

already shown in Figure 6 (right). It shows that, while much useful information is present in OS-CFAR detections, it is still

corrupted by many false alarms or clutter. Many more false detections result than those predicted by detection theory, and the

real challenge in SLAM is to provide algorithms which are robust in the presence of such clutter measurements.

VI. SET BASED REPRESENTATION OF THEMAP STATE

In Section V-D the concept of an RFS measurement was justified. This section advocates that the map state itself is also more

appropriately represented as a set. Consider a simplistic,hypothetical scenario in which a mobile robot traverses three different

8Note that for processing purposes, the linearized receivedpower is used, however, due to the large dynamic range of the received power, a logarithmic scale

is used for graphical purposes.
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Fig. 7: A hypothetical scenario in which a mobile robot executes three different trajectoriesX1, X2, X3, amidst static objects (features)m1

to m7.

trajectories, among static objects, as shown in Figure 7. Ifthe trajectory taken by the robot wereX1 (blue), then it would seem

logical that an on board sensor, with a limited range capability, may sense featurem1 followed bym2 followed bym3 etc. Hence

after completing trajectoryX1, if a vectorM is used to represent the map, then the map could be represented as the first vector

in Equations 9. Alternatively, had the robot pursued trajectory X2 (red) instead, the order in which the features would be sensed

would likely be very different, and the resulting estimatedmap could be the second vector in Equations 9, and had the robot

pursued trajectoryX3 (black), the third map vector in Equations 9 could result. Since the order of the elements within a vector

is of importance (a change in the order yields a different vector), three different map vectors result. However, since the map

features themselves were assumed static, it seems odd that this estimated vector is actually dependent on the vehicle’strajectory.

In a strict mathematical sense, the order of the features within the map estimate should not be significant, as any permutation of

the vectors results in a valid representation of the map. By definition, the representation which captures all permutations of the

elements within the vector, and therefore the features in the map, is afinite setM, as shown in representation 9.

M = [m1 m2 m3 m4 m5 m6 m7]T

M = [m4 m2 m3 m1 m5 m7 m6]T

...

M = [m6 m7 m5 m4 m3 m2 m1]T

︸ ︷︷ ︸

M = {m1 m2 m3 m4 m5 m6 m7} (9)

A. Circumventing the Feature Association Problem

In vector based SLAM, the order in which features are acquired is generally unrelated to the order of the feature elementsin

the current map state estimate. This is illustrated in Figure 8 in which a measurement-to-state assignment problem is evident.

A re-ordering of the observed feature vectorZ is necessary, since in general, observed featurezi will not correspond to the

current estimatemi (e.g. measurementz5 resulted from featurem4 etc.). The proposed RFS approach represents both features
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Fig. 8: As the robot moves, the order in which features are detected will, in general, not correspond to the order of stored features in the

map vector. Also, new features will enter the FoV of the sensor(s). In general, some features may be undetected and some false alarms may

be declared.

and measurements as finite valued setsM andZ respectively, which assume no distinct ordering of the features, as shown in

representations 9 and 10.

Z = [z1 z2 z3 z4 z5]T

Z = [z4 z2 z3 z1 z5]T

...

Z = [z5 z4 z3 z2 z1]T

︸ ︷︷ ︸

Z = {z1 z2 z3 z4 z5} (10)

Since the finite set representations 9 and 10 naturally encapsulate all possible permutations of the feature map and measurement,

a FISST representation of the set will circumvent the need for feature association.

B. Circumventing the Map Management Problem

The feature measurement to state assignment problem is further exacerbated since in reality, the number of measurements,

zk, at any given time is not fixed due to detection uncertainty, spurious measurements and unknown number of true features.

For example, in Figure 8 it can be seen that 5 features have been detected, although there are seven features in the environment.

Objectsm5, m6 andm7 lie out of range of the sensor, in the robot’s current position. Due to sensor and/or feature detection

algorithm imperfections, two false alarmsz3 and z4 have occurred. These can originate from clutter, sensor noise or incorrect

feature detection algorithm performance. Notice that although objectm2 lies within the FoV of the sensor, it has not been

detected, and constitutes amissed detection.

Suppose that featuresm1, m2 andm3 already exist at timek − 1 in a vector based map representation, and that featurem4

now falls into the robot’s sensor(s) FoV. Featurem4 should be initialized and included in the state estimate at time k. To date,

many SLAM techniques use vector augmentation methods basedon feature initiation rules. However if the map is defined as a
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14set, then a set based map transition function can be mathematically defined as

Mk−1 = {m1 m2 m3}

Mk = {m1 m2 m3} ∪ {m4} (11)

Contrary to vector based SLAM, a principled mathematical relationship between a set based measurementZk and the mapMk,

which takes into account the different dimensions ofZk andMk as well as spurious measurements (such asz3 andz4 in Figure

8), can be defined and was given in RFS Equation 7.

By redefining the concept of Bayes optimality for estimationwith unknown feature number, by formulating it as an RFS

estimation problem, the formulation unifies the independent filters adopted by previous, vector based solutions, through the

recursive propagation of a distribution of an RFS of features. This allows for the joint propagation of the Feature Based(FB)

map density and leads to Bayes optimal map estimates in the presence of unknown map size, spurious measurements, feature

detection and data association uncertainty. The RFS framework, summarized in Figure 9, further allows for the joint treatment

of error in feature number and location estimates as it jointly propagates both the estimate of the number of landmarks and their

corresponding states. Feature association is automatically dealt with under the multi-object statistical framework, and consequently

the need for feature association and management heuristicsare circumvented.
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Fig. 9: RFS based feature mapping, for a single update cycle, in SLAM. Notice that no map management or data association filters/heuristics

are necessary.

VII. SLAM WITH RANDOM FINITE SETS

A. Vector Representation of the Vehicle State

For the experiments adopted in this tutorial, a simple planar motion vehicle model is based on the Ackerman model [19].

With reference to Figure 3, the discrete time varying control inputs to the vehicle at timek − 1 are forward speedVk−1 and
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15steering angle(γs)k−1. The local origin on the vehicle, is defined as the center of the rear axle. In discrete time form, with the

inclusion of noise terms in the control inputs, the vehicle state can be predicted from the following kinematic equations [1].







xk

yk

φk







=








xk−1

yk−1

φk−1







+








∆T (Vk−1 + vVk−1) cos[φk−1]

∆T (Vk−1 + vVk−1) sin[φk−1]
∆T (Vk−1+vV

k−1
) tan[(γs)k−1

+vγs
k−1

)]

LWB








(12)

wherexk represents thex coordinate of the vehicle at timek; xk−1 represents the previousx coordinate of the vehicle at time

k − 1 (and similarly fory and headingφ); ∆T is the time between updatesk − 1 and k andLWB is the wheel base length

defined in Figure 3.vVk−1 ∽ N (0, (σ2
V )k−1) andvγs

k−1 ∽ N (0, (σ2
γs
)k−1) represent the input noise terms in the model.N (µ, σ2)

represents a Gaussian distribution with meanµ and varianceσ2.

Since the dimensions of this state are fixed as time progresses, and the order of the variables in the vector remain the same,

the robot vehicle state is adequately modelled as arandom vector. Note that, due to the random noise terms, Equation 12 is

typically modelled as a PDF

f veh(Xk|Xk−1, Uk−1) (13)

whereUk−1 represents a vector comprising the input velocity signal and steering angle - i.e.Uk−1 = [Vk−1 (γs)k−1]
T , which is

derived from either odometric or desired input information. This general vehicle process model will be used in all of theSLAM

algorithms, developed for comparison purposes, in this tutorial. In particular, the vehicletrajectoryXk = [X0 X1 X2 · · · Xk]
T

is stochastically represented by a set ofN particles (samples) each of which is extended at each time interval from its component

locationXk−1 to Xk through Equation 12.

B. RFS Representation of the Map State

Let M be the RFS representing the entire unknown and unexplored static map. The explored mapMk−1 then evolves in

time according to,

Mk
︸︷︷︸

= Mk−1
︸ ︷︷ ︸

∪

(

FoV (Xk)
︸ ︷︷ ︸

∩ M̄k−1
︸ ︷︷ ︸

)

Current Previous Sensor(s) Complement of
Map Set Map Set FoV Previous Map Set

(14)

whereM̄k−1 = M − Mk−1, i.e the set of features not inMk−1. Let the new features which have entered the FoV, i.e. the

second term of Equation 14, be modelled by the independent birth RFS,Bk(Xk). In this case, the RFS map transition density

is given by,

fM(Mk|Mk−1, Xk) =
∑

W⊆Mk

fM(W|Mk−1)f
B
k (Mk−W|Xk) (15)

wherefM(W|Mk−1) is the transition density of the set of features that are in the FoV (Xk−1) at timek − 1 to time k, and

fB
k (Mk−W|Xk) is the birth density of the RFS,B(Xk), of the new features that pass within the FoV at timek. Implementation

details related to the birth density will be given in SectionVII-D.

Equation 15 is important since it defines the map transition function for set valued maps. Including the vector based vehicle

state transition densityf veh(Xk|Xk−1, Uk−1), the joint transition density of the map and the vehicle posecan be written as,

fSLAM(Mk, Xk|Mk−1, Xk−1, Uk−1) = fM(Mk|Mk−1, Xk)f
veh(Xk|Xk−1, Uk−1). (16)
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16C. The Probability Hypothesis Density (PHD) Estimator

As in vector based SLAM, unfortunately, the general RFS recursion equivalent of Equation 1, is also mathematically intractable.

A simple approximation to set-based estimation which is tractable, is to exploit the physical intuition of the first moment of an

RFS, known as its PHD,vk. The PHD at a point, gives thedensityof the expected number of features occurring at that point.

A PHD function is any function which obeys the following two properties:

1) The mass (integral of the density over the volume) of the PHD within a given spatial regionS, gives the expected number

of features inS.

2) As a consequence, the peaks of the PHD indicate locations with high probability of feature existence.

To illustrate the application of the PHD estimator to 2D robotic mapping, graphical depictions of posterior PHDs after two

consecutive measurements are shown in Figures 10 and 11. These illustrate a simple time varying PHD function,vk, which is

Fig. 10: A sample map PHD at timek−1, with the true map represented by black crosses. The left hand map PHD isthe plan view of the

right hand 3D view. The measurement at timek−1 is represented by the dashed lines. The peaks of the PHD represent locations with the

highest concentration of expected number of features. The local PHD mass in the region of most features is 1, indicating the presence of 1

feature. The local mass close to some unresolved features (for instance at (5,-8)) is closer to 2, demonstrating the unique ability of the PHD

function to jointly capture the number of features.

a Gaussian Mixture (GM) containingJk Gaussian components, i.e.

vk = {µ
(j)
k , P

(j)
k , w

(j)
k }Jk

j=1, (17)

where µ
(j)
k is the mean spatial location of Gaussian componentj at time k, with spatial covarianceP (j)

k and weightw(j)
k

corresponding to the number of features thejth component represents. In each figure, the PHD is plotted asa function of the

spatial coordinates. Since the integral of the PHD is, by definition, the estimated number of features in the map, the mass(or

integral) of each Gaussian can be interpreted as the number of features it represents. In the case of closely lying features (and

large spatial measurement noise), the PHD approach may not be able to resolve the features, as demonstrated in Figure 10 at

approximate coordinates (5, -8). However the PHD will represent the spatial density ofL features by a singular Gaussian with

a corresponding mass ofL, which may improve the feature number estimate. This is onlytheoretically possible using the RFS

framework. A graphical example forL = 2 is illustrated in Figure 10, which is then resolved through measurement updates into
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Fig. 11: A sample map PHD and measurement at timek. Note that the features at (5,-8) are resolved due to well separated measurements,

while at (-3,-4), a lone false alarm close to the feature measurement contributes to the local PHD mass. At (-5,-4) a small likelihood over all

measurements, coupled with a moderate clutter PHD results in a reduced local mass.

individual Gaussian components for each feature of massL ≈ 1, as shown in Figure 11 (the two peaks near coordinates (5, -8)).

The PHD estimator has been proven to be powerful and effective in multi-target tracking [5].

D. The PHD SLAM Filter

Similarly to the FastSLAM concept [20], the PHD-SLAM joint posterior can be factorized when the map is represented as a

conditional PDF, conditioned on an entire vehicle trajectory Xk - i.e.

pk(X
k,Mk|Z

k, Uk−1, X0)
︸ ︷︷ ︸

= pk(X
k|Zk, Uk−1, X0)

︸ ︷︷ ︸
× pk(Mk|Z

k, Xk)
︸ ︷︷ ︸

.

Full SLAM posterior Vector based vehicle Set based map
trajectory posterior conditioned on trajectory

(18)

Under an RB implementation, the vehicle trajectoryXk is represented as vector particles
(
Xk

)(i)
, each of which maintain

their own set based map estimatepk|k
(

Mk|Z
k,
(
Xk

)(i)
)

. The recursive Bayesian estimate of the map, per trajectoryparticle
(
Xk

)(i)
, is then

pk|k

(

Mk|Z
k,
(
Xk

)(i)
)

=
pk|k−1

(

Mk|Z
k−1,

(
Xk

)(i)
)

g
(

Zk|Mk, (Xk)
(i)
)

g
(

Zk|Zk−1, (Xk)
(i)
) (19)

The set based distributionpk|k
(

Mk|Z
k,
(
Xk

)(i)
)

is modelled with a GM implementation of the PHDvk|k(m|
(
Xk

)(i)
).

The PHD predictor equation is

vk|k−1

(

m|
(
Xk

)(i)
)

= vk−1|k−1

(

m|
(
Xk−1

)(i)
)

+ b
(

m|X
(i)
k

)

(20)

where vk−1|k−1

(

m|
(
Xk−1

)(i)
)

is previous GM estimate of the PHD,vk|k−1

(

m|
(
Xk

)(i)
)

is its prediction at timek and

b
(

m|X
(i)
k

)

is the GM PHD of the birth RFS,B
(

X
(i)
k

)

. b
(

m|X
(i)
k

)

is similar to the proposal function used in particle filters,

and is used to give somea priori information to the filter about where features are likely to appear in the map. In SLAM, with noa

priori information,b
(

m|X
(i)
k

)

, may be uniformly distributed in a non-informative manner about the space of features. However,

in this work, the feature birth proposal at timek is chosen to be a GM containingJb,k Gaussian components, representing the

set of measurements at timek−1, Zk−1 [4].
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18The PHD corrector is,

vk|k

(

m|
(
Xk

)(i)
)

= vk|k−1

(

m|
(
Xk

)(i)
)[

1−POS-CFAR
D

(

m|X
(i)
k

)

+
∑

z∈Zk

Λ
(

m|X
(i)
k

)

ck

(

z|X
(i)
k

)

+
∫

Mk
Λ
(

ξ|X
(i)
k

)

vk|k−1

(

ξ| (Xk)
(i)
)

dξ

]

(21)

wherevk|k
(

m|
(
Xk

)(i)
)

is the new GM estimate of the PHD at timek, Λ
(

m|X
(i)
k

)

= POS-CFAR
D

(

m|X
(i)
k

)

gk

(

z|m,X
(i)
k

)

and,

POS-CFAR
D

(

m|X
(i)
k

)

= the probability of detecting a land-

mark atm, from vehicle poseX(i)
k .

ck

(

z|X
(i)
k

)

= PHD of the clutter RFSCk in

Equation 7 at timek.

The integral
∫

Mk
Λ
(

ξ|X
(i)
k

)

vk|k−1

(

ξ|
(
Xk

)(i)
)

dξ in the denominator of corrector Equation 21 is calculated asthe sum of the

Jk−1 predicted andJb,k birth Gaussians present invk|k−1

(

m|
(
Xk

)(i)
)

, each weighted byΛ
(

m|X
(i)
k

)

, over allN trajectory

particles.

The clutter RFS,Ck, represents the prior knowledge of the probability of falsealarmPfa. In a scan, in whichNd feature

detection hypotheses are made (whether determined to be detections or not), an average ofnc = PfaNd false measurements will

result. Therefore, the clutter PHD is assumed Poisson distributed in number and uniformly spaced over the mapping region. The

clutter intensity is therefore given by

ck

(

z|X
(i)
k

)

= ncV U(z) (22)

wherenc is the clutter rate per scan,V is the volume (or area in the 2D experiments presented here) corresponding to the FoV

of the sensor(s) of the surveillance region and andU(z) denotes a uniform distribution on the measurement space.

E. Particle Trajectory Weights

A fundamental difference between RB-PHD-SLAM and FastSLAMshould be noted. In FastSLAM, each pose particle is used

to generate a predicted measurement vector. The actual measurement vector, recorded from the unknown, true vehicle location,

is then superimposed on to each particle. The likelihood of that measurement vector corresponding to that particle’s predicted

measurement vector is calculated to form a particle weight,through the measurement likelihoodg
(

Zk|Z
k−1,

(
Xk

)(i)
)

. This

requires the usual, fragile predicted and observed featuremanagement and association routines, for which there is no concept

within the RFS framework.

In RB-PHD-SLAM, the measurement likelihood isg
(

Zk|Z
k−1,

(
Xk

)(i)
)

, which is defined on the space of finite sets, unlike

its FastSLAM counterpart, which is defined on a Euclidean space. Therefore, alternative methods are necessary to evaluate

g
(

Zk|Z
k−1,

(
Xk

)(i)
)

, and hence the trajectory particle’s new weight.

Fortunately, by rearranging Equation 19, it can be seen thatg
(

Zk|Zk−1,
(
Xk

)(i)
)

is merely the normalizing constant,

g
(

Zk|Z
k−1,

(
Xk

)(i)
)

=
g
(

Zk|Mk, X
(i)
k

)

pk|k−1

(

Mk|Z
k−1,

(
Xk

)(i)
)

pk|k

(

Mk|Zk, (Xk)
(i)
) . (23)

Note in the above, that the LHS does not contain the variableMk, while the RHS hasMk in both the denominator and numerator.

In essence,Mk in Equation 23 is a dummy variable, and thus an exact implementation of Equation 23 would hold forany
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19
arbitrary choiceof Mk. This theoretically allows the substitution of any choice of Mk to evaluateg

(

Zk|Zk−1,
(
Xk

)(i)
)

. This

is an important result, which allows the likelihood of the measurement conditioned on the trajectory (but not the map), to be

calculated in closed-form. The following subsection considers the simplest implementation of Equation 23 [3], [4].

It should be noted that an alternative approach has also beenproposed in [13] and the resulting propagation equations have a

similar form to [4], [21]. The approach in [13] does not require the calculation of the normalizing constant of Equation 23 and

instead calculates weights for each Dirac based PHD parent process, representing the vehicle’s pose, based on Poisson cluster

assumptions.

1) The Empty Map Strategy:If the RFSMk is approximated as a multi-target Poisson density (Poissondistributed in its

number, and the points withinMk are IID distributed) then the probability density ofMk can be recovered exactly from the

PHD intensity function. Similarly the predicted and posterior RFS maps can be approximated by Poisson RFSs with PHDs

vk|k−1

(

m|
(
Xk

)(i)
)

andvk|k
(

m|
(
Xk

)(i)
)

respectively, giving

pk|k−1

(

Mk|Z
k−1,

(
Xk

)(i)
)

≈

∏

m∈Mk

vk|k−1

(

m|
(
Xk

)(i)
)

exp
(∫

vk|k−1

(

m| (Xk)
(i)
)

dm
) , (24)

pk|k

(

Mk|Z
k,
(
Xk

)(i)
)

≈

∏

m∈Mk

vk|k

(

m|
(
Xk

)(i)
)

exp
(∫

vk|k

(

m| (Xk)
(i)
)

dm
) . (25)

Substituting Equations 24 and 25 into Equation 23, assigning Mk = ∅, and rearranging Equation 23 gives,

g

(

Zk|Z
k−1

,
(

X
k

)(i)
)

= g
(

Zk|∅, X
(i)
k

)

×

∏

m∈Mk

vk|k−1

(

m|
(

Xk
)(i)

)

∏

m∈Mk

vk|k

(

m| (Xk)(i)
) ×

exp
(

∫

vk|k

(

m|
(

Xk
)(i)

)

dm
)

exp
(

∫

vk|k−1

(

m| (Xk)(i)
)

dm
) (26)

Since,Mk = ∅, the empty set measurement likelihood is that of the clutterRFS (Poisson),

g
(

Zk|∅, X
(i)
k

)

=

∏

z∈Zk

ck

(

z|X(i)
k

)

exp
(

∫

ck

(

z|X(i)
k

)

dz
) . (27)

The PHDsvk|k−1 andvk|k are empty, implying their product is 1,̂mk|k−1 =
∫
vk|k−1

(

m|
(
Xk

)(i)
)

dm and

m̂k|k =
∫
vk|k

(

m|
(
Xk

)(i)
)

dm, giving,

g

(

Zk|Z
k−1

,
(

X
k

)(i)
)

=
∏

z∈Zk

ck

(

z|X(i)
k

)

exp

(

m̂k|k − m̂k|k−1 −

∫

ck

(

z|X(i)
k

)

dz

)

. (28)

Note that
∫
ck

(

z|X
(i)
k

)

dz by definition gives the number of clutter measurements per scan ncV , and in the particular case that

the clutter intensity is assumed equal for each robot poseX
(i)
k

g
(

Zk|Z
k−1,

(
Xk

)(i)
)

∝ exp
(
m̂k|k − m̂k|k−1

)
(29)

so that each particle’s relative weight can be updated by thefactor exp
(
m̂k|k − m̂k|k−1

)
.

Note that while for the empty map choice, the likelihoodg
(

Zk|Z
k−1,

(
Xk

)(i)
)

does not contain a measurement likelihood

term g
(

Zk|Mk, X
(i)
k

)

, the history of measurements and trajectories are incorporated into the predicted and updated intensity

terms, whose integrals appear as the termsm̂k|k−1 andm̂k|k respectively. An implementation of the particle weight that considers

a single feature map approximation to the Poisson distributions of Equations 24 and 25 is given in [3], [4], [17].
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20F. Extracting the Final SLAM Estimate

In MH-FastSLAM, the final trajectory is selected as the particle
(
Xk

)(i)
with the highest weight, and the final map estimate

is its corresponding map. This is known as the maximum a-posteriori (MAP) map estimate. This strategy is also used in the

comparative study here for RB-PHD-SLAM, meaning that its map PHD, vk|k
(

m|
(
Xk

)(i)
)

, is selected as the final map. If

m̂k =
∫
vk|k

(

m|
(
Xk

)(i)
)

dm, is the mass of the posterior map PHD, the expected map estimate can then be extracted by

choosing them̂k highest local maxima.

It should be noted that, in contrast to vector based SLAM algorithms, the PHD map representation yields a natural abilityto

average feature maps, giving an expected a-posteriori (EAP) map, even with map estimates of different size and without having

to resolve the intra-map feature associations. Details of such an implementation, as well as pseudo-code implementations of both

the MAP and EAP methods, are given in [3], [4], [17].

VIII. B ENCHMARK VECTORBASED SLAM I MPLEMENTATIONS FORCOMPARISON

To demonstrate the effectiveness of an RFS representation of the map, state of the art vector based SLAM implementations

were also carried out, based on the same OS-CFAR based landmarks extracted in Figure 6.

A. Nearest-Neighbor, Extended Kalman Filter SLAM

To date, arguably one of the most popular SLAM implementations has been based on approximating the joint vehicle (Xk)

and map (Mk) SLAM state as a multi-variate Gaussian. Equation 1 then yields the EKF. For each OS-CFAR landmark detected,

the EKF SLAM algorithm has to decide which landmark in the existing map it corresponds to, or whether a new landmark

was observed.Maximum likelihood(ML) estimation calculates and compares a statistical distance (theMahalanobis distances)

between the detected feature locations and their predictedlocations. This metric is then used to determine association between

detections and stored features, referred to as theNearest Neighbor Standard Filter(NNSF). In 2001, Neiraet. al. highlighted

limitations of the NN approach, since it ignores the fact that measurement prediction errors are correlated [22]. For this reason,

the Joint Compatibility Branch and Bound(JCBB) data association method was proposed, which determines matches between

setsof detected and predicted feature pairs, taking into account the measurement prediction correlations. This is referred to as

JCBB-EKF-SLAM, and will be used as a vector based comparisonwith the RB-PHD-SLAM approach in Section IX.

B. Multiple Hypothesis FastSLAM

FastSLAM estimates the map on a per-particle basis, meaningthat different particles can be associated with different features

[20]. This means that the FastSLAM filter has the possibilityto maintain different tracks for each possible hypothesis of each

detected feature, known asMultiple Hypothesis Tracking(MHT) [23]. A new particle is created for each new hypothesisof each

measurement, meaning that each particle is split inton+2 new particles, one for each of then possible associations, one particle

for the non-association hypothesis and the other particle for a new feature hypothesis. Particles with incorrect data association

are, on average, more likely to be circumvented than those which were based on correct associations. This step reduces the

number of particles back to its original number. This technique, referred to as MH-FastSLAM, will also be used in the results

as a non-parametric, vector based SLAM approach for comparison. The MH-FastSLAM implementation was based exactly on

the principles given in [20] with details of its associated MH data association possibility given in [24].
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21IX. COMPARISONS OFSLAM CONCEPTS INCLUTTER

A. Performance Comparisons

If, instead of superimposing the OS-CFAR detections onto the vehicle ground truth positions, as in Figure 6 (right), they

are superimposed onto the vehicle’s odometry estimated positions (shown as the solid trajectory), Figure 12 (left) results. The
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Fig. 12: Left: Odometry and extracted clusters from the radar data, representing the raw inputs to the SLAM algorithms. Right: The ground

truth trajectory (green) obtained by matching laser data due to a lack of GPSdata.

detections are based on 700 scans recorded during a 3 loop trajectory in the car park (Figure 6). The information displayed in this

figure can be thought of as the information input to the SLAM algorithms. Given the tree coverage and surrounding buildings

in the area, GPS was generally not available. Ground truth was thus obtained by manually matching successive scans from the

laser range finders (labelled in Figure 4), with graphical verification also provided in Figure 12 (right). The vehicle was driven

at approximately 1.5m/s with a control input frequency of 10Hz and a radar scan frequency of 2.5Hz.

In these experiments, JCBB-EKF-SLAM [22] and MH-FastSLAM [24], both using a mutual exclusion gate and a 95%χ2

confidence gate, were used as the benchmark vector based comparisons. For each SLAM filter, identical sequences of control

inputs and measurements were provided. The RB-PHD-SLAM filter used 50 trajectory particles, while for MH-FastSLAM a

maximum limit of 2000 particles (number of hypotheses considered prior to re-sampling) was used.

Given the small-sized loop (with perimeter approximately 170m), the maximum range of the radar was set to 30m and the

JCBB-EKF-SLAM, MH-FastSLAM and RB-PHD-SLAM algorithms were executed on the dataset. Figure 13 depicts the posterior

estimated trajectory and map using the JCBB-EKF-SLAM algorithm (left) and that from MH-FastSLAM (middle). Finally, Figure

13 (right) shows the SLAM estimates based on the RB-PHD-SLAMalgorithm.
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Fig. 13:The posterior SLAM estimates from JCBB-EKF-SLAM (left) and MH-FastSLAM (middle) and RB-PHD-SLAM (right) using the same

dataset. The integrated Bayesian framework for SLAM, incorporating dataassociation and feature management enhances the robustness of the

SLAM algorithm given noisy measurements.

For both the MH-FastSLAM and RB-PHD-SLAM algorithms, the map of the highest weighted trajectory estimate is used

as the map estimate. In all the figures, the ground truth and estimated trajectories are labelled and the circles represent the

ground truth feature locations. The crosses represent the estimated map. In the case of FastSLAM, this is derived with respect

to the maximum a-posteriori (MAP) FastSLAM trajectory estimate (the particle (trajectory) with the final maximum weight).

In the case of MH-FastSLAM, the trajectory “MH-FastSLAM path estimate” indicates the MAP trajectory estimate. Note that

the RB-PHD-SLAM map yields feature and vehicle trajectory estimates which are much closer to the ground truth map than

either JCBB-EKF-SLAM or MH-FastSLAM. This is due to its unique ability to jointly estimate both feature number as well as

location, and its immunity to feature management and association errors.

B. Computational Cost Comparisons

The computational complexity of RB-PHD-SLAM is,O(mkzkN) i.e. linear in the number of features (in the FoV), linear

in the number of measurements and linear in the number of trajectory particles. For a single thread implementation, Figure

14 shows that the computational time of RB-PHD-SLAM at each time indexk is comparable with that of the MH-FastSLAM

algorithm, both of which are less expensive than JCBB-EKF SLAM as its hypothesis tree grows in the presence of high clutter

[4]. Note that due to the Rao-Blackwellized structure of RB-PHD-SLAM, binary tree based enhancements, such as those applied

to traditional FastSLAM [20], can be readily developed to further reduce the complexity toO
(
zkN log(mk)

)
.
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Fig. 14:A comparison of the computation time per measurement update for RB-PHD-SLAM (blue), MH-FastSLAM (red) and JCBB-EKFSLAM

(black).

Furthermore, in contrast to data association based methods, the proposed approach admits numerous other computational

enhancements, since the map PHD update can be segmented, executed in parallel and subsequently fused for state estimation.

X. SUMMARY

In probabilistic SLAM algorithms, the concept of feature existence uncertainty is at least as important as a feature’s spatial

uncertainty. This tutorial high-lighted the importance ofsensor models which are capable of incorporating both uncertainties,

and demonstrated that such a model should be based on an RFS, rather than the commonly used vector representation. Further,

to correctly take into account the facts that sensor based feature detections are typically not detected in the order in which their

corresponding elements are stored in a map vector, and that they may differ in number, the map itself is also more appropriately

modelled as an RFS. The recent development of FISST-based SLAM techniques, then allows mathematical representations of

the map RFS to be propagated through Bayes theorem, allowingthe estimation of feature locations and number in a joint

manner. By taking into account prior knowledge of sensor based probabilities of detection, false alarm and spatial uncertainty

parameters, the RB-PHD-SLAM approximation to Bayes theorem was demonstrated, circumventing the need for the fragile map

management and feature association rules necessary in vector based SLAM. Its superiority over state of the art vector based

methods, JCBB-EKF-SLAM and MH-FastSLAM, was demonstratedwith short range radar and the presence of many clutter

measurements. Since standard vector based methods inherently assume unity probabilities of detection and zero probability of

false alarm, they are dependent on heuristics and routines,which occur outside of the Bayesian vector state update, to force the

map and measurement state vectors to be of compatible dimensions before state update is possible. This restriction is removed

when FISST representations of RFSs are adopted, as was demonstrated with the PHD filter.

The RFS concepts offer many avenues for future research, including the implementation of higher order FISST-based

algorithms, such as the Cardinalized-PHD and Multi-targetmulti-Bernoulli Filters. Extended landmarks, rather thanthe point
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24features considered here, should also be examined togetherwith the possibilities of joint mapping and landmark tracking from

an autonomous vehicle.
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