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Abstract

In autonomous applications, a vehicle requires reliable estimates of its locati information about the world around it.
To capture prior knowledge of the uncertainties in a vehicle’s motion respto input commands and sensor measurements, this
fundamental task has been cast as probabilistic Simultaneous Localiaatiodap building (SLAM). SLAM has been investigated
as a stochastic filtering problem in which sensor data is compressed intmefgawhich are consequently stacked in a vector,
referred to as the map.

Inspired by developments in the tracking literature, recent researchAM3as recast the map as a Random Finite Set (RFS)
instead of a random vector, with huge mathematical consequences. Widlpptication of recently formulated Finite Set Statistics
(FISST), such a representation circumvents the need for fragileréeatanagement and association routines, which are often the
weakest component in vector based SLAM algorithms.

This tutorial demonstrates that true sensing uncertainty lies not only in thialspstimates of a feature, but also in its
existence. This gives rise to sensor probabilities of detection and false, &a well as spatial uncertainty values. By re-addressing
the fundamentals of SLAM under an RFS framework, it will be shown ithiatpossible to estimate the map in terms of true feature
number, as well as location. The concepts are demonstrated with ahge radar, which detects multiple features, but yields many

false measurements. Comparison of vector, and RFS SLAM algorithovgssthe superior robustness of RFS based SLAM to such
realistic sensing defects.

Index Terms
Autonomous Navigation, Random Finite Set (RFS), SLAM, robotic mapshgrt range radar, Finite Set Statistics (FISST).

I. INTRODUCTION

Due to the imperfect nature of all real sensors, the lack efligtability in real environments and the necessary appratons

to achieve computational decisions, robotics is a scierfiehvdepends on probabilistic algorithms. Autonomous aleki have

now evolved beyond tasks within factory environments, dmetefore require a robust computational representatiotheif

complex surroundings and their related uncertaintiesh @urepresentation is referred to as the map. Also of crugipbitance

to any autonomous task is the vehicle’s positional estimatendoor and under water environments, GPS does not fumcéind

in urban areas, satellite outages and multi-path reflextresult in unacceptable GPS positional errors for autonsnvehicle

applications. Therefore, in many applications, the funelatal necessity to autonomously acquire an environmendgl, rand

infer vehicle location exists, which has been referred tahas“Holy grail” of autonomous robotics researctSimultaneous
Localization and Map BuildingSLAM) [1].
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This tutorial demonstrates that the commonly used vectsedbanethods for feature map representation in SLAM, sunzegri

in Figure 1, suffer many fundamental disadvantages wheheab realistic situations. These correspond to situmstim which
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Fig. 1: Vector based feature mapping and its mathematical restrictions, for a simglete cycle, in SLAM.

an a-priori unknown number of features are to be estimatethe presence of realistic sensor and/or feature detedgects
such as missed detections and false alarms, as well aslsgt&ng errors. The tutorial therefore reviews the basitration
principles of SLAM and, stemming from developments in trecking community [2], summarizes recent SLAM investigasio
which suggest that a landmark map is more appropriatelesgmted as setof landmarks, requiring the tools of Random Finite
Set (RFS) theory, known as Finite Set Statistics (FISST) [] An RFS is a random variable that take values as finite. set
It is defined by a discrete distribution that, importantljacacterizes the number of elements in the set, and a farhilyird
distributions which characterize the distribution of tHeneent’s values, conditioned on the number [5].

While defining a vector or set valued feature map representatiay appear to be a trivial case of terminology, it will be
demonstrated that the vector valued feature map has numearathematical consequences, namely an inherent rigidiogdef
variables and a fixed length. This has caused robotics &ssarto resort to SLAM state vector re-ordering and augatiemt
methods based on fragile feature management rules andiagsoanethods, as high-lighted in the yellow boxes (Figlye
which necessarily occur before and after the SLAM Bayes&unsion. Bayes optimality can only take place with thenap
states, which are considered to exist according to the redt@nap management heuristics/filters. The RFS on the otted,h
offers a powerful map representation, which will be shownaturally encapsulate all possible permutations of a feanap and
measurements thus circumventing the necessity of fragadufe management and association heuristics/methodsradults

in more robust SLAM estimates in the presence of realistissedefects and clutter

1Returned sensor readings incorrectly interpreted as ufasftures.
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The SLAM experiments presented in this tutorial rely on shiange, millimeter wave (MMW) radar as the exteroceptive
sensor. Contrary to the spatial modelling school of thoymghharily adopted by robotic engineers, to radar engineeceived
power values at successive range, bearing, and possiblgtiele, values are related to the possibldstenceof an object in
space. Hence, uncertainty in the sensing process is plynfarmulated in terms of the decision itself as to whethernot
a landmark even exists at the range, bearing/elevationdowies in question. Such an analysis usually gives riséaontell
known concepts (in the radar domain) of probabilities ofedébn and false alarm, and significantly less emphasisnyf &
placed on the possible spatial uncertainty of a hypothddemedmark. Therefore, this tutorial will examine variousasurement
models, which are applied to range finding sensors. The fuedtal difference betweethetectionand spatial error modelling
will also be shown, together with the unique ability of theSREoncept to capture both error models in a joint manner.

For comparison purposes both FISST based SLAM and stateecdrthvector based SLAM techniques are compared in an

urban environment.

II. RELATED WORK & M OTIVATION
A. Prior Work in SLAM

There is a plethora of work in SLAM, with the origins of the fie@ based map representation being traced back to the @emin
work of Smithet. al. [6]. This inspired a Gaussian approximation to Bayes theaadrethe form of the Extended Kalman Filter
(EKF) for the propagation of the SLAM state, and its assumadgsSian, spatial uncertainty. An extension to this phppbgonas
advocated in [7], in which a Gaussian Mixture (GM) implenagitn of Bayes theorem was applied to SLAM. Non-parametric
approximations to Bayes theorem followed with a Rao-Blaglkwed (RB) particle filter yielding a Factored Solution 36 AM
(FastSLAM) [8]. Further approximations to Bayesian SLAMvéadopted Graph Based methods [9] and the Sparse Extended
Information Filter (SEIF) [10].

An RFS formulation for SLAM was first proposed in [11] with firinary studies using ‘brute force’ implementations also
appearing in [12]. The approach modelled the joint vehicdgettory and map as a single RFS, and recursively propagfste
first order moment, known as the Probability Hypothesis gn®HD). More refined approaches which adopted a factored
concept, in the form of a particle representation of the slehstate, each maintaining its own PHD filter for the estiorabf
the map state, are detailed in [3], [4]. Recent work by ktal. has modelled the SLAM problem with a single cluster PHD

filter, which models the vehicle state as a parent procesghanchap state as a Poisson spatial point daughter process [13

B. Motivation & Prior Work in Robotic Navigation with Radar

The prime motivation for radar in the experimental analysishis tutorial, as opposed to laser, vision and ultrasdigised
sensors, is its ability to operate in environments comtgjiriigh levels of dust, rain, fog or snow. In contrast to theeotsensors,
radar has the ability to penetrate such atmospheric effeatsalso has the potential to provide more information, tfan
example laser range finders, as it provides multiple linsighit data. As an example, Figure 5 shows superimposed Haisge
data (black points) and received power data (plotted inrgdiom the car park environment of Figure 6 (left). Two of taenp
posts in the scene are missed by the laser range findersl€@dbas are the occluded trees, which are shielded by théshru
The radar data however yields significant received powaregafrom these, as well as the occluding, objects, albeitratlaced

angular resolution. The specific details of how radar meamants can be used in SLAM are left until Section V.
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Because of these advantages, radar sensors have beendaoppufeite a number of research groups worldwide. [1] uéed a
W-band radar sensor for feature based SLAM experimentdyses while reflectivity patterns from leisure craft wesamined
in [14]. Further SLAM and mapping investigations using Wiblaadar were presented in [15], [16] examining the sigratistics
and their influence on the resulting localization and mapredes. Further motivation for, and a review of, the use dfran

SLAM, with an introduction to related processing methodsgiven in [17].

IIl. REVISITING SLAM FUNDAMENTALS

The aim of SLAM is to concurrently estimate the pose (positemd orientation) of a vehicl&;, and the positions of its
surrounding features, typically stacked in a map vedtfyr at time k. Due to the uncertainty in vehicle motion and sensor
measurements, SLAM estimates a joint probability densitycfion (PDF) on these valueg (X, M}). As a vehicle acquires

more measurements, this distribution is updated accordirBayes Theorem:
P (X, M| 28, U Xo) = et (X, My 2571, U, X0)g(Zi| My, Xie) (1)

wherepk‘k(Xk,Mk\Zk,U’f—l,XO) is an estimate of the joint PDF o, and M}, given all measurementg* up to and
including timek, all input valuesU*~! used to control the vehicle motion, up to and including tilne 1 and the vehicle’s
initial pose X,. ¢ is a normalizing value to ensure tha, (X, My|Z*, U*~*, X,) is a PDF andy(Zy| My, X) is the sensor
measurement likelihood, given the map and vehicle location

Primarily, this tutorial demonstrates the performanceeafent experimental results which remodel the measuremestbr
Z as an RFSZ; and the map vectod/;, as an RFSM .. To motivate these changes, sensor measurement modelsiteiéyi

examined in Sections IV and V, followed by justifications #oset based model in Section VI.

IV. MEASUREMENTS AND THEIRTRUE UNCERTAINTIES

This section high lights the importance of a sensor’s ant#ature detection algorithm'detectionuncertainty as well as
the usually considereslpatial uncertainty. This plays a key role in the principled incagin of measurements into stochastic
SLAM algorithms.

Active sensors, such as laser range finders, sonars and taatlasmit various forms of energy into their environmeAfter
transmission, the receiver section of the sensor then cisngay power incident on its aperture into a received sigmasome
sensors, this received signal, as a function of range frams#dnsor, is available for processing. For example, thentesiek
LMS 5xx laser range finders, yield the largest 5 received papékes at different ranges. Underwater sonars also peosicth
received power arrays. In the case of radar, the receive@p@s a function of distance from the radar, is called an tage”.
Many active sensors however keep this signal “hidden” from user, and apply their own form of detection theory to ptevi
a simple range decision - i.e. a range value, which is tylyidaterpreted as corresponding to the detection of a vadatifre.
Importantly, in any sensor, the output is directly relatedhe time varying power measured at its receiver and, whétidelen

from the user or not, vital information about an environmeéapends on how this signal is processed.

A. Interpreting Received Power versus Range Signals

As a case study, an A-Scope is examined, which resulted whadaa pointed in the directiofiof a landmarki. Note that this
signal could be the (usually internal) received power digaeaa function of range in any active range finder. The A-8dsjllus-
trated in Figure 2, Graph (a), which plots an array of lineedi power value$i"(9) = [Si"(1) Sin(2) ... Si"(g) ... SI"(Q)],

April 24, 2013 DRAFT



with eIementsS‘}i” (q) containing the received power corresponding to a particalage bisd ¢, recorded at discrete time Graph
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Fig. 2: The interpretation of measurement detection in robotics and radar/trgddeearch.

(b) illustrates the concept of detection theory, appliedht® A-Scope in Graph (a). Most detection theoretic methansta

identify power signals emanating from true targets, withoastant (typically very small) probability of false alarincorrectly

2A range bin is a discretized segment of the range space, inhwehisingle received power value is received. It correspoadbé range resolution of the
sensor.
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declaring a target) and a quantifiable probability of dédec{probability of correctly declaring a target). Such heads afe
referred to asConstant False Alarm RatéCFAR) processors. Note that in the example of Figure 2(9, received power
from the true target at range, exceeds the detection threshold, as does another powes fratiner down range. Graph (c)
illustrates the way in which most of the spatial modellingrgaches in the robotics literature have interpreted tifisrination.
Its interpretation exists only in the spatial domain. A mbiiity distribution is created in the range space with itsam located
at the range bin of the closest range detection, and spatia@nce based on prior information about the sensor. Nateki
definition, the area under the distribution must be unitypliimg thatone landmark is assumed to exist with unity probability
somewhere in the range space - i.e. a uRitgbability of Detection(Pp = 1) is assumed.

Work by Fox et. al. proposed a sensor likelihood to represent the spatial nrdton, from sensors yielding single range
values, based on error densities associated with objeettitits as well as false, missing and unexpected data afalled in
Graph (d) [18]. The distribution is the weighted sum of thatGraph (c) corresponding to a correct detection corruptigd w
Gaussian noise, as well as an exponential distribution tdeinanexpected objects, a uniform distribution over thesees
operating range to model false alarms and finally a Diragidigion at maximum range to model missed detections. Whike t
model offers a significant advance over that of Graph (c}tilitassumes the existence ofsingle object over the sensor’s range
space, and is only valid for sensors which yield maximum eawhen a missed detection occurs.

Graph (e) illustrates the different way in which most of tletedtion modelling approaches in the radar and trackiegglitire
have interpreted this form of measurement information.eBasn a pre-choseRrobability of False Alarm Py,, from which the
detection threshold (dashed line in Figure 2(b)) is deries@ry range big is accompanied by a calculatét}, and a hypothesis
value H, or H; corresponding to “No landmark detected” or “landmark digtet respectively. Hence, in the interpretation in
Graph (e), two landmarks would be hypothesized to exist.eGhés acknowledged that detections may not correspondut tr
objects, the concept of multiple line of sight detectionskesasense

The question naturally arises as to which interpretatiomagect? Since, in Graph (e), more than one range bin can be
associated with hypothesis,, contrary to the spatial interpretation (Graphs (c) or,(dd assumption on the number of possible
landmarks is made. However under this interpretation itds atear how any prior knowledge of spatial uncertainty dobé
incorporated into the measurement information. Therefdrénterpretations fail to represeiatl of the available information.
The fundamental difficulty in applying standard, vector dghsestimation theory to this problem is that the informatio be
estimated has different dimensions. It is necessary tonasti thenumberof features due to detection uncertainty, which is a
dimensionless quantity, and thacation of the features themselves due to spatial uncertainty, whave spatial dimensions.

An RFS framework can readily overcome these issues. For gheatine PHD approximation of an RFS does not maintain an
existence estimate on each feature, but instead propamatessity which represents the mean number of features im#peas
well as their spatial densities. Fundamentally, the conokp set basedneasurement and state representation will be introduced,
which allowsall of the measurement information, spatial and detection,etenborporated into joint Bayesian navigation and
mapping frameworks.

Before introducing an RFS based solution to SLAM, the follmyvsections clarify the differences between the measuneme

models under each of the above interpretations and inteoduset based measurement model.

3t should also be noted that radar has the ability to pereetattain materials, and has a wider beam width than laserréinders, thus providing the
potential for received power spikes from multiple objectsvdaange.
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V. VECTOR AND SET BASED MEASUREMENTMODELS 7
A. Relating Spatial Measurements to the Map/SLAM State

Spatial modelling is the standard method of incorporatirepsurements into the SLAM estimation problem in autonomous
robotics research. For the simple planar motion and sensésg, a range/bearing measurement from featuie shown

diagrammatically in Figure 3. Such a measurement correispom an assumed detectiof?{ = 1) at range valuer; and

YA Featurei

L

Yk-1

Fig. 3: Relating target location to vehicle motion.

bearing anglet, and in robotics research, is often interpreted in a stdithasanner in which the sensed object is “smeared”
in the range (as in Graph (c) in Figure 2) and bearing spa@arding to a multi-variate Gaussian distribution. Fromufey 3
it can be seen that it is possible to relate the spatial meawnt vectoifr 6i]” to the vehicle pose) = [z yi, ¢x]” and the

ith environmental featurexi, = [z yi]T states

nt = @ — o2 () — 9 + () @
) y i y radar ]
0y = arctan [kikradar] — ¢ + (wl)? 3)
T — Tg

where (z;29a" 1243 are the coordinates of the sensor &nd);)’ and (w{)" are the, assumed additive, spatial measurement
random noise terms in range and bearing respectively.

The range/bearing Equations 2 and 3 can be written as a siegter equation. When augmented for all landmarks detected
at different sensor bearing angles within a scan, it takeddlm of a stacked vector apatial values, which relates to the map
and vehicle states via

7, = Zf = B PR @
k
wherehsP2%() is generally a non-linear function, mapping the landmari eehicle locations into the relative range and bearing

measurements withuipa“a' being the additive augmented vector of range and bearingsumement noises over all detected
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features within a scan. To demonstrate such spatial measute, Figure 4 shows a vehitlearrying a360° scanning, rad&}

capable of range measurements of up to 200m with a range sdluteon of 25cm. The vehicle also has tw80° scanning

|

f 360° scanning radar 180° scanning laser range finders ;

Fig. 4: A vehicle carrying 2 laser range finders and a 866anning MMW radar.

laser range findefs(labelled).
Experiments were conducted in a car park, causing radangettom trees, lamp posts, buildings as well as clutter fgpound
measurements, due to the rolling of the vehicle during meersu The results of a singl860° laser scan of the environment

are shown in Figure 5. Laser range decisions are shown ak titsds, relative to the robot location at the origin.

B. Relating Power Measurements to the Map/SLAM State

Sensing methods exist, which yield measurements that drgpatial in nature. As examples, cameras produce pixahsitie
values corresponding to objects within a scene and radarapity produces received power values from an object, ekengh
range can be inferred. In the case of radar, linearized vedgiower measuremen&” can be used as the measurements at
specific range bing, which are also related to the position of the vehi&lg and a map staté/,.. For example, if the map state
M, were defined to incorporate point landma&kdar Cross Section®RCSs), as well as spatial locations, then the measurements

obtained from a radar scan of an environment could take tim fo
Zlgower: SI]Ln (0 S0 — 271') _ hpower(Mk’ Xk) + wzower (5)

where Z}°**" now corresponds to a stacked vector of A-Scope power va8lfe® : 0 — 27) at time k, taken at each discrete

bearing angle. Based on a stat®/;, containing landmark RCSs and spatial coordinat%¢() could be a vector of functions

4The vehicle is called the “RobuCAR” from Robosoft (httpWw.robosoft.com).
5The radar is from Navtech Radar Ltd, and is a 77GHz, Frequéfmyulated Continuous Wave (FMCW) device.

6The laser range finders are the Sick LMS 200 devices, capéliported range measurements of up to 80m, with a distanceutiespbf 10mm.
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Fig. 5: Received laser range and radar power data superimposed on the szane Note the missed detections by the laser range finder.

based on the radar equation, which relates received powerget RCS and rangeu,ﬂo‘”er could then be the received power

noise associated with each power measurement.

To demonstrate receivgabwer type measurements, a sing$0° scan from the radar on board the vehicle of Figure 4 is
superimposed onto the laser data of Figure 5. The receive@rpealues from the radar are shown as color values, with dark
blue indicating minimum, increasing to light blue and yellto red indicating maximum received power. Such a display lua
envisaged as the top view of several A-Scopes (Figure 2(@ptsabout the origin, where color represents received pdwe

radar terminology, this is known as a secRlan Position Indicator(PPI) plot.

C. Relating Detection Measurements to the Map/SLAM State

In a radar based application, it can be more convenient tgsidenthe measuremett;, to be the simple binary detection

hypothesesH,,, corresponding to detection/no detection. The measurenierhis case can be defined as
Z{'=Hyy = h*NSIN(0 : 0 — 2m)), (6)

where de‘ now corresponds to a vector of binary detection hypothddgs with eIements?-Lg /l(q) corresponding to each
range bing at each bearing angle In this case2%"°1) would correspond to a vector of functions derived from a enos
detector. Note tha8!"(¢ : 0 — 27) is then related to the map/; and vehicleX;, states through Equation 5. Each detection
measurement is accompanied by unigte and Py, values. For those measurements corresponding to an assietesdion,

they can be located spatially according to Equations 2 and 3.
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To illustrate this form of measurement, Figure 6 (right) whaletectionsproduced by a standard radar detection m&thod,
known as theOrdered Statistic§O0S)-CFAR processor, superimposed after three consedotdps within a car park environment.

At this stage, the detections are superimposed onto therkigwaund truth trajectory of the vehicle, to demonstrateghality

Multi-Vehicle Pose OS—-CFAR Detections

Concrete Wall

— .I.:_'_ntrance B Coconut Tree

i
l

@ Vehicle Trajectory

40 -0 -2 -0 0 M I X & 5
Meters

Fig. 6:(Left) Photograph of a car park scene, with the vehicle’s trajectory dsjdats labelled. (RightpS-CFAR radar detections, superimposed
onto the vehicle’s multi-loop trajectory, within the car park environment.

of the radar detections alone, without including the vehiotalization errors. Many of the true objects in the phdgdt) can be
identified among the radar detections (right) and some &elléd. Also clearly evident however, are maiayse alarmsin the

radar data, which can result from incorrect detector beanoise and pitching of the vehicle, causing random grawairns.

D. Set Based Measurements

It is interesting to note that for SLAM, measurement Equetid, 5 and 6 fail to completely encapsulate all of the infdiroma
provided in a general feature measuremeRtjuation 4 fails to incorporate detection and false alambabilities, while Equations
5 and 6 fail to explicitly make use of any knowledge of a selssgpatial uncertainty.

To encapsulate detection uncertainty, as well as spatiaborement noise, the detected features from a vehicle wib.,,

at time k, can be mathematically modelled by an REg. This is formed by the union of a set of measurements expdoted

"This actually applies to any sensor when landmarks are égttacsing realistic landmark extraction algorithms. Suctortlyms are always accompanied
by non-unity probabilities of landmark detection and nomezerobabilities of false alarm, which may be guantifiable, ahduld then be used.
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be generated under the current map estimate and a set @& dfiatise alarm) measurements. Importantly, each set enlzfs

the aforementioned detection and spatial uncertaintidshance

Z = U Di(m, Xi) U Cr(Xk)
~~ meMy, SN———— N—— 7
All Feature Clutter (7)
Measurements Measurements

where Dy (m, Xi) is the RFS of measurements generated by a feature at locatiand Ci,(X}) is the RFS of the spurious
measurements at time which may depend on the vehicle pakg. Z;, = {z},27,...,2}"} consists of a random numbsy,, of
spatial measurementg, whose order of appearance has no physical significanceresiect to the estimated map of features.
For each featurepn € My, andz; € Zj,
Dy (m, Xi) = {2} (8)

with probability densityPp (m, Xx)g(zi|m, X)) and Dy (X, m)=0 with probability 1 — Pp(m, X)), where Pp(m, X}) is the
probability of the sensor detecting featurefrom poseXy andg(z|m, X;) represents the sensor’s likelihood of detectifig
given m and X;. Note the principled association of both detectidty(m, X)) and spatial §(z}|m, X)) uncertainties with
the RFSDy(m, X}). Spatial uncertainty term(z%|m, Xx) would reflect the statistics of the spatial noise proce¢sés’ and
(w?)® in Equations 2 and 3. Similarly, the spurious measuremeat statistics corresponding t,(X},) are typically a priori
assigned based on an expected,, available from the chosen detection equations.

1) Case Study: Landmark Extraction with MMW Raddtrior to the selection of radar based landmarks, receivatepo
values at specific range bigsare classified into detectioft{; hypothesis, and the no detection or cluttés hypothesis, via an
OS-CFAR detector (Figure 2(b)). Many power spikes in theraiScopes correspond to clutter.df" is the linearized received
radar signal amplitude then the empirical clutter amplitudg(S"™"|#,) can be obtained by Monte Carlo (MC) analysis over
a large number of sample scans, using manually selected/edcpower values containing only radar returns from arees f
of landmarks. The OS-CFAR detector locally estimates th@opgntial distribution moment, in each range hjnand derives
an adaptive threshold valu§®S-C™R(q) (Figure 2(b)).S9SCFAR(4) can be derived as a function of the desired false alarm rate
PR>CPAR Typically PR ©FRis chosen to be low, and in the experiments here is sedt6. A landmark is considered detected
in range bing if the received powes' (¢) > S°S-CFAR(4). Based on this detection criterion, each received powereval” (¢)
is accompanied by a probability of detectiétp®> ™ (q). Importantly, bothPP>“FR and P (q) will be utilized in the
RFS based SLAM concept, rather than assuniitiy “™R = 0 and Pp>“™R(q) = 1 as is necessary in vector based SLAM.

OS-CFAR detections, based upon multiple radar scans as ielevétaversed three loops of a car park environment, were
already shown in Figure 6 (right). It shows that, while mudeful information is present in OS-CFAR detections, it idl st
corrupted by many false alarms or clutter. Many more faldeadm®ns result than those predicted by detection theory,the

real challenge in SLAM is to provide algorithms which areusbin the presence of such clutter measurements.

VI. SET BASED REPRESENTATION OF THEMAP STATE

In Section V-D the concept of an RFS measurement was justifieid section advocates that the map state itself is alse mor

appropriately represented as a set. Consider a simpligtpmthetical scenario in which a mobile robot traversesdhtifferent

8Note that for processing purposes, the linearized recgioseer is used, however, due to the large dynamic range of tevil power, a logarithmic scale
is used for graphical purposes.
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Fig. 7: A hypothetical scenario in which a mobile robot executes three differajaictories X!, X2, X3, amidst static objects (features)!

tom”.

trajectories, among static objects, as shown in Figure thdftrajectory taken by the robot wese! (blue), then it would seem
logical that an on board sensor, with a limited range cajighihay sense feature! followed by m? followed bym? etc. Hence
after completing trajectoryX!, if a vector M is used to represent the map, then the map could be représentie first vector
in Equations 9. Alternatively, had the robot pursued tr@jgcX? (red) instead, the order in which the features would be sknse
would likely be very different, and the resulting estimatedp could be the second vector in Equations 9, and had the robo
pursued trajectoryX® (black), the third map vector in Equations 9 could resulhcSithe order of the elements within a vector
is of importance (a change in the order yields a differentagcthree different map vectors result. However, since iep
features themselves were assumed static, it seems oddithastimated vector is actually dependent on the vehitiajectory.
In a strict mathematical sense, the order of the featurdimihe map estimate should not be significant, as any petiontaf
the vectors results in a valid representation of the map. &inition, the representation which captures all permaitestiof the
elements within the vector, and therefore the featureseénntlap, is dinite setM, as shown in representation 9.

2 3 4 5 6 7]T

M = [m! m? m3 m* m5 mb m

M = [m* m? m3 m* m® m” mS|"

M =[m% m™ m® m* m3 m? m

M = {m? m? m® m* m® mb m"} 9)

A. Circumventing the Feature Association Problem

In vector based SLAM, the order in which features are acdusegenerally unrelated to the order of the feature elemients
the current map state estimate. This is illustrated in EdRiin which a measurement-to-state assignment problemiderav
A re-ordering of the observed feature vectéris necessary, since in general, observed feattirwill not correspond to the

current estimaten’ (e.g. measurement’ resulted from featuren* etc.). The proposed RFS approach represents both features
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Fig. 8: As the robot moves, the order in which features are detected will, in gemeacorrespond to the order of stored features in the
map vector. Also, new features will enter the FoV of the sensor(s).rargk some features may be undetected and some false alarms may
be declared.

and measurements as finite valued sktsand Z respectively, which assume no distinct ordering of theuess, as shown in

representations 9 and 10.

Z={z! 2% 23 24 25} (10)

Since the finite set representations 9 and 10 naturally enéate all possible permutations of the feature map and unement,

a FISST representation of the set will circumvent the needdature association.

B. Circumventing the Map Management Problem

The feature measurement to state assignment problem Fefuekacerbated since in reality, the number of measurament
3%, at any given time is not fixed due to detection uncertainrious measurements and unknown number of true features.
For example, in Figure 8 it can be seen that 5 features have detected, although there are seven features in the enwénmmn
Objectsm®, m% andm7 lie out of range of the sensor, in the robot’s current positibue to sensor and/or feature detection
algorithm imperfections, two false alarm$ and z* have occurred. These can originate from clutter, sens@enoi incorrect
feature detection algorithm performance. Notice thatoaitfh objectm? lies within the FoV of the sensor, it has not been
detected, and constitutesmgissed detection

Suppose that features!, m? andm? already exist at timé — 1 in a vector based map representation, and that featdre
now falls into the robot’s sensor(s) FoV. Featuné should be initialized and included in the state estimaténa &. To date,

many SLAM techniques use vector augmentation methods b@asddature initiation rules. However if the map is defined as a
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set, then a set based map transition function can be matiathatiefined as 14

M1

{m! m? m3}

My = {m' m* m3}u{m*} (11)

Contrary to vector based SLAM, a principled mathematickdtienship between a set based measuren@grand the mapM,,
which takes into account the different dimensionszgafand M, as well as spurious measurements (such®aand z* in Figure
8), can be defined and was given in RFS Equation 7.

By redefining the concept of Bayes optimality for estimatisith unknown feature number, by formulating it as an RFS
estimation problem, the formulation unifies the independéters adopted by previous, vector based solutions, tjinothe
recursive propagation of a distribution of an RFS of feaurkhis allows for the joint propagation of the Feature Bage®s))
map density and leads to Bayes optimal map estimates in #wepce of unknown map size, spurious measurements, feature
detection and data association uncertainty. The RFS framewummarized in Figure 9, further allows for the jointatment
of error in feature number and location estimates as itlpimtopagates both the estimate of the number of landmartstair
corresponding states. Feature association is autongtitssdlt with under the multi-object statistical framewpakd consequently

the need for feature association and management heurigtesircumvented

Sensor Data e Y

Sets mathematically

- represented in terms of
Feature Detectiol
* feature number and

their attributes (locations). Bayes optimality
Detected feature p—— based on all3, observations
set at time k atistica Rt
representation and all my state predictions
{2 2 2... % of the set
(eg. PHD
function) Statistical Possible to reconstrugt
Bayes representation updated feature set
[\ Y of the set P . )
Predicted P Estimator estimate containing estimated
feature state (eg. PHD Filter) (eg. updated nuLntt;]er. olf fea:ures
set at time k Statistical PHD function) and their locations
representation
{ml m2 m... fi of the set
(eg. PHD
function)

u J

State representation ready for prediction at time k + 1.

Fig. 9: RFS based feature mapping, for a single update cycle, in SLAM. Noticedhaap management or data association filters/heuristics

are necessary.

VII. SLAM WITH RANDOM FINITE SETS
A. Vector Representation of the Vehicle State

For the experiments adopted in this tutorial, a simple planation vehicle model is based on the Ackerman model [19].

With reference to Figure 3, the discrete time varying cdnimputs to the vehicle at tim& — 1 are forward speed._; and
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steering anglé~,), . The local origin on the vehicle, is defined as the center efréar axle. In discrete time form, withthe

inclusion of noise terms in the control inputs, the vehidktes can be predicted from the following kinematic equatifii.

Tk Th_1 AT (Vi1 + vX_l) cos[dr—1]

ue | = | yk—1 | T AT (Vi1 + vy ) sin[ég—1] (12)
AT(Vk*1+vl‘c/—1)tan[(’YS)k—l+vzil)]

b br—1 IWB

wherex;, represents the coordinate of the vehicle at time x;_, represents the previouscoordinate of the vehicle at time
k — 1 (and similarly fory and headingp); AT is the time between updatds— 1 and k and LB is the wheel base length
defined in Figure 3v;_; «~ N(0, (0% )x—1) andv;* | «~ N(0, (2, )x—1) represent the input noise terms in the modé(y, o)
represents a Gaussian distribution with mgaand variancer2.

Since the dimensions of this state are fixed as time progease the order of the variables in the vector remain the same
the robot vehicle state is adequately modelled aarmlom vector Note that, due to the random noise terms, Equation 12 is
typically modelled as a PDF

LN X1, Ug—1) (13)

whereU,,_; represents a vector comprising the input velocity signal steering angle - i.d/;,_1 = [Vi—1 (7s),_,]7, Which is
derived from either odometric or desired input informati®his general vehicle process model will be used in all of Sh&M
algorithms, developed for comparison purposes, in thisriait In particular, the vehiclérajectory X* = [Xy X; X --- X;]T
is stochastically represented by a sef\oparticles (samples) each of which is extended at each titeevad from its component

location X, _; to X}, through Equation 12.

B. RFS Representation of the Map State

Let M be the RFS representing the entire unknown and unexploegit shap. The explored map1,_; then evolves in

time according to,

M = Mip_1 U (FOV(Xk) N Mk1)
Current Previous Sensor(s) Complement of
Map Set Map Set FoV Previous Map Set

where Mj,_; = M — M;,_4, i.e the set of features not iMj,_;. Let the new features which have entered the FoV, i.e. the
second term of Equation 14, be modelled by the independetit BFS, 5, (X}). In this case, the RFS map transition density
is given by,

MMEIMy—1, Xi) = D U OVIMe1) fE (M= W[ X) (15)
WCM,

where fM(W|M,._1) is the transition density of the set of features that are @faV (X*~1) at timek — 1 to time k, and
fB(Mp—W|X},) is the birth density of the RFF(X}), of the new features that pass within the FoV at timémplementation
details related to the birth density will be given in Sectiit-D.

Equation 15 is important since it defines the map transitiorction for set valued maps. Including the vector basedclehi

state transition density"eh(Xk|Xk,1, Ui-1), the joint transition density of the map and the vehicle pcese be written as,

MMy, X My—1, X1, Uk 1) = FY M M1, Xi) (X0 X1, Up—1). (16)
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C. The Probability Hypothesis Density (PHD) Estimator 16

As in vector based SLAM, unfortunately, the general RFSn®on equivalent of Equation 1, is also mathematicallyaatable.
A simple approximation to set-based estimation which istatale, is to exploit the physical intuition of the first momef an
RFS, known as its PHDy,. The PHD at a point, gives thgensityof the expected number of features occurring at that point.
A PHD function is any function which obeys the following twooperties:

1) The mass (integral of the density over the volume) of th®R¥ithin a given spatial regioly, gives the expected number

of features inS.
2) As a consequence, the peaks of the PHD indicate locatidthshigh probability of feature existence.
To illustrate the application of the PHD estimator to 2D ridanapping, graphical depictions of posterior PHDs afteo t

consecutive measurements are shown in Figures 10 and 1lse Tlhestrate a simple time varying PHD functiom,, which is

meters

0012

0.006 -

magnitude

meters meters

Fig. 10: A sample map PHD at timg—1, with the true map represented by black crosses. The left hand map Pt@ igan view of the
right hand 3D view. The measurement at tife 1 is represented by the dashed lines. The peaks of the PHD represatibtmcwith the
highest concentration of expected number of features. The local PE3 i the region of most features is 1, indicating the presence of 1
feature. The local mass close to some unresolved features (for instai®e8)) is closer to 2, demonstrating the unique ability of the PHD
function to jointly capture the number of features.

a Gaussian Mixture (GM) containingi, Gaussian components, i.e.

op =, P wlY (17)

j=1
where p,(j') is the mean spatial location of Gaussian compongenat time &, with spatial covarianceP,gj) and weightw,(cj)
corresponding to the number of features jlle component represents. In each figure, the PHD is plottesl fasction of the
spatial coordinates. Since the integral of the PHD is, bynitafn, the estimated number of features in the map, the rt@ss
integral) of each Gaussian can be interpreted as the nunfifeatorres it represents. In the case of closely lying festand
large spatial measurement noise), the PHD approach mayenable to resolve the features, as demonstrated in Figuré¢ 10 a
approximate coordinates (5, -8). However the PHD will repre the spatial density df features by a singular Gaussian with
a corresponding mass @f, which may improve the feature number estimate. This is ¢mdpretically possible using the RFS

framework. A graphical example far = 2 is illustrated in Figure 10, which is then resolved througbasurement updates into
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Fig. 11: A sample map PHD and measurement at timeéNote that the features at (5,-8) are resolved due to well separatedureaents,
while at (-3,-4), a lone false alarm close to the feature measurementilootats to the local PHD mass. At (-5,-4) a small likelihood over all
measurements, coupled with a moderate clutter PHD results in a reducabnss.

individual Gaussian components for each feature of nlass1, as shown in Figure 11 (the two peaks near coordinates (b, -8)

The PHD estimator has been proven to be powerful and efteatimulti-target tracking [5].

D. The PHD SLAM Filter

Similarly to the FastSLAM concept [20], the PHD-SLAM joinbgterior can be factorized when the map is represented as a

conditional PDF, conditioned on an entire vehicle traject&” - i.e.

pe(XF, M| ZF U X)) = pe(XF2F, U X)) x (M| 25, XF) .
N——
Full SLAM posterior Vector based vehicle Set based map (18)
trajectory posterior conditioned on trajectory

Under an RB implementation, the vehicle trajecto¥y is represented as vector particIéX’“)(i), each of which maintain
their own set based map estimaig), (MHZ’“, (X’“)(i)). The recursive Bayesian estimate of the map, per trajeqarticle
(Xk)(i), is then

Phlk—1 (Mk|zk_1a (Xk)(i)) g (Zk|Mk, (Xk)(i))
B g(Zk|Zk—17(Xk)(i))

P (Mal 2%, (x9) V) (19)
The set based distributiopy, ; (MMZ’“, (X’f)(i)) is modelled with a GM implementation of the PHR;,(m| (X’f)(i)).
The PHD predictor equation is

(4) —1\(®) i
- (m| (x*) ) = 1hs (m| (x*1) )+b(m|X,§’>) (20)
where vy, _yj,_1 (m| (X’“—l)(i)> is previous GM estimate of the PHDy,;,_, <m| (X’“)(i)> is its prediction at timek and
b <m|X,ii)) is the GM PHD of the birth RFS3 (X,ii)). b (m\X,E“) is similar to the proposal function used in particle filters,
and is used to give songpriori information to the filter about where features are likely pp@ar in the map. In SLAM, with na
priori information,b (m|X ,gi)), may be uniformly distributed in a non-informative mannboat the space of features. However,

in this work, the feature birth proposal at tinkeis chosen to be a GM containing, , Gaussian components, representing the

set of measurements at tinke-1, Z;,_1 [4].
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The PHD corrector is, 18

o (] () = s (] (697 [1-PE2S (i) + 3 A (mix(") |
k| k|k—1 D § 2€2k Ck (z|XIEi)) + [, A <§|X](€i)) Vi1 <§| (Xk)(i)g de
(21)

where vy, (m\ (Xk)(i)> is the new GM estimate of the PHD at tinie A (m|X,gi)> — POSCFAR (m\X,(f)) 0 <Z|m,X]ii))

and,

PYSCHAR (m\X,g”) = the probability of detecting a land-
mark atm, from vehicle poseX,gi).

Cr (z\X,g“) = PHD of the clutter RFS, in
Equation 7 at timek.

The integralf,, A (§|X,§i)> Vklk—1 (5\ (X’“)(i)) d¢ in the denominator of corrector Equation 21 is calculatethassum of the
Jrx—1 predicted and/, . birth Gaussians present in;_, (m| (Xk)(i)), each weighted by <m|X,gi)), over all N trajectory
particles.

The clutter RFSCy, represents the prior knowledge of the probability of fads&rm P,. In a scan, in whichV, feature
detection hypotheses are made (whether determined to betides or not), an average of = Py, /N, false measurements will
result. Therefore, the clutter PHD is assumed Poissonilaistéd in number and uniformly spaced over the mapping regitie
clutter intensity is therefore given by

c (z\X,g“) =0, VU(2) (22)

wheren, is the clutter rate per sca] is the volume (or area in the 2D experiments presented heredsponding to the FoV

of the sensor(s) of the surveillance region and &f{d) denotes a uniform distribution on the measurement space.

E. Particle Trajectory Weights

A fundamental difference between RB-PHD-SLAM and FastSLsi\buld be noted. In FastSLAM, each pose particle is used
to generate a predicted measurement vector. The actualiree@ant vector, recorded from the unknown, true vehiclatioq,
is then superimposed on to each particle. The likelihoodhaf theasurement vector corresponding to that particledipied
measurement vector is calculated to form a particle weitfingugh the measurement IikelihO@c(Zk|Z’“*1, (X’“)(i)). This
requires the usual, fragile predicted and observed feat@meagement and association routines, for which there isonoept
within the RFS framework.

In RB-PHD-SLAM, the measurement Iikelihoodgs<Zk|Z’“*1, (X’“)(i)>, which is defined on the space of finite sets, unlike
its FastSLAM counterpart, which is defined on a Euclideancep@herefore, alternative methods are necessary to é¢walua
g (Zk|Z"‘—1, (X"')(i)), and hence the trajectory particle’s new weight.

Fortunately, by rearranging Equation 19, it can be seengtrﬁamzk—l, (X’“)(i)) is merely the normalizing constant,
g (Zk|Mk>X/£i)) Dk|k—1 (Mk|2k71, (Xk)(2)>

Dk (Mk|3k’(Xk)(i))

Note in the above, that the LHS does not contain the varialhle while the RHS has\1,, in both the denominator and numerator.

g (Zk\Zkfl, (Xk)(i)) _ 23)

In essence M, in Equation 23 is a dummy variable, and thus an exact impléatien of Equation 23 would hold foany

April 24, 2013 DRAFT



arbitrary choiceof M. This theoretically allows the substitution of any choideMd, to evaluatey (Zk|Z’f—1, (X’f)(i)). This
is an important result, which allows the likelihood of the amerement conditioned on the trajectory (but not the mappet
calculated in closed-form. The following subsection cdaess the simplest implementation of Equation 23 [3], [4].

It should be noted that an alternative approach has also fre@osed in [13] and the resulting propagation equations laa
similar form to [4], [21]. The approach in [13] does not reguthe calculation of the normalizing constant of Equati@nald
instead calculates weights for each Dirac based PHD parecegs, representing the vehicle’s pose, based on Poisssterc
assumptions.

1) The Empty Map Strategyif the RFS M, is approximated as a multi-target Poisson density (Poisstnibuted in its
number, and the points withinM,, are IID distributed) then the probability density 8f(;, can be recovered exactly from the
PHD intensity function. Similarly the predicted and po&teiRFS maps can be approximated by Poisson RFSs with PHDs
V(-1 (m\ (X’“)(i)) and vy, <m| (X’“)(i)) respectively, giving

T owpes (ml (X9

— . (1) meMy,
prjk—1 (Mi|Z2¥71 (XF) ) = - : (24)
( ) exp (f Vkk—1 (m| (Xk)( )) dm)
@ 1L, e (ml (X))
pk\k (MMZ’“, (Xk) ) ~ meMy 5 ) (25)
exp (f Vk|k (m| (XF) ) dm)
Substituting Equations 24 and 25 into Equation 23, assigiify, = (), and rearranging Equation 23 gives,
| I wees (ml (X)) ol (M@ 4
p (ZMZkfl, (Xk)< )) —y (ka’Xéi)) » meMy, | " exp (f Uk|k (m| ( ) ) m) (26)
IT vk (m| (X’“)“)) exp (f Vklk—1 (m| (Xk)(l)) dm)
meMy
Since, M, = (0, the empty set measurement likelihood is that of the clukies (Poisson),
IT e (41%(7)
200, X)) = ZE2k : . 27
9( k|0, X, ) o (fck (z|X,£Z)) dz) (27)

The PHDsvy;,—1 anduy,,, are empty, implying their product is $,_1 = [ vkjk—1 (m| (X"’)(i)> dm and
e = [ Uik (m\ (Xk)(2)> dm, giving,

g (Zk|2k_17 (Xk)m) _ (z|X,g>)exp (ﬁwk — fpp — /ck (Z|Xg>) dz), (28)

ZEZy,

Note that [ ¢, <z|X,§i)) dz by definition gives the number of clutter measurements pan s¢l/, and in the particular case that

the clutter intensity is assumed equal for each robot Gégé

g (Zk|3k71, (Xk)(i)) o< exp (M, — My k1) (29)

so that each particle’s relative weight can be updated byatter exp (ﬁlk‘k - ﬁik\k_l)-

Note that while for the empty map choice, the Iikelihogaoézk\zk—l, (X’“)(i)) does not contain a measurement likelihood
termg (Zk\Mk,X,ii)), the history of measurements and trajectories are incatpdrinto the predicted and updated intensity
terms, whose integrals appear as the tefrpg_; andmy; respectively. An implementation of the particle weightttbansiders

a single feature map approximation to the Poisson distabstof Equations 24 and 25 is given in [3], [4], [17].
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F. Extracting the Final SLAM Estimate 20

In MH-FastSLAM, the final trajectory is selected as the mmt(X’“)(i) with the highest weight, and the final map estimate
is its corresponding map. This is known as the maximum aepiost (MAP) map estimate. This strategy is also used in the
comparative study here for RB-PHD-SLAM, meaning that itspnfiRHD, vy, (m\ (X’“)(i)), is selected as the final map. If
e = [ o (m\ (X’“)(i)> dm, is the mass of the posterior map PHD, the expected map dsticam then be extracted by
choosing then; highest local maxima.

It should be noted that, in contrast to vector based SLAM ritlgms, the PHD map representation yields a natural akidity
average feature maps, giving an expected a-posteriori JEAdD, even with map estimates of different size and with@wirg
to resolve the intra-map feature associations. Detailsidfi &n implementation, as well as pseudo-code implementatf both
the MAP and EAP methods, are given in [3], [4], [17].

VIII. B ENCHMARK VECTORBASED SLAM IMPLEMENTATIONS FORCOMPARISON

To demonstrate the effectiveness of an RFS representatitire anap, state of the art vector based SLAM implementations

were also carried out, based on the same OS-CFAR based leggladracted in Figure 6.

A. Nearest-Neighbor, Extended Kalman Filter SLAM

To date, arguably one of the most popular SLAM implementetibas been based on approximating the joint vehiglg) (
and map {4;) SLAM state as a multi-variate Gaussian. Equation 1 thellyithe EKF. For each OS-CFAR landmark detected,
the EKF SLAM algorithm has to decide which landmark in thes@rg map it corresponds to, or whether a new landmark
was observedMaximum likelihood(ML) estimation calculates and compares a statisticahdist (theMahalanobis distancés
between the detected feature locations and their prediotadions. This metric is then used to determine associdigtween
detections and stored features, referred to as\ibarest Neighbor Standard Filt§NNSF). In 2001, Neiraet. al. highlighted
limitations of the NN approach, since it ignores the fact tim@asurement prediction errors are correlated [22]. Ferrdason,
the Joint Compatibility Branch and Boun@CBB) data association method was proposed, which deteenmatches between
setsof detected and predicted feature pairs, taking into adcthexmeasurement prediction correlations. This is refetoeas

JCBB-EKF-SLAM, and will be used as a vector based compangitin the RB-PHD-SLAM approach in Section IX.

B. Multiple Hypothesis FastSLAM

FastSLAM estimates the map on a per-particle basis, medhatglifferent particles can be associated with differeatdires
[20]. This means that the FastSLAM filter has the possibilitymaintain different tracks for each possible hypothe$isarh
detected feature, known adultiple Hypothesis TrackingMHT) [23]. A new particle is created for each new hypothesigach
measurement, meaning that each particle is splitint new particles, one for each of thepossible associations, one particle
for the non-association hypothesis and the other partaleafnew feature hypothesis. Particles with incorrect dasoeation
are, on average, more likely to be circumvented than thosehwivere based on correct associations. This step reduees th
number of particles back to its original number. This tegoei referred to as MH-FastSLAM, will also be used in the ltesu
as a non-parametric, vector based SLAM approach for cosgariThe MH-FastSLAM implementation was based exactly on

the principles given in [20] with details of its associateddMata association possibility given in [24].
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IX. COMPARISONS OFSLAM CONCEPTS INCLUTTER 21
A. Performance Comparisons

If, instead of superimposing the OS-CFAR detections on&o wbhicle ground truth positions, as in Figure 6 (right),ythe

are superimposed onto the vehicle’s odometry estimateiligros (shown as the solid trajectory), Figure 12 (left)ules The
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Fig. 12: Left: Odometry and extracted clusters from the radar data, representiagaW inputs to the SLAM algorithms. Right: The ground
truth trajectory (green) obtained by matching laser data due to a lack of G8.

detections are based on 700 scans recorded during a 3 lgegtarg in the car park (Figure 6). The information displdye this
figure can be thought of as the information input to the SLAMoalthms. Given the tree coverage and surrounding buitding
in the area, GPS was generally not available. Ground truth ttvas obtained by manually matching successive scans fiem t
laser range finders (labelled in Figure 4), with graphicalfieation also provided in Figure 12 (right). The vehicle smdriven

at approximately 1.5m/s with a control input frequency oHzCand a radar scan frequency of 2.5Hz.

In these experiments, JCBB-EKF-SLAM [22] and MH-FastSLARK], both using a mutual exclusion gate and a 9%%
confidence gate, were used as the benchmark vector baseariseomgs. For each SLAM filter, identical sequences of cdntro
inputs and measurements were provided. The RB-PHD-SLANM fillsed 50 trajectory particles, while for MH-FastSLAM a
maximum limit of 2000 particles (number of hypotheses cdesd prior to re-sampling) was used.

Given the small-sized loop (with perimeter approximateRpih), the maximum range of the radar was set to 30m and the
JCBB-EKF-SLAM, MH-FastSLAM and RB-PHD-SLAM algorithms nweexecuted on the dataset. Figure 13 depicts the posterior
estimated trajectory and map using the JCBB-EKF-SLAM athor (left) and that from MH-FastSLAM (middle). Finally, gure
13 (right) shows the SLAM estimates based on the RB-PHD-SL#ll§brithm.
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Fig. 13: The posterior SLAM estimates from JCBB-EKF-SLAM (left) and MH-FasvB(middle) and RB-PHD-SLAM (right) using the same
dataset. The integrated Bayesian framework for SLAM, incorporating asgaciation and feature management enhances the robustness of the

SLAM algorithm given noisy measurements.

For both the MH-FastSLAM and RB-PHD-SLAM algorithms, the pnaf the highest weighted trajectory estimate is used

as the map estimate. In all the figures, the ground truth atichaed trajectories are labelled and the circles repteten

ground truth feature locations. The crosses representdfirmated map. In the case of FastSLAM, this is derived wigpeet

to the maximum a-posteriori (MAP) FastSLAM trajectory asite (the particle (trajectory) with the final maximum wejgh
In the case of MH-FastSLAM, the trajectory “MH-FastSLAM pagstimate” indicates the MAP trajectory estimate. Notd tha

the RB-PHD-SLAM map yields feature and vehicle trajectosgiraates which are much closer to the ground truth map than

either JCBB-EKF-SLAM or MH-FastSLAM. This is due to its unig ability to jointly estimate both feature number as well as

location, and its immunity to feature management and aaBoui errors.

B. Computational Cost Comparisons

The computational complexity of RB-PHD-SLAM i€)(m3, V) i.e. linear in the number of features (in the FoV), linear

in the number of measurements and linear in the number adfctiajy particles. For a single thread implementation, Fgu
14 shows that the computational time of RB-PHD-SLAM at edntetindexk is comparable with that of the MH-FastSLAM

algorithm, both of which are less expensive than JCBB-EKRMLas its hypothesis tree grows in the presence of high c¢lutte

[4]. Note that due to the Rao-Blackwellized structure of RBD-SLAM, binary tree based enhancements, such as thosiedpp

to traditional FastSLAM [20], can be readily developed tatier reduce the complexity t (3N log(my,)).
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Fig. 14: A comparison of the computation time per measurement update for RBSUAM (blue), MH-FastSLAM (red) and JCBB-EKFSLAM
(black).

Furthermore, in contrast to data association based methibesproposed approach admits numerous other computhtiona

enhancements, since the map PHD update can be segmenteateexim parallel and subsequently fused for state estimati

X. SUMMARY

In probabilistic SLAM algorithms, the concept of featurastence uncertainty is at least as important as a featupatas
uncertainty. This tutorial high-lighted the importance sensor models which are capable of incorporating both taio&es,
and demonstrated that such a model should be based on an &Rk&, than the commonly used vector representation. Furthe
to correctly take into account the facts that sensor basstdrie detections are typically not detected in the orderlirckvtheir
corresponding elements are stored in a map vector, andhiatay differ in number, the map itself is also more appaiply
modelled as an RFS. The recent development of FISST-basad/S3echniques, then allows mathematical representatidns o
the map RFS to be propagated through Bayes theorem, alloitiimgestimation of feature locations and number in a joint
manner. By taking into account prior knowledge of sensoebtigzobabilities of detection, false alarm and spatial taggy
parameters, the RB-PHD-SLAM approximation to Bayes th@onexrs demonstrated, circumventing the need for the fragdp m
management and feature association rules necessary ior \sged SLAM. Its superiority over state of the art vectosdoh
methods, JCBB-EKF-SLAM and MH-FastSLAM, was demonstratéth short range radar and the presence of many clutter
measurements. Since standard vector based methods itihexssume unity probabilities of detection and zero prdbgbof
false alarm, they are dependent on heuristics and routivieish occur outside of the Bayesian vector state updategraefthe
map and measurement state vectors to be of compatible dimnenisefore state update is possible. This restriction nsored
when FISST representations of RFSs are adopted, as was siated with the PHD filter.

The RFS concepts offer many avenues for future researchyding the implementation of higher order FISST-based

algorithms, such as the Cardinalized-PHD and Multi-tamgetti-Bernoulli Filters. Extended landmarks, rather ththe point
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features considered here, should also be examined togsitethe possibilities of joint mapping and landmark traakifrotd

an autonomous vehicle.
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