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Abstract: Under realistic environmental conditions, heuristic-based data association and map
management routines often result in divergent map and trajectory estimates in robotic Simultaneous
Localization And Mapping (SLAM). To address these issues, SLAM solutions have been proposed
based on the Random Finite Set (RFS) framework, which models the map and measurements
such that the usual requirements of external data association routines and map management
heuristics can be circumvented and realistic sensor detection uncertainty can be taken into account.
Rao–Blackwellized particle filter (RBPF)-based RFS SLAM solutions have been demonstrated using
the Probability Hypothesis Density (PHD) filter and subsequently the Labeled Multi-Bernoulli (LMB)
filter. In multi-target tracking, the LMB filter, which was introduced as an efficient approximation
to the computationally expensive δ-Generalized LMB (δ-GLMB) filter, converts its representation of
an LMB distribution to δ-GLMB form during the measurement update step. This not only results
in a loss of information yielding inferior results (compared to the δ-GLMB filter) but also fails to
take computational advantages in parallelized implementations possible with RBPF-based SLAM
algorithms. Similar to state-of-the-art random vector-valued RBPF solutions such as FastSLAM and
MH-FastSLAM, the performances of all RBPF-based SLAM algorithms based on the RFS framework
also diverge from ground truth over time due to random sampling approaches, which only rely on
control noise variance. Further, the methods lose particle diversity and diverge over time as a result
of particle degeneracy. To alleviate this problem and further improve the quality of map estimates,
a SLAM solution using an optimal kernel-based particle filter combined with an efficient variant of
the δ-GLMB filter (δ-GLMB-SLAM) is presented. The performance of the proposed δ-GLMB-SLAM
algorithm, referred to as δ-GLMB-SLAM2.0, was demonstrated using simulated datasets and a section
of the publicly available KITTI dataset. The results suggest that even with a limited number of
particles, δ-GLMB-SLAM2.0 outperforms state-of-the-art RBPF-based RFS SLAM algorithms.

Keywords: SLAM; robotics; tracking; random finite sets

1. Introduction

Simultaneous Localization and mapping (SLAM) is considered to be a fundamental process
required by many mobile robotic applications. The SLAM process involves building a map of a prior
unknown, unstructured environment using data from noisy exteroceptive and proprioceptive sensors
mounted on a robot and estimating its position with respect to this map.

Over the years, many improvements to the estimation theoretic SLAM problem have been
proposed since its inception in the seminal work of Smith, et al. [1]. An extended Kalman Filter-based
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SLAM (EKF-SLAM) solution was proposed by Dissanayake, et al. [2]. In [3], the FastSLAM algorithm
was proposed as a factored solution to the SLAM problem, where the concept of Rao–Blackwellized
particle filter (RBPF) was adopted. To reduce the computational cost of EKF-SLAM, an extended
information filter-based SLAM algorithm, EIF-SLAM, was proposed in [4]. The SLAM problem has
been solved as a maximum a posteriori (MAP) estimation problem by modeling it as a factor graph
in recent years [5]. Graph SLAM [6] and Square Root Smoothing and Mapping (SAM) [7] are prime
examples of MAP-based estimation. Although these methods generally produce superior results,
their performance can be severely degraded due to the heuristic-based data association phase [8].
In addition, such solutions assume that the environment is static, which may produce inconsistent
results in dynamic environments.

This article proposes that a map state estimation approach based on the random finite set (RFS)
filtering framework can efficiently solve the data association problem in a principled manner within
a Bayesian filtering framework while relaxing the static environment assumption. Traditionally, the
robot position, the landmark map, and the measurements are represented as random vectors in both
MAP-based optimization and Bayesian estimation theoretic approaches. In its random vector form,
this representation requires the solution of additional sub-problems such as the determination of
observation to feature associations, measurement clutter (false alarms) removal, and map management
before the application of nonlinear optimization or Bayesian recursion. Parallel to the developments in
SLAM, in multi-target tracking, Mahler [9] suggested the random finite set (RFS) representation of
the multi-target state as opposed to random vector representation. He showed that, in contrast to the
random vector representation, the RFS representation of a multi-object state offers a mathematically
consistent notion of estimation error [9]. Furthermore, the uncertainties present in practical multi-target
tracking applications, such as target detection and data association uncertainties as well as random
clutter, are taken into account in the RFS representation of the multi-target state. As tractable
approximations to the optimal Bayesian multi-target tracking solution, Mahler devised the Probability
Hypothesis Density (PHD) filter, Cardinalized PHD (CPHD) filter and the multi-Bernoulli filter [9–11].
More recently, the δ-Generalized Labeled multi-Bernoulli (δ-GLMB) filter was proposed by Vo et al. as
an analytical solution to the optimal multi-target Bayes filter [12,13]. In [14], the Labeled Multi-Bernoulli
(LMB) filter was proposed by Reuter et al. as an efficient approximation to the computationally
expensive δ-GLMB filter. Further, by combining the prediction and update steps and introducing
a truncation approach using a Gibbs sampler, Vo et al. introduced an efficient implementation of the
δ-GLMB filter in [15].

Due to the similarity between estimation theoretic SLAM problem and multi-target tracking,
an RFS representation was adopted in SLAM by modeling the landmark map and observations as
RFSs. The first RFS based SLAM solution was proposed by Mullane et al. [16] and later they proposed
PHD-SLAM, an improved SLAM solution using PHD filter-based mapping and Rao–Blackwellized
particle filter-based trajectory estimation [17,18]. Lee et al. also demonstrated a PHD-SLAM algorithm
by modeling the SLAM problem as a single cluster multi-object model [19]. Despite modeling the
landmark map as a Poisson distributed RFS, the PHD-SLAM algorithm produces robust results against
noisy sensory information and measurement clutter. In [20], Deusch et al. proposed LMB-SLAM as
an improved solution to the SLAM problem, by representing a landmark not only by its kinematic
state but also by a label and propagating the landmark map using an LMB filter. Filter-based SLAM
solutions with semantic features may benefit from such a representation for associating the features to
physical objects in the environment. Furthermore, SLAM solutions with multiple feature types may
benefit from a labeled representation due to convenience in identification and classification (see [21]
for an example SLAM algorithm that may benefit from labeled feature models).

LMB-SLAM, which makes no assumptions about the map, in general, produces superior results
compared to PHD-SLAM, which models the landmark map as a Poisson distributed RFS. However,
during the measurement update, the LMB filter first converts its LMB distribution into a δ-GLMB
distribution, performs the measurement update, and then converts the δ-GLMB distribution back to
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an LMB distribution. In general, this process yields a loss of information and degrades performance
(see [22] for comparisons). Moreover, the performance of the LMB-SLAM filter depends on the
underlying LMB filter’s ability to partition the landmark measurements and estimated landmark
tracks in the sensor Field Of View (FOV) into spatially independent clusters and update them in
parallel during the measurement update step [22]. If the measurements and tracks are easily separable
into such independent groups (clusters), the LMB filter performs efficiently. However, if this is not
possible, the computational cost is equivalent to the δ-GLMB filter. Although closely spaced targets are
uncommon in multi-target tracking applications, in SLAM, it is common to encounter clustered and
unevenly distributed landmarks which appear in the sensor FOV. Depending on the type of sensor,
resolution, and the algorithms used, some feature extraction methods may also produce multiple
closely spaced features, which may degrade performance in LMB-SLAM. Furthermore, practical
implementations of RBPF-based SLAM algorithms rely on the parallelization of the particle filter,
which permits an increased number of particles. Therefore, unlike in multi-target tracking, the LMB
filter may lose its ability to perform efficient map updates within a parallelized RBPF implementation
of the LMB-SLAM algorithm.

All SLAM algorithms that adopt standard RBPF-based robot trajectory estimation methods
(including PHD-SLAM and LMB-SLAM) suffer from particle degeneration due to resampling and
mismatch between the proposal and target distributions. This happens when proposal distributions
designed to use only robot controls (which are often less certain and modeled with a large covariance),
sample particles in a large area of the state space. As a result, after the measurement update, only those
particles, which have maps that closely match the measurements, receive high weights. Therefore,
the vast majority of particles receive negligible weights. During resampling, the higher weighted
particles are duplicated, thus eliminating the particles with lower weights resulting in loss of particle
diversity. This reduces the filter’s ability to revise the path of the robot and results in divergence
over time. To address this issue, Montemerlo et al. proposed the FastSLAM 2.0 algorithm, which
incorporates the current observations and the existing map to further improve the proposal distribution
to closely match the robot trajectory posterior [23,24].

In this article, an RFS-based SLAM algorithm called δ-GLMB-SLAM2.0 is proposed using the
optimal kernel-based RBPF approach [25] for robot trajectory estimation, and the recently developed
efficient δ-GLMB filter [15] for landmark map estimation. Preliminary results of the proposed algorithm
hence referred to as δ-GLMB-SLAM1.0, were published in [26]. An improved version is presented
here, referred to as δ-GLMB-SLAM2.0, where the RBPF used in the trajectory estimation adopts
a modified proposal distribution similar to FastSLAM 2.0, which results in superior performance.
Furthermore, δ-GLMB-SLAM2.0 benefits from substantial computational savings in landmark map
estimation due to inheriting the Gibbs sampler-based joint prediction/update method of the efficient
δ-GLMB filter [15]. It is demonstrated that the proposed δ-GLMB-SLAM2.0 algorithm outperforms
the original δ-GLMB-SLAM1.0 [26] and LMB-SLAM algorithms in terms of pose estimation error and
quality of the map, and yields superior, robust performance under feature detection uncertainty and
varying clutter rates, while only slightly compromising the computational cost.

2. Problem Formulation

Let u1:k = [u1, u2, . . . , uk]
T denote the time sequence of control commands applied to the robot up

to time k, where uk denotes the control command applied at time k. In addition, let the time sequence
of the pose history of the robot be denoted by x1:k = [x1, x2, . . . , xk]

T , where xk denotes the pose of the
robot with respect to the global frame of reference at time k. Further, let the time sequence of sets of
measurements be denoted by Z1:k = [Z1,Z2, . . . ,Zk], where Zk = {zk,1, zk,2, . . . , zk,mk

} denotes the
measurement set received at time k, and mk denotes the number of detections. These measurements
result from detections collected from an exteroceptive sensor mounted on the robot, such as a camera,
lidar or a sonar, using a feature extraction algorithm.
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2.1. Labeled RFS Representation of the Map

Let the landmark map be represented as a labeled RFSM = {m̃k,1, m̃k,2, . . . , m̃k,nk
} where nk

denotes the number of landmarks present in the environment at time k. Each realization of a landmark
m̃ ∈ M is of the form m̃ = (m, l), where m ∈M is the kinematic state and l ∈ L is a distinct label of
the point m. Distinct labels provide a method to distinguish between landmarks [12,13].

Let the kinematic state space of a landmark be denoted by M and the discrete label space be
denoted by L. Further, let L : M× L → L be the projection from labeled RFSs to labels defined by
L(m, l) = l. Let the Kronecker delta function for arbitrary arguments (such as vectors, sets or integers)
be denoted by δY (X ), which takes the value of 1 only if X = Y and 0 otherwise. The indicator function

1X (Y) takes the value of 1 if Y ∈ X and 0 otherwise. Let ∆(M)
∆
= δ|M|(|L(M)|) denote the distinct

label indicator, which takes the value of 1 if and only if the labeled setM has the same cardinality as
its labels L(M) = {L(m̃) : m̃ ∈ M} and 0 otherwise. Let F (J ) represent all finite subsets of a set J .

The inner product of two continuous functions f (x) and g(x) is denoted by 〈 f , g〉 ∆
=
∫

f (x)g(x)dx and
for a real valued function h(x), the multi-object exponential is defined as h(·)X , ∏x∈X h(x).

2.2. Rao–Blackwellization of the SLAM Problem

In the SLAM problem, it is necessary to evaluate the posterior probability distribution,

pk|k(Mk, x1:k|Z1:k, u1:k, x0) (1)

for all times k, where x0 denotes the initial pose of the vehicle. In other words, it is necessary to
evaluate the joint posterior density consisting of the map and the robot pose history at all times k,
given the time sequences of sets of observations, and control commands up to and including time k
and the initial robot pose.

The joint posterior density consisting of the landmark mapMk and robot trajectory x1:k at time k,
is evaluated using the existing mapMk−1, history of robot poses x0:k−1 evaluated at time k− 1, the time
sequence of sets of observations Z1:k and the applied control commands u1:k up to and including time k.
In a manner similar to Montemerlo’s approach in FastSLAM [3], the SLAM posterior is factorized into
a product of the robot trajectory posterior and the map posterior conditioned on the robot trajectory
as follows,

pk|k(Mk, x1:k|Z1:k, u1:k, x0) = pk|k(Mk|Z1:k, x0:k)× pk|k(x1:k|Z1:k, u1:k, x0). (2)

This decouples the SLAM problem into two separate (conditionally independent) estimation
problems. The key advantage of this factorization is two-fold: Firstly it can benefit from Monte Carlo
methods (particle filtering) for joint robot trajectory estimation, making it possible to adopt non-linear
motion models. Secondly, it can benefit from using an RFS representation and Finite Set Statistic (FISST)
techniques for landmark map posterior estimation. By representing the map and measurements as
RFSs and appropriately modeling the map transition model, it is possible to estimate the number and
locations of multiple landmarks in the presence of measurement noise and clutter within a single
joint estimation framework. This automatically considers all data association hypotheses and takes
landmark detection and survival uncertainties into account.

2.3. δ-GLMB-SLAM Observation Model

The measurement set received from the sensor at time k contains both landmark generated
measurements and false alarms (measurement clutter). Let the RFS Ck denote the measurement clutter.
Then, the measurements received at time k can be modeled by the RFS,



Sensors 2019, 19, 2290 5 of 21

Zk = Ck ∪

 ⋃
(mk ,lk)∈Mk

Hk(mk, lk)

 (3)

whereHk(mk, lk) is a Bernoulli RFS representing the measurement corresponding to the observation
of landmark (mk, lk) ∈ Mk. Due to the limited field of view (FOV) of the sensor, Hk(mk, lk) can
have a value of the form {zk} with probability of detection pD(mk, lk|xk) or ∅ with probability of
1− pD(mk, lk|xk). Note that the probability of detection is a function of the landmark state and
robot position. The measurement likelihood function, conditioned on the detection of the landmark
with state (mk, lk), is given by gk(zk|mk, lk, xk). Assuming that the measurements are conditionally
independent and the measurement clutter is an independent process, the measurement likelihood
function corresponding to the observations can be written using Equations (12.139) and (12.140) of
Chapter 12 in [9] as,

g(Z|M, x) = e−〈κ,1〉κZ ∑θ∈Θ(L(M))
[ψZ (·; θ)]M, (4)

where κ denotes the intensity of Poisson distributed measurement clutter, and

ψZ (m, l; θ) =


pD(m,l)g(zθ(l) |m,l,x)

κ(zθ(l))
if θ(l) > 0

1− pD(m, l) if θ(l) = 0,
(5)

where θ is an association map of the form, θ : L → 0, 1, . . . , |Z| such that each and every distinct
estimated feature is associated to a distinct measurement (i.e., θ(i) = θ(i′) > 0 implies i = i′). The set
Θ of all such association maps is called the association map space and a subset of association maps
with domain I is denoted by Θ(I). Note that unlike multi-target tracking, in SLAM, previously
estimated landmarks that exit the current sensor FOV are retained in the map with probability of
detection pD(m, l) = 0 during the measurement update step and therefore in general contribute to the
robot trajectory posterior estimate.

2.4. δ-GLMB-SLAM Map Transition Model

As the robot continues to explore the unknown environment, new observations are collected in
the limited FOV of the sensor and fused into the landmark map. These new landmarks are modeled
as labeled RFS Qk with the birth label space B, and the corresponding birth density is assumed to be
a labeled multi-Bernoulli density and can be modeled in a similar manner to Equation (2) from [15] as,

fB(Qk) = ∆(Q)[1− r(.)B ]B−L(Qk)[1B(.)r
(.)
B ]L(Qk)[pB]

Qk , (6)

where a realization of r(·)B is of the form r(l)B = rB(m, l) for any label l ∈ B and denotes the birth
probability of the landmark with label l and pB(m, l) denotes its spatial distribution.

Furthermore, a portion of the already existing landmarks in the map appears in the current sensor
FOV. Given the state of the current landmark map, M, a landmark (mk, lk) ∈ M may appear in
the sensor FOV in the next time step with survival probability pS(mk, lk|xk) and changes its state
to (mk+1, lk+1) with probability density δmk (mk+1)δlk (lk+1)p(mk, lk), or leave the sensor FOV with
probability qS(mk, lk|xk) = 1− pS(mk, lk|xk). It is also important to note that, unlike multi-target
tracking, in SLAM, landmarks are usually assumed stationary and hence the motion of a landmark is
modeled as a Kronecker delta function, δmk (mk+1). In addition, the label of a landmark is preserved
during the state transition. Assuming that the state of the landmark map is represented byM, the set
of surviving landmarks in the next time step is modeled as a labeled multi-Bernoulli (LMB) RFSW
with parameter set {(pS(m, l|x), δm(·)δl(·)p(m, l)) : (m, l) ∈ M}. Then, the state transition of the
map can be modeled using a LMB distribution similar to Equation (25) from [12] as,

fS(W|M) = ∆(W)∆(M)1L(M)(L(W))[Φ(W ; ·)]M, (7)



Sensors 2019, 19, 2290 6 of 21

where

Φ(W ; mk+1, lk+1) = ∑
(mk+1,lk+1)∈W

pS(mk, lk|xk)δmk (mk+1)δlk (lk+1)p(mk, lk) + [1− 1L(W)(lk)]qS(mk, lk|xk). (8)

The first part in Equation (8) corresponds to the surviving landmarks and the second corresponds
to dying (disappearing) landmarks. The newly appearing (birth) landmarks are independent of the
already existing landmarks in the map. Therefore, the probability density of the predicted state of the
mapMk+1, conditioned on the current mapMk, can be written as a product of birth density and the
transition density of the surviving landmarks similar to Equation (31) from [12] as follows,

f (Mk+1|Mk) = fS(Mk+1 ∩ (M×L)|Mk)× fB(Mk+1 − (M×L)). (9)

Note that the estimated landmarks that exit the current sensor FOV should remain in the map
and be modeled with probability of survival pS(m, l|x) = 1 during the prediction step and contribute
to the robot trajectory posterior estimate.

2.5. δ-GLMB-SLAM Map Estimation

To propagate the landmark map in time, we adopt the recently proposed efficient δ-GLMB
filter [15]. This approach avoids the traditional prediction/update steps of a Bayesian filter and directly
updates the posterior at time k to time k + 1, achieving significant computational savings compared to
its original implementation [12,13]. Let the map posterior p(Mk|Z1:k, x0:k) at time k be abbreviated
as p(M); let the measurement updated landmark map posterior at time k + 1 be abbreviated as
p(M+|Z+); and let the robot pose at time k + 1 be denoted by x+. Assume that p(M) at time k is
given by the δ-GLMB distribution of the following form [12],

p(M) = ∆(M) ∑
(I ,ξ)∈F (L)×Ξ

ω(I ,ξ)δI (L(M))[p(ξ)]M, (10)

where I ∈ F (L) represents a set of landmark labels and ξ ∈ Ξ represents a history of association
maps up to time k and denoted by ξ = (θ1, ..., θk). The pair (I , ξ) represents the hypothesis that the
set of landmarks with labels I has history ξ of association maps. The weight ω(I ,ξ) represents the
probability of the hypothesis (I , ξ), and p(ξ)(m, l) represents the probability density of the kinematic
state of the feature with label l and the association map history ξ.

Assume that the birth landmarks (newly appearing landmarks) and the surviving landmarks in
the FOV follow LMB distributions as in Equations (6) and (7). Let B+ denote the label space of newly
appearing features in the FOV at time k + 1. Then, adopting the joint prediction/update approach
proposed in [15], the measurement updated map posterior p(M+|Z+) can be written as,

p(M+|Z+) ∝ ∆(M+) ∑
I ,ξ,I+ ,θ+

ω(I ,ξ)ω
(I ,ξ,I+ ,θ+)
Z+

δI+(L(M+))[p
(ξ,θ+)
Z+

]M+ , (11)

where I+ ∈ F (L+) and θ+ ∈ Θ+, L+ = L ∪ B+ and Θ+ denotes the association map space at time
k + 1, and

w(I ,ξ,I+ ,θ+)
Z+

= 1Θ+(I+)(θ+)[1− P̄(ξ)
S ]I−I+ [P̄S]

I∩I+ [1− r(·)B,+]
(B+−I+)r(B+∩I+)

B,+ [ψ̄
(ξ,θ+)
Z+

]I+ , (12)

P̄(ξ)
S (l) = 〈p(ξ)(·, l), pS(·, l|x+)〉, (13)

ψ̄
(ξ,θ+)
Z+

(l+) = 〈 p̄(ξ)+ (·, l+), ψ
(θ+(l+))
Z+

(·, l+)〉, (14)

where ψ
(θ+(l+))
Z+

(m+, l+) = ψZ+(m+, l+; θ+) (see Equation (5)), and
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p̄(ξ)+ (m+, l+) = 1L(l+)
〈pS(·, l+|x+)δ(·)(m+)δ(·)(l+), p(ξ)(·, l+)〉

P̄(ξ)
S (l+)

+ 1B+
(l+)pB,+(m+, l+), (15)

p(ξ,θ+)
Z+

(m+, l+) =
p̄(ξ)+ (m+, l+)ψ

(θ+(l+))
Z+

(m+, l+)

ψ̄
(ξ,θ+)
Z+

(l+)
, (16)

where the notation + has been used to abbreviate the symbols at time k + 1 and r(l+)B,+ denotes the
probability of birth of the landmark with label l+. Note that the resultant map update in Equation (11)
is a δ-GLMB distribution, which is equivalent in its form to the prior distribution in Equation (10).
Each prior map hypothesis (I , ξ) generates a set of new hypotheses (I , ξ, I+, θ+) using the robot
position, prior spatial distributions, birth spatial distributions, probability of detection and probability
of survival values of landmarks, probability of births and the set of received measurements at time k+ 1.
Equations (12)–(14) contribute to the hypotheses weights and result in scalar values. Equation (15) is
the spatial distribution of a predicted landmark, where the first part corresponds to a survival and the
second to a birth. Equation (16) corresponds to the spatial distribution after measurement update. Note
that the measurement update step takes measurement to track associations into account to generate
the resultant spatial distribution.

The idea behind the joint prediction/update approach is to generate a smaller number of
highly probable map hypotheses using existing hypotheses at time k, by simulating most likely
data association decisions, detection/miss-detection decisions and survival/death possibilities using
a Gibbs sampler. This prevents the generation of insignificant and contradicting hypotheses and
drastically reduces the computational complexity compared to the traditional prediction/update based
δ-GLMB filter implementation [13]. It also yields a computationally efficient alternative for real-time
implementations.

We assume that the probability of detection pD(m, l|x), and probability of survival pS(m, l|x)
have constant values depending on whether a landmark is within the sensor FOV or not, and
the measurement likelihood is modeled as a Gaussian probability density function. Furthermore,
the spatial distribution of each birth landmark, pB,+(m+, l+), is modeled as a Gaussian (or mixture
of Gaussians) probability density function. Hence, the δ-GLMB filter follows a Gaussian mixture
representation, where the spatial distribution of each landmark in the map with label l, and
an association map history ξ in each hypothesis, results in a Gaussian (or a mixture of Gaussians)
probability density function.

2.6. Trajectory Estimation

In a manner similar to PHD-SLAM [18] (and LMB-SLAM [20]), the robot trajectory posterior is
factorized and further simplified using the Markov property as follows,

pk|k(x1:k|Z1:k, u1:k, x0) =
gk|k−1(Zk|Zk−1, x0:k)pk|k−1(xk|xk−1, uk)

p(Zk|Zk−1, u1:k, x0)

× pk−1|k−1(x1:k−1|Z1:k−1, u1:k−1, x0),
(17)

and to cater for non-linear and non-Gaussian motion models, a Rao–Blackwellized particle filter [27]
is adopted, with an improved sampling distribution motivated by the FastSLAM 2.0 algorithm [23].
Similar to FastSLAM 2.0, the proposal distribution is chosen to include the current observation set
so that sampling not only takes robot controls into account, but also the current measurement set.
Let the proposal distribution be q(x1:k|Z1:k, u1:k, x0), which can be factorized and simplified using the
Markov property as,

qk|k(x1:k|Z1:k, u1:k, x0) = q(xk|x0:k−1,Z1:k, u1:k)× qk−1|k−1(x1:k−1|Z1:k−1, u1:k−1, x0), (18)
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where the sampling function can be written as,

q(x|x0:k−1,Z1:k, u1:k) = η
∫

g(Zk|M, x)pk|k−1(M|Z1:k−1, x, x0:k−1)δM

× q(x|xk−1, uk),
(19)

where η is a normalization constant.
Note that although Equations (17) and (18) appear to be similar, the proposed distribution in

Equation (18) is chosen to have a form which can be efficiently sampled, while the target distribution
in Equation (17) is, in general, more difficult to sample.

Note that the denominator of the target distribution, p(Zk|Zk−1, u1:k, x0), is a normalization
constant. The state transition function of the robot trajectory distribution is known and the state
transition function of the proposal distribution is chosen to be equivalent to that of the robot trajectory
posterior such that,

qk|k−1(xk|xk−1, uk) = pk|k−1(xk|xk−1, uk). (20)

Then, sampling a robot pose xk from the proposal distribution is equivalent to sampling from the
transition density given by,

xk ∼
[ ∫

g(Zk|M, x)pk|k−1(M|Z1:k−1, x, x0:k−1)δM
]
qk|k−1(x|xk−1, uk), (21)

and the weighting function can be evaluated as follows,

wk =
p(x1:k|Z1:k, u1:k, x0)

q(x1:k|Z1:k, u1:k, x0)

∝
∫ ∫

g(Zk|M, x)pk|k−1(M|Z1:k−1, x, x0:k−1)qk|k−1(x|xk−1, uk)δMdx× wk−1.
(22)

It is important to note that, to sample a robot pose xk in Equation (21), the map posterior at time
k− 1 is used during the sampling step and the same integral is evaluated again at the weight update
step in Equation (22) with the sampled robot pose.

3. Implementation

This section presents the implementation details of the proposed δ-GLMB-SLAM algorithm.
The robot trajectory is propagated using a Rao–Blackwellized particle filter to cater for non-linear and
possibly multi-modal motion models in both 2D and 3D environments. The trajectory dependant
landmark map is modeled as a labeled RFS and propagated using a δ-GLMB filter [15].

The δ-GLMB distribution of the landmark map posterior at time k can be approximated using
a set of H highest probable hypotheses in the following form,

p(M) = ∆(M)
H

∑
h=1

ω(h)δI (h)(L(M))
[

p(h)
]M

, (23)

where the right hand side of the above equation can also be represented as a parameter set of the form{
(I (h), ω(h), p(h))

}H

h=1
, where, for each hypothesis h, I (h) represents a set of landmark labels, ω(h)

represents the probability of the hypothesis and p(h) consists of the spatial distribution p(h)(m, l) of
each landmark within this hypothesis.

Suppose that the robot trajectory posterior, pk|k(x1:k|Z1:k, u1:k, x0) can be represented by a set of

weighted particles of the form Ωk =
{

w[i]
k , x[i]0:k

}Ns

i=1
, where w[i] represents the weight of the particle i.

Then, the SLAM posterior (Equation (1) can be represented as,
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{
w[i]

k , x[i]0:k,
{
(I (i,h), ω(i,h), p(i,h))

}H

h=1

}Ns

i=1
, (24)

since the δ-GLMB distribution of the landmark map is conditioned on the robot trajectory. The details
of the implementation of the particle filter and the Gaussian mixture (GM) implementation of the
δ-GLMB filter is given in the following subsections.

3.1. Map Estimation

In this section, we briefly summarize the details of the Gaussian mixture implementation of
the δ-GLMB filter used in the estimation of the landmark map. Let N (·, µ, P) denote a Gaussian
probability density function with mean µ and covariance P, and assume that the probability of
detection of a landmark within the sensor FOV is of the form pD = pD(m, l|x). Let the observation
model be a non-linear function of the form,

zk = hk(mk, lk, x[i]k , νk), (25)

where νk represents a zero-mean Gaussian measurement noise source with covariance Rk and xk
[i]

is the robot pose according to particle i at time k. Then, assuming that the spatial distribution of
(mk, lk) is of the form N (mk; µk, Pk), the measurement likelihood can be approximated as a Gaussian
distribution by linearizing as follows:

gk(z|mk, lk, x[i]k ) ≈ N (z; hk(µk, lk, x[i]k , 0), UkRkUk
T + HkPkHk

T), (26)

where Uk is the Jacobian of hk(mk, lk, x[i]k , νk) with respect to νk at νk = 0 (0 is the zero vector) and Hk

denotes the Jacobian of hk(mk, lk, x[i]k , 0) with respect to mk, at mk = µk.
Furthermore, assume that the RFS Q+ of newly appearing features in the sensor FOV can be

modeled by a labeled multi-Bernoulli (LMB) distribution given by,

fB(Q+) = {r(l+)B,+ , pB,+(m+, l+|z+)}|Z+ |
l+=1, (27)

where r(l+)B,+ denotes the probability of birth of landmark l+, and its spatial distribution pB,+(m+, l+|z+)
is modeled as a Gaussian distribution (or a mixture of Gaussian distributions) using the adaptive birth
approach proposed in [14]. Assume that each hypothesis of the landmark map distribution p(M)

(Equation (10)) at time k is represented by the hypothesis weight ω(I ,ξ). In addition, assume that the
set of spatial distributions of each landmark in the set I with label l is given by a mixture of weighted
Gaussian distributions as,

p(ξ)(m, l) = ∑J(ξ)(l)
j=1 α

(ξ)
j N (m; µ

(ξ)
j (l), P(ξ)

j (l)), (28)

where α
(ξ)
j denotes the weight of jth Gaussian component. Then, using Equations (14)–(16) it can

be shown that the measurement updated spatial density for a given association map θ+ in the
measurement updated δ-GLMB distribution (Equation (11)) also results in a mixture of weighted
Gaussian distributions of the form,

p(ξ,θ+)
Z+

(m, l) = ∑J(ξ)(l)
j=1 α

(ξ,θ+)
Z+ ,j N (m; µ

(ξ,θ+)
Z+ ,j (l), P(ξ,θ+)

Z+ ,j (l)), (29)

where α
(ξ,θ+)
Z+ ,j , µ

(ξ,θ+)
Z+ ,j (l) and P(ξ,θ+)

Z+ ,j (l) denote the weight, mean and covariance of the measurement
updated jth Gaussian distribution component using the association map θ+, respectively. The weight
ω̄
(I ,ξ,I+ ,θ+)
Z+

of each hypothesis can be obtained using Equations (12)–(15). Note that the sum of the
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hypothesis weights, is equivalent to the normalization constant of the δ-GLMB update posterior
(Equation (11)), and is used in the trajectory update step in Section 3.2.

To extract the landmark map, the cardinality distribution component of the δ-GLMB distribution of
the landmark map of the highest weighted particle is obtained using its hypothesis weights. The highest
weighted hypothesis component with the cardinality equivalent to the maximum a posteriori (MAP)
cardinality estimate (see [13]) is assumed to contain the labels and the mean locations of the landmarks
in the map.

3.2. Robot Trajectory Estimation

Assume that the weighted set of particles Ωk−1 represents the robot trajectory posterior at time
k− 1. Then, at time k, a new robot pose is sampled from each particle using controls, measurements
and the map posterior at time k− 1 as follows,

x[i]k ∼
[ ∫

g(Zk|M, x)pk|k−1(M|Z1:k−1, x, x[i]0:k−1)δM
]
qk|k−1(x|x

[i]
k−1, uk), (30)

where the robot pose transition due to a control input alone is modeled using a non-linear function
given by,

x = fx(xk−1, uk, εk), (31)

where εk denotes Gaussian white control noise with covariance Qk. The robot pose transition function
(due to control inputs) is modeled as a Gaussian probability density function given by,

qk|k−1(x|x
[i]
k−1, uk) = N (x| fx(x

[i]
k−1, uk, 0), F[i]

x,k−1P[i]
x,k−1F[i]T

x,k−1 + Fε,kQkFT
ε,k). (32)

In Equation (32), Fε,k denotes the Jacobian of the robot motion model (Equation (31)) with respect

to the control noise when the control noise εk = 0. Further, F[i]
x,k−1 denotes the Jacobian of Equation (31)

with respect to robot pose at x[i]k−1, and P[i]
x,k−1 denotes the pose covariance. Note that we adopt the

Gaussian mixture implementation of the δ-GLMB filter, thus the right hand side of Equation (30) results
in a single Gaussian probability density function, which is a summation of a set of weighted Gaussian
probability density functions, from which sample x[i]k is drawn.

The new robot pose, x[i]k , is then added to the set of particles Ωk−1, creating a temporary set of
particles, all of which have been drawn from the proposal distribution. Now, each particle in the
temporary set is assigned an importance weight given by,

w[i]
k ∝

∫ ∫
g(Zk|M, x)pk|k−1(M|Z1:k−1, x, x0:k−1)qk|k−1(x|xk−1, uk)δMdx× wk−1, (33)

The importance weight of each particle in the temporary set is normalized such that ∑Ns
i=1 w[i]

k = 1.
Then, a new set of Ns particles is drawn with replacement, where each particle is sampled with
a probability proportional to its importance weight. The resultant particle set with its importance
weights, denoted by Ωk, represents the robot trajectory posterior density at time k.

4. Results

4.1. Simulated Results

The performance of the proposed δ-GLMB-SLAM algorithm (hereafter referred to as δ-GLMB-SLAM2.0)
was evaluated using a set of Matlab simulations and compared with the recent δ-GLMB-SLAM algorithm [26]
(hereafter referred to as δ-GLMB-SLAM1.0) and an efficient variant of LMB-SLAM using the recently
proposed fast implementation of the LMB filter with a Gibbs sampler-based efficient state hypothesis
generation approach [28]. The Rao–Blackwellized particle filters in LMB-SLAM, δ-GLMB-SLAM1.0 and
δ-GLMB-SLAM2.0 were implemented using the Matlab parallel computing toolbox. Standard measurement
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gating approaches were used in all three algorithms with identical parameters to reduce the computational
costs. However, parallelization of the particle filter prevented the execution of parallel measurement updates
in the LMB filter, thus measurement clustering in the LMB-SLAM implementation was not used.

A robot was driven on a pre-planned path in a simulated environment consisting of 23 landmarks.
The control commands and measurements were generated from a single run of the robot with added
Gaussian noise according to the parameters in Table 1 and measurement clutter was generated in
four separate runs with rates λc = 1, 5, 10 and 15 points per scan. The probability of detection pD of
a landmark within the sensor FOV was set to 0.7 and the detection probability pD of a landmark already
existing in the map, but out of the FOV, was set to 0. The probability of survival pS of a feature within
the sensor FOV was set to 0.95 and that of a landmark already existing in the map and out of the current
sensor FOV was set to 1. These settings ensured that a landmark in the estimated map remained in the
map when it left the current sensor FOV, which was consistent with the assumption that the landmarks
remained static. Newly appearing birth features were modeled using the adaptive birth approach [20]
and a birth probability r(l+)B,+ value of 0.0001 was used for new features and a r(l+)B,+ value of 0.00005
was used for existing ones. These birth probability values were chosen to prevent newly appearing
landmarks from replacing already existing ones in the current sensor FOV. A pruning threshold of 0.019
was chosen for the probability of existence in LMB-SLAM to prune insignificant features created due to
measurement clutter. A hypothesis pruning threshold of 0.00001 was chosen in both δ-GLMB-SLAM1.0
and δ-GLMB-SLAM2.0 to remove insignificant hypotheses, which resulted in a reduced computational
cost during map update. These values produced comparable estimation results and were chosen
by executing the simulations (without control noise and measurement clutter) multiple times with
LMB-SLAM, δ-GLMB-SLAM1.0 and δ-GLMB-SLAM2.0 under all four clutter conditions.

Table 1. Parameters used in the simulation.

Robot/Sensor Parameters Variable Values

Velocity v 1 m/s
Sensor FOV Range (r) 0 to 3 m

Bearing (b) −π to +π
Control Noise Velocity (σv) 0.1 m/s

Steering Angle (σa) 20

Measurement Noise Range (σr) 0.05 m
Bearing (σb) 0.50

All three algorithms were executed with 15 Monte Carlo (MC) runs per each clutter rate using
10 particles. Note that, in general, a larger number of particles produced a larger number of possible
pose hypotheses during sampling, which yielded improved results in all three algorithms, albeit at
a higher computational cost. However, a smaller number of particles was chosen to better evaluate
and compare the improvements that can be gained by the proposed optimal kernel based sampling
process. The estimated and actual robot trajectory of a sample MC run under each clutter rate is
shown in Figure 1. It can be seen that δ-GLMB-SLAM2.0 produced superior results compared to
LMB-SLAM and δ-GLMB-SLAM1.0 in both low and high clutter conditions and the performance of
LMB-SLAM was inferior compared to δ-GLMB-SLAM1.0 and δ-GLMB-SLAM2.0. It can also be seen
that LMB-SLAM produced more false features (red circles) compared to both δ-GLMB-SLAM1.0 and
δ-GLMB-SLAM2.0 at high clutter rates. The root mean squared (RMS) robot pose estimation error in X,
Y, and heading angle are compared in Figures 2–4, respectively. It can be seen that δ-GLMB-SLAM2.0
produced smaller RMS errors in X and heading compared to δ-GLMB-SLAM1.0 and LMB-SLAM at
all clutter rates. Furthermore, it can be seen that both LMB-SLAM and δ-GLMB-SLAM1.0 produced
inferior results during re-visits to previously mapped areas (loop closure) from time steps 125 to
150 as the clutter rate increased, yielding significant drifts in the Y coordinate and heading angle.
δ-GLMB-SLAM2.0 produced the smallest errors due to the improved sampling of pose particles
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using features from previously mapped areas. A comparison of the estimated feature map with
the actual ground truth map is made in terms of the average Optimal Sub-Pattern Assignment
(OSPA) distance in Figure 5. Clearly, both δ-GLMB-SLAM1.0 and δ-GLMB-SLAM2.0 outperformed
LMB-SLAM. The average run times (i.e. the average times taken by each algorithm to calculate the
trajectory and perform a map update at each time step) are compared in Figure 6, and it can be seen that
δ-GLMB-SLAM2.0 required the highest run time, while δ-GLMB-SLAM1.0 the lowest run time under
all clutter rates. This was consistent with the fact that the improved particle filter in δ-GLMB-SLAM2.0
required additional computations to sample a robot pose compared to δ-GLMB-SLAM1.0 and
LMB-SLAM. It was also clear that the run time increased with the clutter rate in both LMB-SLAM and
δ-GLMB-SLAM2.0 compared to δ-GLMB-SLAM1.0. The larger run time of LMB-SLAM with respect
to δ-GLMB-SLAM1.0 was consistent with the fact that LMB-SLAM expanded its LMB distribution
into a δ-GLMB distribution prior to measurement update, and combined the resultant hypotheses
after the update step. In comparison, both δ-GLMB-SLAM1.0 and δ-GLMB-SLAM2.0 retained the
hypotheses until further measurement updates invalidated insignificant hypotheses, which resulted
in a significantly more robust performance in terms of pose estimation accuracy and OSPA distance
compared to LMB-SLAM.
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(a) LMB-SLAM [λc = 1]
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(b) LMB-SLAM [λc = 15]
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(c) δ-GLMB-SLAM1.0 [λc = 1]
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(d) δ-GLMB-SLAM1.0 [λc = 15]
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(e) δ-GLMB-SLAM2.0 [λc = 1]
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(f) δ-GLMB-SLAM2.0 [λc = 15]

Figure 1. A comparison of the estimated robot trajectory (red) superimposed on the ground truth robot
trajectory (dashed blue) for varying clutter conditions. The black plus signs represent the actual feature
positions and the red circles represent the estimated feature positions. The green crosses represent
accumulated measurement clutter and the magenta lines correspond to feature observations.
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(a) LMB-SLAM
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(b) δ-GLMB-SLAM1.0
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(c) δ-GLMB-SLAM2.0

Figure 2. Comparison of RMSE in the X direction under varying clutter rates.
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(a) LMB-SLAM
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(b) δ-GLMB-SLAM1.0
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(c) δ-GLMB-SLAM2.0

Figure 3. Comparison of RMSE in the Y direction under varying clutter rates.
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(a) LMB-SLAM
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(b) δ-GLMB-SLAM1.0
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(c) δ-GLMB-SLAM2.0
Figure 4. Comparison of RMSE in the heading under varying clutter rates.
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Figure 5. Comparison of the average Optimal Sub-Pattern Assignment (OSPA) distance with standard
deviation under varying clutter rates. OSPA cut-off c = 0.5 and order p = 1.
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Figure 6. Comparison of average running time with standard deviation per time step under varying
clutter rates.

4.2. Real Results

A preliminary experiment to test the performance of the proposed algorithm was also conducted
using a real data set obtained from the Karlsruhe Institute of Technology and Toyota Technological
Institute (KITTI) repository [29]. The KITTI repository contains several sequences of datasets collected
from a moving car fitted with several sensors including stereo cameras. In this work, a portion of
the odometry sequence 00 was used. Oriented FAST and rotated BRIEF (ORB) features [30] extracted
from the stereo image sequence of the cameras were triangulated into 3D and used as measurements.
The maximum observable range was limited to 20 m. Further, odometry was obtained by executing the
viso2 library package, which provides visual odometry [31]. Linear and angular velocities in 2D were
used as the control inputs for the three algorithms. Unlike in the simulated experiment, the number of
detected ORB features dramatically increased as the robot moved in the real environment. Therefore,
to achieve a tractable running time over several MC runs, a smaller number of trajectory particles (5)
was chosen. This lower number of particles was found to be sufficient to demonstrate the superior
performance due to the proposed optimal kernel-based sampling process in δ-GLMB-SLAM2.0, with
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respect to visual odometry, LMB-SLAM and δ-GLMB-SLAM1.0. The estimated map and the robot
trajectories are shown in Figures 7–9.

Note that, unlike in the simulated results, it is not possible to show the mapping error in the real
experiment. This is because the feature type used (ORB) is a non-semantic, mathematical feature and no
ground truth information regarding the true number and location of these features is provided with the
KITTI dataset. Therefore, as is the case with most publicly available dataset-based SLAM experiments,
the only performance measure possible was to compare estimated and ground truth trajectories.
A comparison of the estimated trajectories and visual odometry with ground truth is shown in Figure 10.
Furthermore, a comparison of the Euclidean distance errors among ground truth, the estimated
trajectories and visual odometry are shown in Figure 11. It can be seen that δ-GLMB-SLAM2.0 produced
the smallest deviation from ground truth when compared with LMB-SLAM and δ-GLMB-SLAM1.0.
δ-GLMB-SLAM2.0 even outperformed visual odometry despite the small number of particles used.
The estimated trajectory of LMB-SLAM had the largest deviation from the ground truth, producing
inferior results, even when compared to visual odometry. The map estimate produced by LMB-SLAM
(Figure 7) yielded a significantly lower number of features compared to δ-GLMB-SLAM1.0 and
δ-GLMB-SLAM2.0 and requires a considerable amount of fine tuning of the parameters.

Figure 7. The estimated map (green) and the trajectory (red) using LMB-SLAM with ground truth
trajectory (blue).

Figure 8. The estimated map (green) and the trajectory (red) using δ-GLMB-SLAM1.0 with ground
truth trajectory (blue).
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Figure 9. The estimated map (green) and the trajectory (red) using δ-GLMB-SLAM2.0 with ground
truth trajectory (blue).
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Figure 10. Comparison of the estimated robot trajectories and visual odometry with respect to the
ground truth.
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Figure 11. Comparison of the Euclidean distance error between the estimated and ground truth
trajectories verses time step.
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5. Conclusions

In this paper, we have presented a new RFS-based SLAM algorithm referred to as δ-GLMB-SLAM2.0.
Similar to earlier RFS-based SLAM algorithms, δ-GLMB-SLAM2.0 factorizes the SLAM posterior into
the landmark map posterior and robot trajectory posterior via Rao–Blackwellization. However, instead
of using a standard particle filter, the robot trajectory is propagated using an optimal kernel based
particle filter, and the landmark map is estimated using an efficient variant of the δ-GLMB filter based on
a Gibbs sampler. The performance of δ-GLMB-SLAM2.0 was evaluated using a series of simulations and
a real experiment, and compared to its predecessor δ-GLMB-SLAM1.0 and the LMB-SLAM algorithm
with a Gibbs sampling-based joint map prediction and update approach. From the simulated and
the real results, it can be seen that the proposed δ-GLMB-SLAM2.0 algorithm outperforms both
δ-GLMB-SLAM1.0 and LMB-SLAM in terms of pose estimation error and the quality of the map under
varying clutter conditions while requiring slightly higher computational times. The higher quality in the
pose and the map estimation error can be attributed to two factors. First, the sampling of the particle
filter no longer relies only on the control signals but instead uses the controls, measurements and prior
map in order to produce a set of highly likely robot poses during the robot pose sampling step. Second,
both δ-GLMB filters maintain multiple hypotheses for the landmark map state and remove insignificant
hypotheses as further measurements invalidate contradicting hypotheses. Although δ-GLMB-SLAM1.0
also relies on the δ-GLMB filter for landmark map estimation, an improved particle filter results in better
estimation performance in δ-GLMB-SLAM2.0. On the other hand, the LMB-SLAM algorithm combines
multiple hypotheses during the measurement update step into a single LMB distribution with loss of
information. As a result, drifts in landmark map estimates are visible during re-visits to previously
mapped areas, which in turn result in drifts of the robot pose estimate. The higher computational time of
δ-GLMB-SLAM2.0 to that of δ-GLMB-SLAM1.0 is due to additional computations required during the
particle filter sampling step. Furthermore, it can be seen that standard measurement gating, particle level
parallelization, and the Gibbs sampler-based hypothesis generation, result in a lower computational time
of δ-GLMB-SLAM1.0 compared to LMB-SLAM, which outweighs the savings expected by combining
multiple hypotheses.
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The following abbreviations are used in this manuscript:

EKF Extended Kalman Filter
MAP Maximum a Posteriori
SLAM Simultaneous Localization and Mapping
RFS Random Finite Set
FISST Finite Set Statistics
PHD Probability Hypothesis Density
CPHD Cardinalized Probability Hypothesis Density
LMB Labeled Multi-Bernoulli
GLMB Generalized Labeled Multi-Bernoulli
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