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ABSTRACT: This paper proposes using the number of range measurements that a detector utilizes to generate a
detection as its descriptor. This one dimensional descriptor can be calculated with many range-based detectors, and
its expected value is used to derive detection statistics which take into account feature occlusions to improve robotic
navigation performance. To demonstrate the advantages of estimating detection statistics, they are estimated and
tested within Random Finite Set and vector-based Simultaneous Localization and Mapping (SLAM) algorithms.
Results from simulations and real experiments demonstrate the advantages of explicitly modeling feature detection
statistics in both frameworks. © 2018 Institute of Navigation.

INTRODUCTION

In the field of target tracking, detection statis-
tics are considered to be of prime importance. For
example, it has long been recognized that a sensor’s
received signal amplitudes, corresponding to true
targets, should be higher than those corresponding
to false alarms and that this information should
be utilized [1]. However, this requires the Signal-
to-Noise Ratio (SNR) corresponding to targets to
be known from any sensor to target view point.
Since such information is typically unavailable,
detection probabilities are usually naively consid-
ered to be constant (but not necessarily zero or
unity). This is despite the fact that the relative posi-
tions of objects with respect to the sensor and occlu-
sions have a large effect on those objects’ detection
probabilities [1].

Within the autonomous robotic feature-based
navigation literature, a vehicle’s onboard sensors
are used to obtain exteroceptive measurements.
Measurement and feature estimate uncertainties
are typically considered to lie solely in the spa-
tial, rather than the detection, domain and are
often modeled with range and bearing uncertainties
[2, 3]. The joint estimation of feature locations and
the trajectory of a robotic vehicle, which obtains
measurements from these features, within a com-
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mon coordinate frame is referred to as feature-based
Simultaneous Localization and Mapping (SLAM). In
most SLAM algorithms, it is considered the task
of external map management, outlier rejection, and
data association algorithms to minimize the prob-
lems of false alarms and missed detections, before
map estimation takes place. Therefore, mathemati-
cally, the probabilities of detection of features that
have been associated are assumed to be unity, and
the probabilities of false alarm of the associated
measurements are assumed to be zero. Similarly,
the probabilities of detection of unassociated fea-
tures are assumed to be zero, while the probabilities
of false alarm of unassociated measurements are
assumed to be unity [4].

In SLAM, the probability of detection is particu-
larly important, since features that exit the field of
view (FoV) of the sensor(s) are expected to remain in
the map estimate, contrary to target tracking prob-
lems, in which the maintenance of tracks for targets
that exit the FoV is usually not required. However,
principled methods which currently provide such
statistics calculate them based upon the measure-
ments themselves, such as Constant False Alarm
Rate (CFAR) processors [5]. In both the binary Bayes
filter and RFS SLAM, feature state-based detec-
tion statistics are required both in the presence
and absence of corresponding measurements, since
the existence probabilities of feature states must be
updated in both cases. Further, in RFS SLAM, the
detection statistics required are state dependent,
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and there are no feature to measurement association
decisions. Therefore, measurement-based detection
statistics, such as those provided by CFAR proces-
sors, cannot be directly applied. This paper therefore
addresses methods to estimate these statistics on a
per estimated feature basis. This takes into account
feature descriptor information, which is not part of
the spatial location of the measurement, to aid both
in map-management and data association, within
vector-based SLAM approaches, and for direct use
within RFS SLAM methods.

To apply this concept to spatial-based features,
we propose the use of a feature descriptor, based on
the estimated number of unoccluded range points
sensed from that feature. This feature descriptor
depends on the current best estimate of the SLAM
state and the current range-based sensor scan,
but not any detected features from that scan. This
avoids the necessity for data association between
detected and currently estimated features when
applying the descriptor. In contrast to standard
feature-based SLAM methods, which discard any
data which have not contributed to a feature detec-
tion, a subset of this remaining data provides
the extra information necessary to estimate the
probability of detection of features, even when
partially occluded. It will be demonstrated that
this descriptor can provide an approximate suffi-
cient statistic to define a SLAM state-dependent
distribution on the probability of detection of a
feature. Results will demonstrate superior SLAM
performance over that obtained from the equiva-
lent algorithms, with the usually assumed constant
feature probabilities of detection within the
sensor’s FoV.

The work in this article was partially published in
[6] and [7]. The work in [6] shows the determination
of the detection statistics for the detector used in a
local park environment. Meanwhile, [7] shows via
simulation that the incorporation of a descriptor into
RFS-based SLAM can be advantageous. This article
extends [6, 7] by providing more detailed simula-
tion analyses, demonstrating the applicability of the
descriptor to standard detection concepts based on
the Random Sampling Consensus (RANSAC) algo-
rithm [8], and also by generating detection statis-
tics for tree detection in a local park environment
(Santiago, Chile) and successfully applying it to
the publicly available Victoria Park dataset, from
Sydney, Australia.

The paper has two main contributions. The first
shows that including detection statistics into SLAM
solutions can be advantageous. The second is the
introduction of a descriptor, namely, the number of
points used by the detector, whose prediction can be
used to calculate the detection statistics for features
extracted from range sensor data, particularly lidar
data. The contributions of this article are based on
the derivation of a range-based feature descriptor.
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An algorithm capable of estimating the probability
of detection for any range-based detector, based on
the expected value of the descriptor, is then pre-
sented. This is followed by an evaluation of the
effects of including both the probability of detection
and the descriptor information into set-based Rao-
Blackwellized, Probability Hypothesis Density (RB-
PHD)-SLAM, and the conceptually similar vector-
based SLAM algorithm-Multiple Hypothesis (MH)-
FastSLAM. Each framework is compared both with
and without the use of the described descriptor.

The Related Work section shows some of the pub-
lications which are closely related to the present
article. In the Detection Statistics in SLAM section,
the use of detection statistics in SLAM is reviewed.
The Estimating Feature Detection Statistics based
on Range Data: The Methodology section explains
how detection statistics are estimated, and the
Including Descriptor Information into SLAM section
then shows how descriptor information is included
into the SLAM problem. The Learning from Sim-
ulated Range Data section shows the details of
estimating the required statistics in simulation. The
results of using these statistics are then shown
in the Simulated SLAM Results section. This pro-
cess is repeated with real data in the Learning
from a Park Environment and Experimantal SLAM
Results sections.

RELATED WORK

In some SLAM solutions, detection statistics are
incorporated via the use of a binary Bayes filter to
update each feature’s probability of existence [2, 9].
Random Finite Set (RFS)-based filters include prob-
ability of detection and false alarm statistics into the
filter’s update step, making the feature detector’s
detection statistics an intrinsic part of the Bayesian
state estimation process [10-13]. All of these tech-
niques use estimates of the detection statistics, and
this paper therefore provides principled methods
for their estimation for use with RFS and vector-
based SLAM frameworks. Erdinc et al. [14] showed
that the PHD filter can be interpreted as an occu-
pancy grid approach in the limit where the grid
cell size approaches zero, showing a link between
RFS methods and grid-based mapping [15]. A fur-
ther similarity exists since both of these methods
make use of ‘negative information.’ In grid-based
mapping, a cell with no measurement reduces its
occupancy probability, while in RFS-based filters,
estimated features with no close measurements will
have their weights/existence probabilities reduced.
However, most grid-based methods to date include
the detection uncertainty within the spatial uncer-
tainty of the sensor model [15-17]. For example,
most laser range finders will output a range value
(e.g., maximum range or zero) even when an object
is not detected. For this reason, the range mea-
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surements themselves are constant in number and
therefore modeled as a vector. Contrary to tradi-
tional grid-based methods, which utilize a model
of the physical sensor (e.g., sonar, lidar, or stereo
cameras), the method proposed in this article uses
the detection statistics of a feature detector. These
detections are then modeled as a set, in which unde-
tected objects are not present. Such models could be
applied to grid-based methods which directly include
detection uncertainty, such as [18].

More recent alternatives to the filtering approach
to SLAM are batch-based estimators, which use non-
linear optimization to obtain a Maximum Likelihood
(ML) solution. Such methods include [19-23]. These
methods rely on external routines to perform data
association and map management, usually based
on either maximum likelihood or place recognition
algorithms. The RFS formulation of the problem in
this form complicates the optimization process con-
siderably, even when assuming a known number of
features.

In [24], the requirement for a feature detector
was removed by directly modeling laser range data
in a track-before-detect approach. Each range point
was therefore considered as a measurement pro-
duced by single extended features. Each extended
feature state was assigned a variable probability of
detection, which accounts for occlusions based only
on other estimated extended features. Although this
can be a good solution in tracking problems, it is
common in SLAM to have unmodeled objects that
can occlude the sensor. In contrast, the model pro-
posed in this article uses the range measurements
that are affected by modeled and unmodeled objects
alike.

In [25], a similar strategy to the one proposed
here is used to calculate the probability of detection
within a pedestrian tracking framework. The size
and shape of the targets is assumed known and con-
stant, and the probability of detection is calculated
in each cell of a grid using a method inspired by the
grid mapping literature [2]. In contrast, the method
proposed here calculates the probability of detection
based on the estimated target shape and size and
does not use a grid.

Clark et al. incorporated RADAR amplitude infor-
mation into the PHD filter. The RADAR target
Signal-to-Noise Ratio (SNR) was used both to cal-
culate the detection statistics and to enhance the
target measurement likelihood [26]. The details of
its use will be explored and adapted in the Including
Descriptor Information into SLAM section.

DETECTION STATISTICS IN SLAM

SLAM is a state estimation problem in which the
best estimate of the robot trajectory and map feature
positions is sought over time, using all sensor mea-
surements. Common to both random vector and RFS
SLAM approaches, the underlying stochastic sys-
tem representing the robot’s pose component, x, is
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modeled by the, in general, non-linear discrete-time
equation

xp, = 8Xp_1, Up_1,85-1) 1)

where g is the robot motion model, u;_; the odom-
etry input, and &;_; the process noise, both at
time-step &£ — 1.

The importance, and incorporation of, detection
statistics into vector and RFS-based SLAM solu-
tions is now summarized, to establish the reason for
their estimation in the Estimating Feature Detec-
tion Statistics based on Range Data: The Methodol-
ogy section.

Vector-Based SLAM Filtering and Detection
Statistics

In the random vector formulation of feature-based
SLAM, a spatial measurement model of the form

zi ~ h(z, |mj,x;) 2)

is necessary, where zz is the ith detected feature

vector at time-step k2 and mlg is a random vec-
tor containing the, possibly time varying, Cartesian

position of feature j. Therefore, data association is

required to relate 2% to m; as well as a routine to

manage the addition and removal of features from
the map estimate. While some methods are heuristic
in nature, others use a binary Bayes filter [2, 9, 15].

In the binary Bayes filter, the probability of exis-
tence PE(mli | %01, Z0:%) of the feature with state
vector m]i , given the history of robot poses x(.;, from
discrete time O to k, and all feature measurement
sets, Zy.z, is updated at each step. This is achieved
using the probabilistic evidence provided by the cur-
rent measurement set Z, and assumed or known
data association, so that

Pg (m;i |x0:k’ZO:k)

Py (m,g ka,Zk)PE (m,i |x0:k—1aZO:k—1) @)
- P(Z| Z0:-1) ’

which can be expressed in log-odds form as follows,

I (m;;] |x0:k»ZO:k) =lp1 (m;i |x0:kaZO:k—1)

Py (m;! |%0:1; Zk)

rloe 1-Pg (mli |2%0:% Zk)
1 —PE (m,i)

4)
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where the log-odds [, (mk] | 20.%, Z():k) is defined as

Pg (m]g |%0:15 ZO:k)

1-Pg (m;f |x0:kaZO:k)
(5)
By setting the prior probability of existence

lp (m;i |x0:k’ZO:k) = log

Pg (m]i ) to a non-informative prior (0.5), the final

term in (4) is zero. Then, by incorporating mod-
eled or known probabilities of detection and false
alarm, the probabilistic evidence provided by the
measurements can be calculated as shown in [27]

Py (m,{ |xk,Zk)

(l—PD (m}ﬂ xk>)PFA(xk)PE(mk]) +PD (m}j| xk)PE (m}j)

PFA (z§€| xk) + (1— PFA (z§e| xk)) PD (m}f |xk)PE (m}:)
(6)

when m}g is associated with a measurement zﬁe € Zp,
and as

Py (m;f E7% Zk) | |
__ (1=Po(m1=)) Pe (my)

(1P ()« (1P (mi 1)) P ()

when m ]g

Z,. Pp (m]g |xk) is the probability of detection of

is unassociated with any measurement in

feature m }f and Ppy (zé |xk> is the probability of zé
being a false alarm, both of which can be dependent
on the robot’s state x; [27]. Both quantities must
be substituted into (6) and (7), when an association
or non-association occurs, which in turn should be
substituted into (4). From (4), it can be seen that
a simple measurement counting heuristic can be
interpreted as a log-odds binary Bayes filter with
an implicitly assumed probability of detection and
false alarm. Prior research which has adopted this
approach includes [2, 9].

RFS SLAM and Detection Statistics

By recognizing that the SLAM state can be nat-
urally modeled as an RF'S, Mullane et al. [10] were
able to include data association and detection sta-
tistical parameters into the Bayesian estimation
paradigm. Since an RFS implementation of SLAM
will be used as a key demonstration of the impor-
tance of determining detection statistics in this
article, an overview of Rao Blackwellized (RB)-PHD-
SLAM now follows.

SLAM Definitions with RFSs

In the RFS SLAM approach, the feature-based
map, up to and including time-step %, is defined as
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an RFS

My, =lmj,mZ,... ,m*) (8)
where the number of features, m; = [M,], as
well as the feature state values, m;e, are random
variables.

In general, the feature from which a measure-
ment is generated is unknown. Furthermore, there
is a probability of detection, Py (m]g |xk), associated
with every feature, implying that it may be missed
with probability 1 — Pp (mk] |xk). Measurements
may also be generated from sensor noise or objects
of non-interest (clutter), with assumed known dis-
tributions. The set of all n; measurement vectors at
time % is defined as

Z, = {z,%,z,ze,...,zzk}, 9
where the number of measurements n, = | 2|, as
well as their values, z}e, are random variables.

With these definitions, a set-based measurement
model can be defined as

Zp, = Hxp, Mp,ep) UE (10
where H(xp, Mp,€r) models all expected measure-
ments based on x;, and the map set My, €;, models
the spatial noise associated with the measurements
at time k. £ models the clutter or unexpected mea-
surements (false alarms) at time k.

Using a Bayesian framework and a filtering
approach, the Probability Density Function (PDF)

P (%0, M. | 212, wo:z) (11
is sought through RFS approaches, requiring Finite
Set Statistics (FISST) [28]. The estimates at each
time step are made relative to a single reference
frame, usually corresponding to the robot’s initial
pose.

In contrast to vector-based RB-Particle Filter (PF)
approaches, which use the EKF to update the Gaus-
sians for individual features [9, 29, 30], a PHD filter
is used to update the map intensity function in RB-
PHD-SLAM [10]. A brief overview of the main steps
in the RB-PHD-SLAM filter now follows, highlight-
ing the importance of detection statistics.

Particle Propagation

At time-step k&, the particles representing the prior
distribution

[t]

X, 1~P (xO:k—l | 21815 uO:k—l) (12)

are propagated forward in time by sampling the mo-
tion noise, 8}[;]_1 and using the robot motion model (1)
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x,[:] =g (x;[;]_l,uk—l,S;[:ll) ~D (%01 | Z1:2-1,U0:1-1) -

(13)

This step is common to vector-based Rao-

Blackwellized solutions to SLAM, such as MH-
FastSLAM [30].

Map Update

The predicted map intensity v;(m) for each parti-
cle is a function of the general feature state m and
is updated as v (m) with the latest measurements
with the PHD filter update equation

vz (m) = vy, (m)(1 - Pp(m | xp))
| % |
+vy,(m) , _
- K(z;e |xk) +/Pp(m|x)h(z, | m, x;,)u7 (m)dm

(14)

where « (z;e |xk) is the intensity of the clutter RFS

at time k. The first term in (14) is a copy of vz(m)
reduced by the factor (1 — Pp(m|x;)) to account
for the possibility that the predicted features are
undetected. In the second term, note that instead of
determining data association with an external algo-
rithm, the PHD filter performs a calculation as to
how much each measurement should influence each
and every feature estimate. In [10, 31], the imple-
mentation of RB-PHD-SLAM Equations 13 and 14,
using Gaussian Mixtures (GM), is shown, known as
RB-GM-PHD-SLAM.

Importantly, within the above steps, the map
update and particle weighting steps require the
knowledge of both the probability of detection,
Pp(m|xyp), and the distribution (defined by its first

moment or PHD) of its false alarms, « (z’]'e |xk>

Pp(m |xk)h(z§g |m,xp)

How do Detection Statistics Affect SLAM?

In SLAM, the map feature probability of detection
Pp (m,g |xk) (in (6), (7), and (14)), the probability of

false alarm Ppp (zéE |xk> (in (6)), and the false alarm

intensity « (z;{ |xk) (in (14)) depend on the state of
the robot and environment, i.e.,

Pp (m,g |xk) — Pp (m,g |xk,F) (15)
PFA (de |xk) <« PFA (zge |xk, F) (16)
K(Zlek) «— K <z2|xk,1“>. 17

Here, I' represents the total state of the environ-
ment including, but not limited to, the subset of
it being estimated (i.e., the vicinity of the feature
locations) [2]. For example, if the sensor being used
is affected by occlusions, then it may be the case
that not all objects that can cause the occlusions
are represented in the SLAM map Mj,. Therefore,
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theoretically, the total environmental state I", which
includes these objects, would be necessary. As an
example, Figure 1 shows a hypothetical shape (pen-
tagon) detector, which can be occluded by walls. The

value of Pp (m]g |xk) associated with each pentagon

is therefore highly dependent on the state of both the
robot and the environment, in this case, the quan-
tity and relative location of the walls. Even though
the walls may not constitute map features of inter-
est, they still affect the probability of detection of the
pentagons. The spatial distribution of false alarms
is complex to model since the source of false alarms
can vary depending on the environment. Given this
lack of knowledge about the false alarm distri-
bution, approximating it by the least informative
distribution, i.e., the uniform distribution, is usu-
ally accepted as a reasonable assumption [24]. The
expected number of false alarms can be estimated by
utilizing a feature detector in an environment with
a known number and location of features and ana-
lyzing the number of false alarms, or it can be left as
a parameter of the algorithm to tune.

ESTIMATING FEATURE DETECTION STATISTICS
BASED ON RANGE DATA: THE METHODOLOGY

Estimating Probability of Detection, Pp (m,{ ka)

This section provides a quantified model of the
probability of detection of features, based on a
descriptor related to range/bearing data for use in
any robotic navigation formulation. Although the
descriptor can be inspired by the chosen detec-
tor algorithm, a more general solution, which is
independent of the detector used to extract those
features, and which takes into account occlusions,

Fig. 1-A hypothetical pentagon detector, occluded by walls. The
shaded yellow area shows a zone where Pp (mlg |xk) is high and
in the white zones, Pp (m,g |xk) = 0. From a geometric perspec-
tive, objects 1 and 2 should have high values of Pp (mlg |xk>, while
object 3 should have a significantly reduced Pp (m]g |xk) due to
its partial occlusion by the wall. Objects 4, 5, and 6 would be

expected to have Pp (m]g |xk) = 0. [Color figure can be viewed at
wileyonlinelibrary.com and www.ion.org/
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is presented here. Therefore, the chosen descrip-
tor model does not use any information about the
feature detector itself and can be used with any
detector that estimates both the position and shape
attributes of a feature, such as RANSAC [8]. Fur-
ther, although the effectiveness of the proposed
approach is only evaluated with 2D circular fea-
tures, the requirements to apply the methodology
presented in this section are only that ray casting
can be performed on the detected feature and that
a ground truth dataset can be obtained to generate

the statistical model of Pp (m If |xk) Therefore, this

procedure can be applied to any feature to which ray
casting can be applied, including but not limited to
2D line segments and 3D planar areas.

As shown in Figure 2, given the robot’s location,
xy, and the location and other attributes, such as

the shape of features, m,i (i.e., a SLAM state), the
number of range points that the feature is predicted
to return (red crosses and green hexagons points in
the figure) can be calculated via ray casting [2].
These predicted range values are then com-
pared with the actual range values from the sen-
sor (black points). If the actual range values at
particular bearing angles are considerably lower
than predicted, then the predicted range points at
those bearing angles are labeled as occluded (red
crosses) and the number of remaining unoccluded

(green hexagons) points is defined as 7 (m]g ,xk).

n (m}f ,xk) will be examined as an approximate suf-
ficient statistic, which determines the probability
of detection of the feature. Note that n (ka ,xk)
can be theoretically calculated for any general

values of m; and xp. For implementation pur-
poses, however, if the SLAM estimate is mod-
eled in vector form, using Normal distributions
to model the robot and feature states (e.g., stan-

dard EKF SLAM), then x; and m] would be

replaced with x4, and rft;e representing the estimated
means of the Normal distributions representing the
vehicle and feature states, respectively. Given the

Feature modeled in
the SLAM state

4

\\

Object not included in
SLAM state

Fig. 2-Analysis of range data from a circular shaped feature. The
number of predicted (green hexagons) points, n (mk] ,xk), which
are unoccluded, is used as a sufficient statistic of the probability
of detection Pp (m ]g |xk) of the feature. [Color figure can be viewed
at wileyonlinelibrary.com and www.ion.org]
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large pose covariances typically obtained in this
approach, the assumption that x; can be approxi-
mated by its value at the mean may be problematic.
However, if an RB solution to SLAM is used (as
will be in this article), in which a Gaussian model
of the features is assumed (e.g., FastSLAM or RB-
GM-PHD-SLAM), then x; would be replaced with

the state of the ith particle x][el] under consideration
and again m}f would be replaced with I;t;e Since
n (m]g ,xk> is calculated using ray casting, its effec-
tiveness will depend on the validity of using ray
casting to predict the measurements of the range
sensor. In its current form, this should apply to any
narrow beam range sensor, being best suited to lidar

sensors. .
It should be noted that n (m,i ,xk) is expressed

only as a function of the SLAM state (x; and m}i ).
This is despite the fact that the current range
scan is necessary to determine which, if any, of
the predicted points determined via ray casting are
occluded by any objects not included within the
SLAM map state M. Although the current scan is
necessary to determine this, the detected features
themselves Zj are not required, meaning that no
data association between detections 2}, € Z, and

% € ﬂk, where ﬂk is the estimated map at time
k, 1s necessary. In fact, it is a subset of the range
values from each scan, which are not necessarily
used by the SLAM feature state detector, which are
used to determine 7(m;, x;). In contrast to standard
feature-based SLAM methods, which discard such
data within each scan, in this article, these data pro-
vide the extra information necessary to estimate the
probability of detection of features, even when par-
tially occluded. Therefore, this article analyzes the

feasibility of assuming 7 (mlg ,xk) to be a sufficient

statistic of Pp (m]g |xk), i.e., it poses the question of
whether

Pp (m}f |2, T, 7 (m}i,xk)) ~ Pp (m}f |72 (mlg,xk))?
(18)

It should also be noted that the analysis presented
here could be applied in tracking approaches such
as [24], allowing the inclusion of unmodeled objects
within the calculation of the detection probabilities.

In particular, 7 (ml: ,xk) could be used to estimate

the mean of the Poisson RFS used in [24], repre-
senting the number of measurements per extended
feature.

As carried out in [26], the dependency of
Pp (mg|ﬁ(mlg,xk)) on ﬂ(m]g,xk> could be cal-
culated by integrating the variables used by the
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detector over the detectable area:

Pp (mém (mkj,xk>) = /060 lpD (0 |2 (mlg,xk)) de,

(19)
where 0 is the descriptor used by the detector to
make its decision, 6,,; is the multidimensional vol-
ume in the descriptor space where the detector will
decide to return a feature detection, and pp(Q) is
a multivariate distribution corresponding to detec-
tions. Unlike typical radar detectors, which use only
the returned power for detection decisions, a general
feature detector can use several quantities to make
its decision. Equation 19 generalizes the probability
of detection of a range-based feature extractor, given

occlusion information fz(ka , XE)).
One method to estimate the probability of detec-

tion is to estimate pp (0 |72 (m]g ,xk>) and then use

(19) to determine Ppy (mlg |7 (m]i ,xk)> The poten-

tially high dimensionality of both 6 and 6,,;, how-
ever, means that a large dataset containing a sig-
nificant number of descriptor 60, n (m}f ,xk) pairs
would be required. A simpler method is to learn
PD (m
within a test dataset as follows.

}g|ﬁ (m}g ,xk)> directly from measurements

Experimental Determination of Detection
Probabilities

This section demonstrates that feature probabili-
ties of detection can be adequately and experimen-

tally quantified based on 7 (m];] ,xk), via statistical

analyses on range datasets. Initially, a dataset is
required from an environment where the ground
truth positions of features are known, via indepen-
dent means. A way to achieve this is through the use
of features identifiable by humans, i.e., semantic fea-
tures. Equation 18 approximates the probability of
detection of such a feature, which should be based on
all the necessary information, I', by the probability
of detection given the value of the single parameter
n (m}i ,xk).

In the test dataset, measurements manually asso-
ciated with known ground truth features were used
to determine the probability of detection of those
features, conditioned on the number of unoccluded
points. Intuitively, the more ‘representative’ the test
data is of the actual environment in which SLAM
is to be achieved, the better the detection probabil-
ity estimates would be expected to be. However, if
the number of unoccluded points is a good approx-
imation of a sufficient statistic of the detection
probability, then it should have a positive impact
on range data-based SLAM performance in general
environments.
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Therefore, within the test dataset, the predicted
number of unoccluded points in the scan recorded

at time &, 71 (mk ,xk) for each feature, mk € Mg, —

robot pose, xp, pair, was calculated. For every pos-
sible number i of calculated unoccluded points, the
actual number of times 71, that a particular value

of nn (m}‘e] ,xk) =i was calculated is

Ns
Ract = Z Z

kzomlgeMk

5 (7 (mj,x).1) vizo0, 0

where N; is the total number of scans in the dataset
and §(-, -) is the Kronecker delta function.
The number of times that a feature, with a pre-

dicted number of unoccluded points, ﬁ(m]g ,xk),

equal to i, produced a valid detection, 724e¢, iS given
by:

Rdet = Z Z

k= OmkEMk

(i) ) c(mi) =0

) (21)
where ¢ (m ]g , k) is an indicator function, which
equals unity if feature m/ e M » was detected in the

scan recorded at time %, and zero otherwise. Then,
the probability of detection for each feature with a

predicted number of points, 7 (m}f ,xk), equal to i,
can be approximated as the ratio of (21) and (20):

PD (m

The estimated probabilities of detection, uti-
lizing the above concept, will be shown graph-
ically in the Estimating Detection Probability

PD (mj

1Amy x) = i) ~ Aget/fact.  (22)

wln (m]g,xk» section.

Estimating Probabilities of False Alarm

A full analysis of the probability of false alarm
would require a model for every possible range scan,
which does not contain any of the semantic features
of interest. In practice, this is infeasible. Impor-
tantly, the statistical representation of the number
of false alarms in RB-PHD-SLAM (and indeed in
many target tracking formulations) is a Poisson ran-
dom set, which only requires an estimate of their
expected number. When using the binary Bayes
filter, the probability of false alarm can be approxi-
mated by dividing the total number of false alarms
by the total number of detected features in the
dataset,

Ng N
PFA(z§e|xk)as Y Npatk) |/ | D Nu®) | (23)
k=0 k=0
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where N, (k) is the total number of features detected
in the scan recorded at time £ and Ngp(k) is the
total number of detected features that could not be
associated with any feature in the scan recorded at
time k. In a manner similar to the probabilities of
detection outlined above, the statistical analysis of
range-based data, known not to contain the chosen
semantic features, can yield an informative esti-
mate of the probability of false alarm. This data can
be obtained by either taking a scan in an environ-
ment known not to contain the features of interest
or by identifying and removing detections which are
manually associated with actual features from a
sufficiently large dataset, as carried out here. The
clutter distribution was modeled as Poisson in num-
ber, with mean value equal to the average number
of false alarms per scan. Its spatial distribution
was modeled as uniform, resulting in the following
clutter intensity function for use in Equation (14):

N
k(@ |xp) ~ [ Y Npak) / N; [ dz|. (24
k=0 2Fov

INCLUDING DESCRIPTOR INFORMATION INTO
SLAM

Including Descriptor Information into PHD-SLAM

In the field of target tracking, Clark et al. [26]
proposed a modification to the PHD filter that
uses RADAR measurement amplitude information
together with each accompanying range value. The
idea behind this paper is to use this theory and
replace the target amplitude with a general feature
descriptor, by changing the likelihoods accordingly.

Then, the extended measurement vectors 2j, are
defined as

g = B ai]T , (25)

where zz corresponds to the spatial part of the ith
measurement (i.e., what used to be the entire ith
measurement), and q; is the amplitude information
(which in general could be replaced by a descrip-
tor). Hence, Ioz(Eﬁe |mlg ,a) and R(2}, |xp,) account for
the joint likelihood of target state and amplitude.
In [26], the distributions of this amplitude, under
false alarm and detection hypotheses, were mod-
eled as Swerling Type I and II models [32], which
provide probabilistic (Rayleigh) models of received
power fluctuations when the RADAR-to-target view-
ing aspect changes. The dependency on the environ-
ment is modeled by a single parameter d, where
the expected (mean) SNR from a target was 1 +d,
where ppa(a) and pp(a | d) are the distributions of a
for false alarms and targets of interest, respectively.
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The modified PHD update equation used in [26] is
then

vy (m) = v, (m)(1 - Pp(d)) + vj,(m)
| 2| Pp(h (2 |m, )
7 (218 )+ Po(ch (2 m, 1) vy (m)dm
where (26)
h (%2 |m,xk) =gltla;|d)h (z;e |m,xk) (27)

X

represents the product of the amplitude measure-
ment likelihood and the spatial measurement likeli-
hood, and

? (2 1mr) =« (2 123) ghatar) (28)

represents the extended clutter intensity, includ-
ing the amplitude likelihood. Respectively, gZ(a; |d)
and g%, (a;) are the measurement and false alarm
likelihoods of the amplitude «a;, related to measure-
ment z;, based on a detection threshold ¢. Pp(d) is
the probability of detection given an object SNR.
Therefore,

Pp(d) = / poal|dda .
a>t
__ prA@) oo

g%A(ai) = { jai>1pFA(ai)dai’ a; =T 30)

) a; <t

_pplai) o

gé(al |d) = { fal‘>rpD(ai |d)dai » A =2 T (31)

0. a; <T.

The difference between (26) and the standard
PHD update (14) is the inclusion of the measure-
ment and false alarm likelihoods. Measurements
which are more likely to be true detections rather
than false alarms will receive higher weights.

In this paper, instead of using the Swerling-based
Rayleigh distributions of the received signal ampli-
tude adopted for radar measurement likelihoods
in [26], a generic model is applied. The extended

ol
measurement vectors zj, here are redefined as

g=[z 0] (32)

where 02 is a descriptor vector accompanying mea-

surement 2% . Along with this, a variable dg equiva-
lent to the target SNR is used. A general probability
distribution pp(0 |dg) for true detections can be

used to define feature likelihood gz""l(ﬁ’ |dg) equiv-

alent to gl(a;|d) in (31), for the general feature
descriptor 0, i.e.,

—eolde) ¢ g c g
0 dg)d0 vol
gZVOI(o |d0) — 0Vf01PD( | 0) (33)
if 66y, .
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An example of such a descriptor vector will be
given in the Estimating Feature Likelihoods gz‘ml(é’)

and gg.X’l(O) section. In (33), pp(0 |dg) is a distribu-
tion on 6, with known parameter dy being equiva-
lent to the SNR in the RADAR implementation. A
descriptor distribution for false alarms ppa(6) has
to be normalized within the detectable volume, to

vol

create likelihood gg A (@) equivalent to glf;‘ A(ai)

PFA(6)

[ pra(0)do

0 if 0 € 0vol
gra (@)= 10

(34)

vol

if 00, .

These likelihoods can be used with the detection
statistics Pp(m |A(m,x;)) and « (z;e |xk) in a modi-
fied PHD filter update equation equivalent to (26),
now given by

vz (m) = v, (m)(1 - Pp(m | i(m,xp,))) + v, (m)
| Zz |

) Pp(m|AGm,x, Dk, | m,x;)

T R(3L| xp)+/Pp(m| i(m, )R (&;;| m,xk)v;(m)dm'

(35)

In principle, # can be any descriptor based on the
measurement. It is desirable that its distribution for
detections pp(0 |dy) and for false alarms ppp (@) are
separated as far as possible in the 6 space, so that
the measurements that are more likely to be false
alarms will have lower weights in the modified PHD

update Equation (35). If the likelihoods g%X’l(O) and

gz""l(o |dg) are approximately equal, the modified
PHD filter update in (35) will tend to its traditional
form given in (14). In this paper, the descriptor 6
will be the number of points ng used to detect the
feature. The variable dg, which is equivalent to the
target SNR in Clark’s work, is the predicted value of
ng, i.e., dg = n(m,xyp).

(a)

Including Descriptor Information into
MH-FastSLAM

Since Pp (m ]g , xk> is used within the binary Bayes
filter addition to MH-FastSLAM, the descriptor
information can be included by replacing (2) with the
extended measurement likelihood

b (2, 1m], %, dp ) =g" (0 | dg)h (2 | m], ;)
(36)
in the data association and particle weighting steps.
In MH-FastSLAM, there is no mechanism known to

the authors to incorporate ggX’I(G) and therefore it
is not used.

Note that the modified PHD-SLAM update
(35) requires estimates of both Pp(m|n(m,xp))

and gz"°1(0 |dg) as well as the clutter term

K(z;'e|xk)g§y1(o). Similarly, (36), which corre-

sponds to a SLAM measurement likelihood which
includes the descriptor information, requires an

estimate of gg"‘)l(() |dg). Both of these SLAM for-
mulations will therefore use this modified likelihood
h EZ |mig ,Xp,dg ) in their data association proce-
dures, which is an external maximum likelihood
algorithm in MH-FastSLAM and is naturally part
of the Bayesian SLAM update in RB-PHD-SLAM. A
similar concept is applied in the following sections,
in which instead of received amplitude informa-
tion, a range-bearing-based feature descriptor 6 is
defined, which uses ray casting.

LEARNING FROM SIMULATED RANGE DATA

This section demonstrates the validity of the con-
cept to determine the detection statistics of a fea-
ture detector, based on the number of unoccluded
points 7 (m]g ,xk) described in the Estimating Fea-
ture Detection Statistics based on Range Data: The
Methodology section. It is applied in a simulated
environment with a feature extraction method based
on RANSAC. The environment was simulated with
the Gazebo simulator [33], composed of cylinders,

(b)

Fig. 3-Simulated environments used to obtain the detection statistics. The same environment used in simulations (a) and a second dataset
(b). [Color figure can be viewed at wileyonlinelibrary.com and www.ion.org]
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which are the features of interest, and cuboids,
which are objects of non-interest. The SLAM state
will be composed of the trajectory of the robot and
the center coordinates of the cylinders in the vehi-
cle’s plane of motion. The simulated environment
is shown in Figure 3(a) and its plan view is also
shown in the background of the SLAM results later
in Figure 9.

A simple two-step detector is used in the simula-
tion, composed of a segmentation method (based on
a distance threshold of 0.3 m), followed by RANSAC
to detect circular objects in the segmented data. The
RANSAC algorithm was implemented based on a
required circular in lier number of 13 range points
and an in lier distance threshold of 0.02 m and was
executed 12,500 times per feature, corresponding to
a RANSAC detection failure rate of 1.7%.

Estimating the Detection Probability

Pp (mlzlﬁ (mli,xk))
By using the known poses of the robot and
features provided by the simulator, (22) can be

applied to obtain an estimate of the probability
of detection given the predicted number of points,

Pp (m]g |2 (m,j ,xk)) Figure 4 shows the results.

A 99% confidence interval was calculated based
on the number of points available at each value

of n (m}‘{],xk), showing the uncertainty in the esti-

mate. As can be seen from the figure, the probability
of detection given a predicted number of points

n (m]g,xk> is very close to zero when 7 (m,i,xk)) is
lower than 7, then it tends to increase as 7 (m,: ,xk)

increases to 14. For values of ﬁ(m}g ,xk)) higher

than 14, the probability of detection fluctuates about
a value of approximately 0.8. This could be inter-

3
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Fig. 4-The probability of detection as a function of the number of
unoccluded points i (m]:,xk). Based on the amount of data avail-

able, a 99% confidence interval is calculated, the bounds of which
are shown. [Color figure can be viewed at wileyonlinelibrary.com
and www.ion.org]
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preted as the intrinsic probability of detection of the
feature detector being 0.8, once it is known not to be
occluded.

Estimating Pgy (z:(lxk> and Intensity Function
K <zLka>

To estimate the probability of false alarm and, for
the case of the RB-PHD-SLAM filter, the false alarm
intensity function, the same dataset can be used,
labeling the unassociated measurements as false
alarms and estimating the statistical parameters of
those measurements. In particular, since the clut-
ter distribution is assumed Poisson in number in the
PHD filter, only the average number of false alarms
per scan needs to be estimated. To assess the accu-
racy of the Poisson approximation, Figure 5 shows a
distribution of the number of false alarms per scan,
and a Poisson distribution (red) with parameter A =

0.06 calculated from the sampled data. « (z’]’c |xk)
was then determined from (24):

N;
> Npa(k)
i . k=0 _
APTIN S
ZFoV ZFoV

while Ppp (zé |xk> was determined from (23) to be
2.34%.

Estimating Feature Likelihoods gg”"’(O) and
0U0
gpa”l(9)

In general, after choosing a suitable descriptor,
data need to be obtained in an environment with
features identified by independent means in order

False Alarm Distribution

1 T :
I Data

osl I Equivalent Poisson
g 06}
g
8“
& 04}

0.2

1 2 3 4 5
Number of False Alarms Npp (k)

Fig. 5-Distribution of the number of false alarms per scan, from

the simulation. The red graph shows the equivalent Poisson dis-

tribution, which appears almost identical in this case. Note that

the red bars are superimposed on to the blue bars, with half

their width, to improve visibility. [Color figure can be viewed at
wileyonlinelibrary.com and www.ion.org]
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Fig. 6-Number of points ng measured as a function of the pre-
dicted number of points n (m]i ,xk). The dependency of ng on

n (m ]g ,xk) can be observed in this figure. The contours of an equiv-

alent bivariate Normal distribution are also shown. [Color figure
can be viewed at wileyonlinelibrary.com and www.ion.org]

to model the probability distributions pp(6) and

PrA(0).

As in [26], where the conditional distribution
ppla|d) was determined from a Rayleigh distribu-
tion, a descriptor which depends on the assumed

sufficient statistic n (m]g ,xk) is necessary here. A

descriptor 0 = ng is therefore defined, corresponding
to the number of range points used in the detection
of a feature. As stated in section "Including Descrip-
tor Information into SLAM", nq would be equivalent

toa and 7 (m]g,xk> to d in [26]. Therefore,gzv‘)l(a) =
p (nd |2 (mlg ,xk)) needs to be determined. To model
the distribution p (nd |7 (m]g ,xk)), first, the joint

probability distribution p (nd,ﬁ (m}i ,xk)> is mod-
eled (Figure 6). For this purpose, ng is plotted as
a function of ﬁ(m,g,xk), from a total of 10,091

simulated laser scans which produced 27,193 mea-
surements, in Figure 6. As can be seen in the figure,

there is a strong dependency of nq on 7 (mlg ,xk>.

Estimating p (nd |2 (mé ,xk)) directly would be
difficult given the sparsity of the data at some values
of nn (m,g,xk) (see Figure 6 at (m}g,xk) values of
120 and higher). Contours of an equivalent Normal
distribution are also shown in Figure 6. Using the
estimated mean u and covariance X, the conditional
distribution can be obtained as

p (nd |7 (m;ixk)) =N (nd | (nd |2 (mijk))

5 (a4 (mf ).

(38)

Vol. 65, No. 3

140 -
120 -
100 -
80 |-
60 |-

40 |

Actual number of points (nq)

20F 104

0 I I I !
0 50 100 150

Predicted number of points (ﬁ(mi, xr))

Fig. 7-The conditional distribution of ng given ﬁ(m]g,xk), calcu-
lated from the Normal distribution of Figure 6. [Color figure can
be viewed at wileyonlinelibrary.com and www.ion.org]
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Fig. 8-Descriptor distribution for false alarms, which resem-
bles an exponential distribution. [Color figure can be viewed at
wileyonlinelibrary.com and www.ion.org/

where
I (ndlﬁ (m;ka)) =p1+ ;—;z (n ( ;f,xk) —Mz) :
(39)
z (nd R (m;ka)) =%11- 2122—22221 ; (40)

where %}, is the element of the matrix ¥ in row [/
and column m, and ; is the jth element of vector ..

Finally, by using the fact that the RANSAC cir-
cle detector cannot generate detections with less
points than a threshold N,,;,, (= 13 in this case), the
Normal distribution should be rescaled. This final
conditional distribution is

ploa (i)

A CIECTER
0

ng01(0) — if ng = Nmin ,

if ng < Nmin
(41)
and is shown in Figure 7.
For the case of false alarms, the distribution of

the number of points g;X’l(O) has to be modeled
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Table 1 — Parameters used in the SLAM simulations

Parameter Value Equation
PD(m,{ | ﬁ(m,{,xk)) See Figure 4 (22)
A 0.06 37
Pra(2, | %) 2.34% (23)
w [52.25 52.98]T (39)
602.10 628.97
x |: 628.97 664.65 ] (40)
Ang 0.041 (42)

using known false alarms from the same simu-
lated dataset. Figure 8 shows the histogram for the
number of false alarms, along with an equivalent
exponential distribution

= Estimated Trajectory
Ground Truth Landmark
Estimated Landmarks
Dead Reckoning Trajectory

—— Ground Truth Trajectory

ylm]

-10

-10 -8 -6 -4 -2 O 2 4 6 8

x[m]

(a) RB-PHD-SLAM with a constant probability of detection.

= Estimated Trajectory
Ground Truth Landmark
Estimated Landmarks
Dead Reckoning Trajectory

—— Ground Truth Trajectory

ylm]

-10
-10 -8

-6

-4 -2 0 2 4 6 8
x[m]
(¢) RB-PHD-SLAM with the learned probability of

detection and descriptor information.

gg,2°l(0) = Ang €XP (~Ang(ng —Npin)),  (42)

where, from Figure 8, 1,; = 0.041 and Np,;,, = 13.
The results of applying this descriptor in simulated
SLAM trials will be shown in the Simulated SLAM
Results section.

SIMULATED SLAM RESULTS

Table 1 shows the parameters used in the sim-
ulations. Figure 9 presents the results of running
the algorithms with and without the proposed detec-
tion statistics and descriptor. The ground truth map
features are displayed using red stars and the esti-
mated map features using blue crosses. The ground

= Estimated Trajectory
Ground Truth Landmark
Estimated Landmarks
Dead Reckoning Trajectory

—— Ground Truth Trajectory

y[m]

-10

-10 -8 -6 -4 -2 O 2 4 6 8

x[m]

(b) MH-FastSLAM with a constant probability of detection.

= Estimated Trajectory
Ground Truth Landmark
Estimated Landmarks
Dead Reckoning Trajectory

—— Ground Truth Trajectory

y[m]

-10
-10 -8

-6

-4 -2 0 2 4 6 8
x[m]
(d) MH-FastSLAM with the learned probability of

detection and descriptor information.

Fig. 9-SLAM results in a simulated environment. Highlighted in green: area where the detector performance significantly differs. High-
lighted in pink: sections of trajectory where only a single feature was in the FoV of the robot’s sensor. [Color figure can be viewed at

wileyonlinelibrary.com and www.ion.org]
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truth trajectory is shown with a red line and the esti-
mated trajectory with a continous blue line. The red
dashed line shows the odometry input (dead reckon-
ing). A satisfactory SLAM solution should estimate
both the map and trajectory accurately; hence, ide-
ally, the red stars and blue crosses and the red
and blue lines should coincide. The background of
each graph is a top-down view of the simulated
environment.

Figure 9(a) and (b) shows the results of using
a constant probability of detection of 0.7 within
the sensors FoV for RB-PHD-SLAM and MH-
FastSLAM, respectively.

Figure 9(c) and (d) includes both the proposed
detection statistics from (22) and Figure 4, as well
as the proposed descriptor likelihoods from (41) and
(42) for RB-PHD-SLAM and MH-FastSLAM, respec-
tively.

Including the proposed detection statistics and
descriptor information improves the SLAM esti-
mates for RB-PHD-SLAM and MH-FastSLAM. An
area where the detector produced false measure-
ments is highlighted in green in the figures. It can
be seen that both algorithms, when based on a con-
stant probability of detection, fail to map the area
correctly, with RB-PHD-SLAM missing two features,
and MH-FastSLAM including many false alarms.
Only by adding both the descriptor and detection
statistics is MH-FastSLAM able to map the area cor-
rectly. Sections of the robot’s trajectory where only a
single feature was visible are highlighted as a pink
shaded area. In these sections, both algorithms pro-
vide improved trajectory estimation when using the
descriptor information. From Figure 9(a) and (b), it
can be seen that MH-FastSLAM has more trouble at
the initial sharp ‘U’ turn (close to the origin). This
can be explained by the fact that the PHD filter is
quick to initialize new estimates, allowing it to deal
with the initial sharp turn. Conversely, when a fea-
ture’s probability of detection is nonzero, the PHD
filter can remove features too quickly, if not sensed.
This explains why two of the features in the green
area are never correctly mapped at the end of each
run.

Figures 10 and 11 show the trajectory and map-
ping errors, respectively. The errors show similar
results as those observed in Figure 9. In particu-
lar, the inclusion of the detection statistics improves
the results in the first part of the trajectory (up to
approximately 1300[s]). After this time, the inclu-
sion of the detection statistics without using the
descriptor in MH-FastSLAM causes the algorithm
to diverge more quickly than the algorithm using a
constant probability of detection. Importantly, both
algorithms have a significantly improved trajectory
when including both the descriptor and the variable
probability of detection. Table 2 shows the average
trajectory error. The results are based on five Monte
Carlo runs of each algorithm.
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Fig. 10-Average OSPA errors between the ground truth map and
the map estimates. Results are based on the detection statistics
learned in the same environment (Figure 3(a)). Errors were aver-
aged over five independent runs. OSPA parameters used were c=1
and p=1. [Color figure can be viewed at wileyonlinelibrary.com
and www.ion.org]
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Fig. 11-Average position error over time. Results are based on the
detection statistics learned in the same environment (Figure 3(a)).
Errors were averaged over five independent runs. [Color figure can
be viewed at wileyonlinelibrary.com and www.ion.org]

Using a different training dataset

To test the generality of using the proposed
descriptor, a second training dataset has been used
to produce different detection statistics. Figure 3
shows the environments used. These two environ-
ments differ in terms of the radii of the circles
and their spacing. The spacing of the cylinders is
important since, for example, closely located cylin-
ders can cause the detector to generate fewer circles
than are actually present, with false centers and
radii. For example, the closely spaced cylinders in
the lower left corner of Figure 3(a) result in the
false alarms within the green circles in Figure 9(b).
This experiment shows that the use of both detec-
tion statistics and descriptor information modeled
from a second environment also improves the SLAM
performance. From this, it can be concluded that the
proposed detection statistics and descriptor are not
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Table 2— Average trajectory error of the simulated results, based on the detection
statistics learned in the same environment (Figure 3(a))

Algorithm Detection Statistics Average Trajectory Error [m]
No descriptor  Using Descriptor
PHD-SLAM Constant Pp 0.11 0.07
Variable Pp (m} |7 (mj], %)) 0.04 0.04
MH-FastSLAM  Constant Pp 0.18 0.14
Variable Pp (mj |7 (m}],)) 0.54 0.15

-

8 1.0

N

£

€ 08 .
L

£

,f 0.6 _
<

k)

5 04 -
Q

3

5 0.2 — Pd 1
= — Lower Bound
= — Upper Bound
-(% 00 | | I I

€ 0 10 20 30 40 50
o

Predicted number of points (ﬁ(mi, xr))

Fig. 12-The probability of detection as a function of the number
of unoccluded points n (m]i ,xk)‘ Based on the number of points

available in the test dataset, a 99% confidence interval is calcu-
lated, the bounds of which are shown. [Color figure can be viewed
at wileyonlinelibrary.com and www.ion.org]

merely ‘overfitting’ to the particulars of the specific
environment.

Figure 12 shows the probability of detection obta-
ined from the training dataset of Figure 3(b). As can
be seen from the figure, the transition from close to
zero probability of detection to a high probability of
detection occurs at approximately the same value
ﬁ(ka ,x;) = 13, but the values of the probability
of detection are significantly different. The SLAM
algorithms were then rerun based on the detection
statistics shown in Figure 12.

As can be seen in Figure 13, the mapping errors
of both algorithms improve when applying both
descriptor information and detection statistics, as
resulted when the statistics were calculated from
the same environment. The performance of MH-
FastSLAM does not improve when using either the
detection statistics or the descriptor information
individually. It does however improve when both
are used. On the other hand, PHD-SLAM benefits
mainly from the inclusion of the variable detec-
tion statistics, while the addition of the descriptor
only produces a small improvement in the mapping
accuracy.

Figure 14 shows the trajectory errors obtained
using the new detection statistics. The trajectory
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Fig. 13-Average OSPA errors between the ground truth map and
the map estimates. Results are based on the detection statistics
learned in a different environment (Figure 3(b)). Errors were aver-
aged over five independent runs. OSPA parameters used were c=1
and p=1. [Color figure can be viewed at wileyonlinelibrary.com
and www.ion.org]

error plots clearly display the problems PHD-SLAM
has when lacking the detection statistics. The errors
are reduced with the addition of the variable prob-
ability of detection, while in the case of the tra-
jectory error, the further addition of the descriptor
makes little difference. As with the mapping error,
MH-FastSLAM benefits less than when using the
environment-specific detection statistics. With the
addition of both the descriptor and detection statis-
tics, the pose error is still lowest for most of the
trajectory, as was shown when using the environ-
ment specific detection statistics. Table 3 confirms
these conclusions in terms of the average errors
over the entire trajectory. The appendix shows the
results of the same algorithms used to generate
Figure 9 based on the new training environment in
Figure Al. A single SLAM result is shown for each
algorithm out of the five Monte Carlo runs used to
generate Table 3.

LEARNING FROM A PARK ENVIRONMENT

This section applies the concepts described in
the Learning from Simulated Range Data section
to data obtained in a real park environment. The
method explained is valid for any shape detector to
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Table 3— Average trajectory error of the simulated results, based on the detection
statistics learned in a different environment (Figure 3(b))

Algorithm Detection Statistics Average Trajectory Error [m]
No descriptor  Using Descriptor
PHD-SLAM Constant Pp 0.08 0.09
Variable Pp(m;] | A(m],x})) 0.04 0.05
MH-FastSLAM  Constant Pp 0.18 0.21
Variable Pp(m;/ | A(m],x})) 0.20 0.15
Trajectory error /3
—— PHD-SLAM (constant PD) 8 1.0 T T r T r T T T
0.4 4 77" MH-FastSLAM (constant PD) Y
—— PHD-SLAM (proposed PD) E
==+ MH-FastSLAM (proposed PD) >
=== PHD-SLAM (descriptor) < 08}
= +=++  MH-FastSLAM (descriptor) . = .
=34 — PHD-SLAM (proposed PD + descriptor) e
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Fig. 14-Average position error over time. Results are based on the
detection statistics learned a different environment (Figure 3(b)).
Errors were averaged over five independent runs. [Color figure can
be viewed at wileyonlinelibrary.com and www.ion.org]

which ray casting can be performed. A simple circu-
lar feature detector, based on the detector described
by Guivant et al. in [34], is applied here. This detec-
tor first segments the laser scan into clusters, using
a simple distance threshold and then fits a circle
to each cluster, via mean squared error minimiza-
tion. Further details of the detector can be found in

[6]. The dataset used to learn Pp (m}f |7 (mé ,xk))

and « zﬁe |« ) was recorded in a park near the Uni-
versidad de Chile. The dataset consisted of 2,397
scans taken from 19 known vehicle poses. The area
covered by the dataset contained 174 tree trunks
and lamp posts, the number and locations of which
were verified by independent means to form ground
truth. Naturally, the generality of such an envi-
ronment is questionable. In general, any semantic
feature detection statistics can be determined in
a manner similar to methods given in the follow-
ing subsections but should be based on datasets
from environments known to contain a significant
number of the type of semantic feature sought.

Estimating Detection Probability
Pp (mlzlﬁ (mlg,xk))
Figure 15 shows the results of applying (22) to the

dataset, where the probability of detecting a circu-
lar object (in this case a tree) is highly dependent

Vol. 65, No. 3

Predicted number of points (7(mJ,, x},))

Fig. 15-The probability of q‘letection as a function of the number
of unoccluded points i (mlg ,xk). Based on the number of points

available in the test dataset, a 99% confidence interval is calcu-
lated, the bounds of which are shown. [Color figure can be viewed
at wileyonlinelibrary.com and www.ion.org]/

on the number of unoccluded points. (Note that the
values of the probability in Figure 15 differ signif-
icantly from those in Figure 4. This is because the
feature detector used in the park can detect features
using fewer range points than the RANSAC detec-
tor, which needs a relatively large number of inliers
to differentiate detections from any other randomly
generated circle. Further, the RANSAC detector was
used in a simulated environment with a lower clut-
ter rate.) The figure also shows a 99% confidence
interval, based on the number of data points avail-

able for each value of i1 (m]g ,xk). It should be noted

that there is less data corresponding to features that
have a high number of unoccluded points. Therefore,
for such features, the uncertainty in the estimated

value of Pp (m}g |7 (m}i ,xk)) is higher, as shown by
the confidence interval.

Estimating P (zLka> and « (zi(lxk)
Similar to the explanation in Estimating

Ppa (zfe |xk) and Intensity Function « (z}e |xk>
section, for the case of the park dataset, the his-
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Fig. 16-A distribution of the number of false alarms per scan,
obtained from the test dataset. The red graph shows the equivalent
Poisson distribution. Note that the red bars are superimposed on
to the blue bars, with half their width, to improve visibility. [Color
figure can be viewed at wileyonlinelibrary.com and www.ton.org]
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Fig. 17-Number of measured‘points ng as a function of the pre-

dicted number of points ﬁ(m]g ,&p). The contours of an equivalent

Gaussian mixture (composed of four Gaussian components) are
also shown. [Color figure can be viewed at wileyonlinelibrary.com
and www.ion.org]

togram of the number of false alarms per scan is
shown in Figure 16, along with its equivalent theo-
retical Poisson distribution (with parameter A = 9.3)

plotted in red. « (z;e |xk) was again determined

from (37), while Pgp (zfg |xk> was determined from
(23) to be 47.19%.

Estimating Feature Likelihoods gz”"’(()) and
0
9" ()

As in the Estimating Feature Likelihoods gg""l(O)

and gg.l‘&"l(f)) section, to model the distribution of the
number of range values used to generate a detection,

given p (n|ﬁ (m,i ,xk)), first the joint probability
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Fig. 18-The conditional distribution of ng given n (m]g ,xk> calcu-

lated from the Gaussian mixture of Figure 17. [Color figure can be
viewed at wileyonlinelibrary.com and www.ion.org]

distribution p (n, n (m}g ,xk])) is modeled, shown in
Figure 17.

In contrast to the simulated range data ana-
lyzed in Estimating Feature Likelihoods gzv"l(O)
and gg.X’l(O) section, a single Gaussian distribution

would not accurately model the data in Figure 17;
therefore, a Gaussian mixture

p (n,ﬁ (m]i,xk» = Zwi/\/' (n,ﬂ (m]g,xk) | i, Ei>
i

(43)
is used. To estimate the Gaussian mixture parame-
ters, the Expectation Maximization (EM) [35] algo-
rithm was then applied, based on a predetermined
(in this case selected to be four to avoid overfitting
the data) number of Gaussian components. A con-
tour plot of the result is also shown in Figure 17.
Using the estimated Gaussian mixture, the condi-
tional distribution can be obtained as

p (nl (mi ) =" beilmi)

o (i ()

p (n,ﬁ (m}f,xk»
= - . (45)
Ip (n,n (mk,xk>) dn
By substituting (43) into (44), the conditional dis-
tribution becomes

go™@) =p (n|a (m],a))
o iwN (nn (m]i;xk) |Mi,2i)
i (7 (mi ) |12, 5:2,2))
(46)

where p©;(2) and X;(2,2) are the elements of the
mean and covariance matrix, respectively, which

correspond to 7 (m]g ,xk>. Figure 18 shows a con-
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Fig. 19-Descriptor distribution for false alarms (blue) and its
equivalent exponential distribution (red). [Color figure can be
viewed at wileyonlinelibrary.com and www.ion.org]

tour plot of the conditional distribution calculated
using (46) corresponding to the Gaussian mixture of
Figure 17.

For the case of false alarms, the distribution of ng,
based on known false alarms from the park environ-
ment and shown in blue in Figure 19, was modeled
with an exponential distribution

go0l(8) = Ang exp (~Ang (ta ~Nmin)), (47

with parameters An,; = 0.5124 and Np,;, = 4 (red
curve). The results of applying this descriptor in
SLAM will be shown in the Experimental SLAM
Results section.

EXPERIMENTAL SLAM RESULTS

The performance utilizing the probability of
detection and descriptor information in Parque
O’Higgins, Santiago and with the publicly available
Victoria Park dataset [34] from Sydney, Australia, is
evaluated in the Experiments in Parque O’Higgins,
Santiago and Victoria Park dataset sections, respec-
tively. Table 4 shows the parameters used, which are
common to both datasets.

Experiments in Parque O’Higgins, Santiago

The robotic platform for collecting the experimen-
tal dataset was a Clearpath Husky A-200 robot
equipped with a Sick LD-LRS-1000 laser range
finder, with a reported maximum range of 80 m
at 10% reflectivity. The Husky’s wheel encoders
provided odometry measurements, uy, used in the
motion model in (1). The experiments were con-
ducted in the same environment where the detection
statistics were determined, albeit with a different
dataset. Although not a very general result, this pro-
vides the best estimate of the real detection statis-
tics that will be encountered in the experiments.

Vol. 65, No. 3

Table 4—The parameters used in the SLAM
experiments

Parameter Value Equation
Pp(mj |Am],x;))  See Figure 15 22)
A 9.3 (37
Pra(2, | xp) 47.19% (23)
w1 0.41 (46)
w1 [2.75 4.32]T (46)
2.31 0.24
! 0.24 0.22} (46)
w9 0.18 (46)
e [10.96 13.38]T (46)
52.82 33.44
T2 33.44 27.93} 46)
w3 0.03 (46)
U3 [16.01 22.42]T (46)
195.57 112.94
Z1 112.94 177.9 } (46)
w4 0.38 (46)
U (3.89 6.23]T (46)
5.96 1.12
4 1.12 1.48} (46)
Ang 0.5124 (42)

The robot ended its trajectory at approximately
the same position as it started. The results for
the constant probability of detection versions of
RB-PHD-SLAM and MH-FastSLAM are shown in
Figure 20(a) and (b), in which optimal performance

in each case occurred for PD(m/'! |27) = 0.7 and 0.5,
respectively. The versions of RB-PHD-SLAM and
MH-FastSLAM that use both the variable probabil-
ity of detection (from (22) and Figure 15) and the
feature descriptor information (from (46) and (47))
are shown in Figure 20(c) and (d), respectively.

In the case of RB-PHD-SLAM, visually, the map
estimates of both the proposed algorithms appear to
be better than the algorithm using a constant prob-
ability of detection, which removes most features
from the map as soon as they stop being detected.
This is because of the probable mismatch between
the assumed constant probability of detection and
the actual probability of detection. This effect can
be observed particularly in the section of the maps
highlighted with a red rectangle. In this rectangle,
the algorithm which assumes a constant probability
of detection, completely removes the estimates from
its map. This occurs because the Gaussians that rep-
resent the estimates are multiplied many times by a
factor of (1 —PD(ka | %)), with a falsely high prob-
ability of detection (see the first term in the RHS of
(14)). Even with an accurate probability of detection,
the PHD filter is too quick to remove landmarks,
which only accentuates the problem. However, by
using the proposed detection statistics, the filter
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Fig. 20-SLAM results in Parque O’Higgins, Santiago, Chile. Red rectangle: Area of the map that shows most improvement in RB-
PHD-SLAM and MH-FastSLAM by including detection statistics. Pink rectangle: Area of the map that shows most improvement in
MH-FastSLAM by using the detection statistics. [Color figure can be viewed at wileyonlinelibrary.com and www.ion.org]

Table 5— Average error in the final position (averaged over five Monte Carlo

runs)
Average Final position error
PHD-SLAM (m) MH-FastSLAM (m)
Constant PD(mé |xz) 1.36 1.07
Proposed PD(m]g |2xz) 1.33 0.68
Proposed PD(mI: |x7) + using descriptor 0.53 0.67

is able to maintain the estimates. The trajectory
estimate of the constant probability RB-PHD-SLAM
filter (Figure 20(a)) is also worse than its variable
PD(m,‘g] |x) counterpart, as the pose estimate does
not exactly return to its starting position, as shown
in Table 5.

Figure 20(d), when compared with Figure 20(b),
shows that with MH-FastSLAM, the proposed prob-
ability of detection and descriptor improves the
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map estimates, by allowing the filter to maintain
the estimates of features when they are occluded.
This is particularly noticeable in the row of trees
located at approximately x = —60 m (pink rect-
angle), where the map estimates corresponding to
these trees are maintained, while MH-FastSLAM
based on a constant probability of detection failed to
do so (Figure 20(b)). This could be explained by the
fact that these estimates are occluded by other trees
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Fig. 21-Average OSPA errors between the ground truth map and
the map estimates. Errors were averaged over five different runs.
OSPA parameters used were c=5 and p=1. [Color figure can be
viewed at wileyonlinelibrary.com and www.ion.org]

for a long time before they exit the theoretical FoV.
The effect of the variable Pp (m]g |xk) on the tra-

jectory is less severe, but as can be seen in Table 5,
the final point of the trajectory is closer to the
starting point. Including descriptor information into
MH-FastSLAM (Figure 20(d)) removes most of the
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=+ GPS Vehicle Trajectory

— Trajectory Est.
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yim]
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(a) RB-PHD-SLAM with constant probability of detection.
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«+  GPS Vehicle Trajectory
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© Landmark Position Est.

y[m)
g

(c) RB-PHD-SLAM with learned probability of

detection and descriptor information.

clusters of false features and improves the trajectory
estimate.

To quantify the mapping errors in each case,
Figure 21 shows the OSPA errors between the
estimated and ground truth maps, giving greater
clarity of the mapping performance of each algo-
rithm. In the case of both RB-PHD-SLAM and
MH-FastSLAM, the metric confirms the higher map
quality produced by employing the variable proba-
bility of detection and the further improved perfor-
mance when using feature descriptor information.
It should be noted that the focus here is to demon-
strate the improvement in both RB-PHD-SLAM and
MH-FastSLAM when feature descriptor information
is used, and not to compare RB-PHD-SLAM and
MH-FastSLAM. Although under the relatively low
clutter conditions used in the SLAM experiments
here, MH-FastSLAM out performs RB-PHD-SLAM,
the converse is true under higher clutter conditions
[36].

Victoria Park dataset

To confirm the results obtained using the dataset
gathered in Parque O’Higgins, the Victoria Park
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Fig. 22-SLAM results in Victoria Park, Sydney, Australia. [Color figure can be viewed at wileyonlinelibrary.com and www.ion.org]
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benchmark dataset was used [34]. The Victoria Park
dataset is similar to the Parque O’Higgins dataset,
in the sense that trees are the natural features of the
environment. This dataset provides the opportunity
to test the generality of the detection statistics and
descriptor likelihoods learned based on data from
Parque O’Higgins with a dataset taken by differ-
ent researchers in a different location. Additionally,
these statistics will be tested on the detector pro-
vided with the dataset [34], which was only modified
to provide the number of points used in each detec-
tion. This detector, although it also detects circular
cross-sectioned objects, is different from the detector
used to gather the statistics in Parque O’Higgins.
Figure 22(a) and (b) shows the results of the
standard RB-PHD-SLAM and MH-FastSLAM fil-
ters, with constant values Pp(m; |x;) = 0.4 and 0.7,
respectively, determined by trial and error, to opti-
mize filter performance in each case. The ‘forgetful’
nature of RB-PHD-SLAM is evident, due to the prob-
able mismatch in the estimated and actual probabil-
ities of detection, causing it to diverge (Figure 22(a)).
Figure 22(c) and (d) shows the results of RB-PHD-
SLAM and MH-FastSLAM, respectively, using both

the values of Pp (m}f |xk) descriptor likelihoods

learned in Parque O’Higgins. The solution shown
in Figure 22(c) converges to trajectories similar to
other published SLAM solutions [9, 21]. Interest-
ingly, both trajectories without the use the proposed
methods have errors towards the building in the left
part of Figure 22(a) and (b). The variable probabil-
ity of detection enables the filters to use negative
information properly and any errors in the trajec-
tory place the vehicle in an accessible location (the
park) rather than inside the building.

In the case of MH-FastSLAM, both versions
converge to approximately the same trajectory,
although using the learned detection statistics pro-
duced a map with many more features, while adding
the descriptor removed a few of the added features.
Due to the lack of map ground truth information
and the partial absence of trajectory GPS informa-
tion, it is difficult to judge the performance of the
proposed modifications in this dataset. It should be
noted, however, that in the satellite image, some of
the additionally estimated features in Figure 22(d)
correspond to real trees, specifically in the lower
right corner of the image, across the street from the
park location.

SUMMARY

The importance of detection as well as the usu-
ally considered spatial statistics upon SLAM per-
formance was demonstrated in this article. Insights
were derived from the target tracking community,
in which the amplitude of radar data has been used
as a target descriptor to provide detection statistics
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and likelihoods, to accompany radar range values.
This concept was extended to give a generalized
robotic map feature descriptor for range measur-
ing sensors, based on the state dependent expected
number of unoccluded points, available via ray cast-
ing. The difference between the actual and predicted
number of range points received from a feature
proved to be a useful approximation of a sufficient
statistic to aid feature based SLAM, while account-
ing for map feature occlusions. SLAM simulations,
with known map ground truth as well as out-
door SLAM experiments, verified the importance of
including detection statistics into SLAM algorithms.
It was particularly encouraging that the generation
of detection statistics for SLAM maps based on tree
locations, learned in one park location (Santiago,
Chile), was able to provide improvements to SLAM
algorithms using a dataset and a different detector
in another location (Sydney, Australia). The SLAM
algorithms tested were vector-based MH-FastSLAM
in conjunction with a binary Bayes filter, which
utilized the derived detection statistics, and RFS-
based RB-GM-PHD-SLAM, which incorporates the
statistics directly into its set state-based Bayesian
recursion.
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APPENDIX-SIMULATION RESULTS WITH OTHER
TRAINING DATASET
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Fig. AI-SLAM results in a simulated environment. [Color figure can be viewed at wileyonlinelibrary.com and www.ion.org]
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