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a b s t r a c t 

A Random Finite Set (RFS) based multi-target filter is proposed, which utilizes a labeled Multi-Bernoulli 

distribution to model the multi-target state, together with a Poisson RFS distribution to model target 

birth. Referred to as the Poisson Labeled Multi-Bernoulli (PLMB) filter, results show that, in simulated 

environments, it outperforms the Labeled Multi-Bernoulli (LMB), δ-Generalized Labeled Multi-Bernoulli 

( δ-GLMB) and Labeled Multi-Bernoulli Mixtures (LMBM) filters under general target birth scenarios. An 

algorithm based on a histogram of Gibbs samples is also proposed which efficiently generates a posterior 

labeled Multi-Bernoulli distribution in a simple manner using a histogram of the state-measurement asso- 

ciations obtained by a Gibbs sampler. The histogram approach is readily applicable to all Multi-Bernoulli 

based filters and is demonstrated in the form of the Histogram-PLMB (HPLMB) filter. 
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. Introduction 

Multi-target tracking is a problem of great interest in many

ngineering applications, ranging from surveillance to safety en-

orcement and autonomous robotics [1–4] . Different solutions have

een proposed, such as the Multiple Hypothesis Tracking (MHT)

nd Joint Probabilistic Data Association (JPDA) filters [5–7] . To for-

ulate the multi-target tracking problem in a Bayesian manner, in

hich target cardinality, as well as state, can be jointly estimated,

ahler used Random Finite Set (RFS) and developed the Finite

et Statistical (FISST) framework [8,9] . By using RFS and FISST, the

roblem of Bayesian multi-object estimation can be expressed in

 rigorous manner. As with all multi-target, multi-object tracking

ormulations, a key issue is the combinatorial nature of the prob-

em, which makes tractable solutions for real-world problems an

ngoing research field. 

The recently introduced δ-Generalized Labeled Multi-Bernoulli

 δ-GLMB) filter proposed by Vo et al. [10,11] , which introduces

he notion of labeled RFS, is the first true multi-target tracking,

losed form solution of the Bayes recursion. It is a true tracking

lter in that it uniquely identifies and maintains the track identi-

ies of the targets jointly with the estimates of the states within

he Bayesian recursion. Although the δ-GLMB filter is analytically
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xact, it can be intractable due to the combinatorial nature of the

osterior solution, and approximations must often be made. It was

hown that the truncated distribution is a good approximation of

he true posterior distribution using the L 1 norm [11] . The trunca-

ion process proposed in [11] relied on extracting the k best assign-

ents between tracks and measurements via the use of Murty’s

lgorithm [12] , which still resulted in a high computational com-

lexity. To reduce this complexity, a δ-GLMB filter based on Gibbs-

ampling of the posterior RFS distribution was introduced [13] . As

 result, the multi-target posterior can be approximated with com-

lexity O(MN 

2 S) , i.e. linear in the number of measurements M ,

nd quadratic in the number of targets N , for S samples per time

tep. 

A multi-target density, which is related to the δ-GLMB distri-

ution, is the Labeled Multi-Bernoulli (LMB) density [14] . The ad-

antage of the LMB with respect to the δ-GLMB density is that it

equires fewer parameters to model the posterior multi-target dis-

ribution at the expense of the loss of information related to the

orrelations between the target association maps. However the

ain in computational tractability due to this reduction of the pa-

ameters has been shown to outweigh the loss in multi-target state

stimation accuracy in many applications. Based on this distribu-

ion, Reuter et al. first proposed the LMB filter based on Murty’s

lgorithm [14] , and later based on Gibbs-sampling [15] . An imple-

entation of the LMB filter, which utilized Loopy Belief Propaga-

ion (LBP) was introduced in [16] with linear computational com-

lexity O(MNI) with respect to the numbers of measurements M ,

argets N and LBP iterations I . 
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1 Note that versions of the δ-GLMB and LMB filters exist, which create LMB birth 

densities according to an adaptive birth model based on applying inverse measure- 

ment models to the measurements from previous time steps [22] . 
Nomenclature 

X , Y, B, Z, �, L Random Finite Sets (RFSs) modeling the 

multi-object state, multi-object state of de- 

tected targets, appearance of new targets, 

observations, clutter measurements and tar- 

get labels (identities), respectively. 

X, Y, B, Z, L Realizations of the RFS representing the 

multi-object state, multi-object state of de- 

tected targets, multi-object state of birth 

targets, measurement set and target label 

set, respectively. 

Z 1: t Collection of set-valued observations up to 

and including time step t . 

x, z Vector representations of a single-target 

state and observation. 

F, Q, H, R Matrices representing the linear transition 

model, transition noise, linear observation 

model and observation noise. 

G X [ h ] Probability Generating Functional of the RFS 

X . 

D X (x ) First moment, or intensity function, of the 

RFS X . 

P S , P D Probabilities of target survival and detection. 

l x , l z State transition and observation likelihood 

functions. 

� Target label. 

x̊ Labeled state x̊ = (x , � ) . 

ω σ Weight of a component of a multi-Bernoulli 

(MB) mixture (MBM) density, representing 

target set partition σ . ω N , ω M 

, ω D repre- 

sent the weights of new, misdetected and 

detected targets respectively. 

r Probability of existence of an element of a 

MB based RFS. 

f Probability density function of a target. 

· � , N , · � , D , · � , M 

Variables ( ·) corresponding to new, detected 

and misdetected targets, with label � . 

· σ , � Variable ( ·) corresponding to target � for 

partition σ of a MBM density. ( ·) can be r 

or f . 

· ′ , ·+ Predicted and updated variable. Variable ( ·) 
can be r, f or G . 

Recently in the RFS multi-target tracking literature, multi-

Bernoulli filters that utilize a Poisson process birth model have

been proposed [17–20] . However, in the article [21] , Mahler spec-

ified the properties necessary for the distribution of a labeled RFS

(LRFS), and stated that a Poisson RFS does not have the necessary

properties to be considered to be a true LRFS. In [10, p.4] , Vo et al.

defined a labeled Poisson RFS and a procedure to generate a fi-

nite set of augmented states with distinct labels, but noted that

the set of labeled states is not a Poisson RFS. Mahler [21] stated

that label-augmented-Poisson Multi-Bernoulli Mixture (PMBM) and

hybrid-unlabeled-labeled-PMBM filters are theoretically and phys-

ically questionable, because of conflicts between the simultaneous

existence of the undetected-density component and the detected-

density component. Therefore, this article adopts an unlabeled

Poisson RFS distribution which models birth targets (not unde-

tected targets) without identities and a labeled Multi-Bernoulli

(MB) distribution which models target tracks - i.e. target identi-

ties. It demonstrates that it is possible to design a labeled Bayesian

filter based on these concepts, which forbids state-sets with non-

distinct labels. 
The advantages of using a Poisson process birth model within

MB filters include: 

• The ability to model the birth of any number of targets at a

given time step, whereas an LMB birth density can only model

a number, which is limited by the cardinality of the LMB birth

density 1 . 
• The ability to model a birth rate , thus allowing filter pre-

dictions with varying time steps. This was used in [23] for

a multi-sensor scenario where sensor measurements arrived

asynchronously. 

This article therefore derives a Poisson Labeled Multi-Bernoulli

PLMB) filter based on a Poisson birth model (with unlabeled tar-

et state) and an LMB target model (with labeled target state). A

otivation for using a Poisson birth distribution is based on [18] ,

here it was shown that a MB distribution naturally results when

pplying Bayes theorem to a Poisson prior distribution with the

tandard measurement model defined in [8, p.311] . The PLMB filter

ssumes a prior LMB density, and after the prediction stage incor-

orates a Poisson birth model, yielding a PLMB density. Note that

n contrast to [18] , the Poisson component models birth, but not

ndetected targets. After update, the filter again yields a posterior

hich is purely an LMB density. The article offers the following

ontributions: 

1. It is shown that a labeled multi-Bernoulli mixture density can

be approximated by an LMB density in a manner similar to

which an LMB density has been used to approximate a δ-GLMB

density [15] . This maintains the same advantage that the LMB

filter has over its δ-GLMB counterpart, in that the number of

parameters necessary to model the posterior distribution in the

PLMB filter is significantly reduced compared to those neces-

sary in a fully labeled multi-Bernoulli mixture filter. Despite

the theoretical loss of correlation information, it is shown that

the PLMB filter has multi-target errors similar to the multi-

Bernoulli mixture based δ-GLMB and LMB mixture filters, while

achieving lower computational times, similar to the LMB filter.

An explicit derivation of the MB parameters is given together

with two implementation techniques in Sections 4.4 and 4.5 . 

2. It will be shown that, in the PLMB filter, it is possible to identify

each component with a unique track identifier (label) allowing

track identities to be initialized and maintained. 

3. An efficient PLMB filter, which creates the posterior LMB den-

sity based on a histogram of the samples obtained by applying

a Gibbs sampler to a cost matrix, as in the sense of [13] , is pro-

posed. This is referred to as the Histogram PLMB (HPLMB) filter.

In contrast to state of the art LMB filter implementations, the

LMB density of the HPLMB filter does not require the approxi-

mation of the posterior labeled multi-Bernoulli mixture distri-

bution component. Instead it computes the parameters of the

posterior LMB distribution directly from the prior distribution. 

4. The proposed histogram based procedure of the PLMB filter

uses all the LMB components generated by the Gibbs sam-

pler, circumventing the necessity of identifying and removing

repeated components. 

Section 2 presents the theoretical background necessary for

eriving Bayesian RFS filters. The PLMB filter is derived in

ection 3 with two implementation methods being described in

ection 4 . In Section 5 simulated results are presented giving com-

arisons with the LMB, δ-GLMB, Labeled Multi-Bernoulli Mixture

LMBM), PMBM and the LBP-PLMB filters. Finally, in Section 6 con-

lusions are drawn. 
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. Theoretical background: bayesian recursion with random 

nite sets 

This section reviews the basic RFS concepts and introduces how

lter prediction and correction steps are implemented using RFS

or multi-target tracking. For a complete description, the reader is

eferred to [8] . This serves as a prerequisite for the derivation of

he PLMB filter given in Section 3 . 

.1. Random Finite Sets Overview 

An RFS, X , is a random variable, which has instantiations as

nite sets X = { x 1 , . . . , x n } , with n ≥ 0, n = 0 indicating the empty

et. Two sources of uncertainty are present in an RFS, namely the

nknown number of elements and the uncertainty in the value of

ach element in the set. An RFS can be described by its probability

ensity function (pdf) f ( X ; �) with � being the parameters of the

df, or alternatively by its Probability Generating Functional (PGFl)

 X [ h ] defined as: 

 X [ h ] = 

∫ 
h 

X f (X ) δX. (1)

he integration is carried out using the set-integral 2 and h X is de-

ned as: 

 

X = 

{
1 if X = ∅ ∏ 

x ∈ X h (x ) otherwise, 
(2) 

ith 0 ≤ h ( x ) ≤ 1 being a function defined in the space of the

ndividual elements. The PGFl can also be used to calculate the ex-

ected value (or first moment) D X (x ) of the multi-target distribu-

ion: 

 X (x ) = 

δ

δ{ x } G X [ h ] 

∣∣∣∣
h =1 

, (3)

here δ
δ{ x } G X [ h ] is the functional derivative of G X [ h ] [8] . 

Commonly used distributions in RFS approaches are the Poisson

nd Bernoulli densities. The Poisson density is given by: 

f p (X ) = e −〈 D X (x ) , 1 〉 [ D X (x )] X , (4)

here its first moment D X (x ) = λ f (x ) , λ represents the ex-

ected number of targets and f ( x ) represents the spatial density.

 f (x ) , g(x ) 〉 = 

∫ 
f (x ) g(x ) dx represents the inner product between

unctions f ( x ) and g ( x ). Its PGFl is given by 

 

p 
X [ h ] = e D X [ h −1] . (5)

A Bernoulli density models random sets in such a way that an

lement is present with probability r or not present with probabil-

ty 1 − r. Its density f b (·) is given by: 

f b (X ) = 

{ 

1 − r if X = ∅ 
r f (x ) if X = { x } 
0 otherwise . 

(6) 

A multi-Bernoulli density with N b components models random

ets such that an element of index i is present with probability r i 
r not present with probability 1 − r i . When present, each element

s distributed according to a probability density function f i ( x ). The

ulti-Bernoulli density f mb ( X ) is given by the disjoint union of in-

ependent Bernoulli processes f b 
i 
(X i ) : 

f mb (X ) ∝ 

∑ 

X 1 � ... � X n 

N b ∏ 

i =1 

f b i (X i ) , (7)
2 The set integral is defined as follows: 

 

f (X ) δX = f (∅ ) + 

∞ ∑ 

n =1 

1 

n ! 

∫ 
f ({ x 1 , . . . , x n } ) dx 1 · · · dx n 

∫

here X 1 , ..., X n are all possible disjoint subsets of X , i.e. � is the

isjoint union operator. The PGFl of a multi-Bernoulli density is: 

 

mb 
X [ h ] = 

N b ∏ 

i =1 

(
1 − r i + r i 〈 f b i (x ) , h (x ) 〉 ). (8)

he multi-Bernoulli density is usually parameterized with the set

f parameters 	 = { (r 1 , f 1 ) , . . . , (r N b , f N b ) } . 

.2. Labeled Random Finite Sets 

A Labeled Random Finite Set is composed of labeled states x̊ =
(x , � ) ∈ X̊ = X × L . Therefore, a multi-target state of n elements is

iven by X̊ = { (x 1 , � 1 ) , ..., (x n , � n ) } in which, for the set X̊ , with

inematic state X , its corresponding labels are L = { � 1 , ..., � n } . 
For a function f ( ̊x ) , its integral is defined as: 

 

f ( ̊x ) d ̊x = 

∑ 

� ∈L 

∫ 
X 

f (x , � ) dx , (9)

nd its PGFl G X̊ [ ̊h ] is defined as: 

 X̊ [ ̊h ] = 

∫ 
h̊ 

X̊ f ( ̊X ) δX̊ , (10)

here the integration is carried out using the labeled set-integral 3 ,

ith 0 ≤ h̊ (x , � ) ≤ 1 . 

A labeled multi-Bernoulli density is characterized by its

GFl [9, p. 456] , [24] : 

 

lmb 
X̊ [ h ] = 

∏ 

� ∈ L 

(
1 − r � + r � 〈 f � ( ̊x ) , ̊h ( ̊x ) 〉 

)
, (11)

here f � is the single target density of a target with label � . Note

hat (11) has the same form as the MB PGFl (8) . 

.3. The Standard Bayesian Recursive Filter for RFS 

Bayesian filtering is composed of two steps. First, the system’s

tate is predicted one time step ahead using only the state transi-

ion model of the system: 

f ′ (X | Z 1: t ) = 

∫ 
l x (X | X t ) f (X t | Z 1: t ) δX t , (12)

here X t and X represent the (multi-target) state at time steps t

nd the state at t + 1 , respectively, Z 1: t represents all the observa-

ions received until time step t, l x ( X | X t ) represents the state transi-

ion model of the system, f ( ·) represents the prior density at time

tep t , and f ′ ( ·) represents the predicted density at time step t + 1 .

econd is the correction step, where the most recent observation is

sed to correct the predicted value of the state. Under Bayes theo-

em: 

f + (X | Z 1: t+1 ) ∝ l z (Z| X ) f ′ (X | Z 1: t ) , (13)

here f + (·) is the updated target state density at time step t + 1 ,

 is the observation set at time step t + 1 and l z ( Z | X ) is the obser-

ation model. 

To solve Eqs. (12) and (13) , the multi-target transition model

nd the multi-target observation model have to be defined. In this

rticle, the “standard” multi-target transition and observation mod-

ls [8, p.313] are adopted. For simplifying the notation, the inner

roduct between single target hypotheses is defined as 〈 f, g〉 =
3 The labeled set-integral is defined as follows: 

 

f ( ̊X ) δX̊ = f (∅ ) + 

∞ ∑ 

n =1 

1 

n ! 

∑ 

� ∈ L 

∫ 
f ({ x 1 , . . . , x n } ) dx 1 · · · dx n 
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G  
∫ 
f (x ) g(x ) dx . Using PGFl, Mahler showed that under this “stan-

dard” multi-target transition model, the resulting distribution of

the prediction step f ( X 

′ | Z 1: t ) has a PGFl of the form [8] : 

G 

′ 
X |Z 1: t 

[ h ] = G B [ h ] G X |Z 1: t 
[1 − P S + P S 〈 l x (x | ·) , h 〉 ] , (14)

where G B [ h ] and G X |Z 1: t 
[ h ] are the PGFl of the birth process and

the previously estimated state distribution, respectively. It should

be noted that in the PGFl and inner product expressions, x is omit-

ted or replaced by a “ · ”. 

Mahler also showed that using the “standard” multi-target ob-

servation model (or “standard” multi-target likelihood), the distri-

bution of the corrected state, has the following PGFl [8, p.311] : 

G 

+ 
X |Z 1: t+1 

[ h ] = 

δ
δZ 

F [ h, g] 
∣∣

g=0 

δ
δZ 

F [ h, g] 
∣∣

h =1 ,g=0 

, (15)

where 

F [ h, g] = G �[ g] G 

′ 
X |Z 1: t 

[ h (1 − P D + P D 〈 l z (z | x ) , g〉 )] , (16)

where G �[ g] and G 

′ 
X |Z 1: t 

[ h ] are the PGFl of the clutter process and

the predicted state distribution, respectively, and P D ( x ) and l z ( z | x )

are the probability of detection and the measurement likelihood

function for single targets, respectively. From (14) and (15) , a PGFl

formulation of a Bayesian filter using the “standard” multi-target

transition and observation models can be derived. In the following

section, the value of G X [ h ] will be determined and substituted into

Eqs. (14) and (15) to derive the equations of the PLMB filter. 

3. Bayesian Recursion of a Labeled Multi-Bernoulli Density 

with Poisson Birth Model 

This section shows that a Poisson birth process yields an MB

distribution after the application of Bayes theorem. It will be fur-

ther shown that, under Bayes theorem, adding distinct labels to

the new targets produced by the Poisson state-measurement asso-

ciations naturally yields an LMB distribution. Consequently, under

Bayes theorem, an LMB density prior yields a PLMB density under

prediction when a Poisson birth model is used. Bayesian update

then yields a mixture of labeled multi-Bernoulli densities. 

3.1. Multi-Bernoulli Density Prediction 

For a prior LMB density with parameters ( r � , f � ), where � ∈ L ,

the prediction of the LMB density is r ′ � = r � 〈 P S , f � 〉 and f ′ � (x ) =
〈 P S l x (x | ·) , f � 〉 〈 P S , f � 〉 . This prediction step is efficient and equivalent to the

Labeled Probability Hypothesis Density (LPHD) filter prediction

step in [24] and [20] . It does not need to convert the LMB den-

sity into a δ-GLMB density, and reduce it again to an LMB density

as in the LMB filter [14] . 

3.2. Poisson Birth Process 

The Poisson birth intensity is given by D B (x ) = λB f B (x ) , where

λB is the expected number of targets to be born with spatial distri-

bution f B ( x ). The union of Poisson and LMB densities in PGFl form

is: 

G 

plmb 
X [ h ] = G 

p 
B [ h ] G 

lmb 
Y̊ [ h ] , (17)

where G 

p 
B [ h ] is a Poisson PGFl ( Eq. 5 ) and G 

lmb 
Y̊ [ h ] an LMB PGFl

( Eq. (11) ). 

3.3. Posterior Density 

The Bayesian update of the Poisson multi-Bernoulli PGFl given

in (17) yields the following expression (see the Appendix for the
irect derivation of the PLMB posterior PGFl): 

 

+ 
X |Z [ h ] ∝ 

∑ 

σ

ω σ · f lmb 
N [ h ] f lmb 

M 

[ h ] f lmb 
D [ h ] . (18)

he weights of the labeled multi-Bernoulli density are given

y ω σ = ω N × ω M 

× ω D , where ω σ appears to depend on the

hree weights ω N , ω M 

, and ω D . Three components are identified,

 N f 
lmb 
N 

[ h ] corresponding to the new targets resulting from the up-

ate of the Poisson component (to be given in Section 3.4 ). The

ther two components arise from the update of the LMB prior

omponent, with ω M 

f lmb 
M 

[ h ] corresponding to misdetected targets

nd ω D f 
lmb 
D 

[ h ] corresponding to detected targets (both components

ill be given in Section 3.5 ). Note that the PGFl of the posterior is

f the form: 

 

+ 
X |Z [ h ] = 

N lmb ∑ 

σ=1 

ω σ

∏ 

� ∈ L σ
( 1 − r σ,� + r σ,� 〈 f σ,� , h 〉 ) , (19)

hich corresponds to the PGFl of a LMBM density, where σ rep-

esents the σ th LMB component. Two approximations for the re-

ulting LMBM posterior parameters, which yield the LMB posterior

arameters, are given in Sections 4.4 and 4.5 . 

.4. Poisson Intensity Update 

Suppose that a set of measurements Z N is received at time step

 . Using the “standard” observation model l z ( z | · ), the PGFl of the

osterior of the Poisson birth component is given by the following

xpression (see the first of the product terms corresponding to the

irth targets in (57) in the Appendix): 

 

+ 
B|Z [ h ] ∝ 

∏ 

z j ∈ Z N 
D �(z j ) + 〈 D B l z (z j | ·) , h 〉 . (20)

sing the normalization given in (58) , the posterior Poisson PGFl

omponent can be expressed as: 

 

+ 
B|Z [ h ] ∝ ω N 

∏ 

z j ∈ Z N 

(
1 − r + 

j,N 
+ r + 

j,N 

〈
f + 

j,N 
, h 

〉)
, (21)

here 

 N = 

∏ 

z j ∈ Z N 
D �(z j ) + 〈 D B l z (z j | ·) , 1 〉 , (22)

 

+ 
j,N 

= 

〈 D B l z (z j | ·) , 1 〉 
D �(z j ) + 〈 D B l z (z j | ·) , 1 〉 , f + 

j,N 
(x ) = 

D B (x ) l z (z j | x ) 

〈 D B l z (z j | ·) , 1 〉 . (23)

q. (21) can be interpreted as a multi-Bernoulli density composed

f target hypotheses born from each measurement z j ∈ Z N . Labels

re defined as � j = (t, j) based on the time t at which they are

ssigned and the j th measurement used to assign the label. If we

ssume that measurements are distinct and produced by unique

argets, it is possible to establish a mapping between new tar-

ets identified by label � ∈ L = 

{
(t, 1) , ..., (t, m = | Z N | ) } and mea-

urements - i.e. � 1 = (t, 1) � z 1 , ..., � m 

= (t, m ) � z m 

. In implemen-

ation, the LMB density can be constructed by including the Kro-

ecker delta function δ� j 
(� ) into the measurement likelihood: 

 z (z j | x , � ) = l z (z j | x ) δ� j (� ) , where δ� j (� ) = 

{
1 � = � j , 

0 otherwise . 

(24)

Let B̊ be the labeled target set resulting directly from the Pois-

on birth set B after update, with L N = L ( ̊B ) being subsets of the

abels L corresponding to new targets. Then, the posterior MB PGFl

an be expressed as: 

 

+ 
B|Z [ h ] ∝ ω N 

∏ 

� ∈ L N 

(
1 − r + 

�,N + r + 
�,N 

〈
f + 
�,N , h 

〉)
︸ ︷︷ ︸ 

f lmb 
N 

[ h ] 

, (25)
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 N = 

∏ 

� ∈ L N 
D �(z j � ) + 〈 D B l z (z j � | ·) , 1 〉 , (26)

 

+ 
�,N = 

〈 D B l z (z j � | ·) , 1 〉 
D �(z j � ) + 〈 D B l z (z j � | ·) , 1 〉 , f + 

�,N (x ) = 

D B (x ) l z (z j � | x , � ) 

〈 D B l z (z j � | ·) , 1 〉 . 
(27) 

y construction, the labels are distinct. Mathematically, when

f mb ( ̊X ) is evaluated with a label � ∈ L , δ� j 
(� ) = 0 , thus f mb ( ̊X ) = 0 .

herefore the resulting MB density is a true LMB density. 

.5. Labeled Multi-Bernoulli Density Update 

The update of the prior LMB component in (17) corresponds to

 sum of LMB terms composed of ω M 

f lmb 
M 

[ h ] and ω D f 
lmb 
D 

[ h ] , as was

hown in Eq. (18) . The parameters of the LMB component repre-

enting misdetected targets are given by: 

 M 

= 

∏ 

� M ∈ L M 

(
1 − r ′ 

� M 
+ r ′ 

� M 

〈
(1 − P D ) f 

′ 
� M 

, 1 

〉)
, (28) 

f lmb 
M 

[ h ] = 

∏ 

� M ∈ L M 

(
1 − r + 

� M , 0 
+ r + 

� M , 0 

〈
f + 
� M , 0 

, h 

〉)
, (29)

f + 
� M , 0 

(x ) = 

(1 − P D (x )) f ′ 
� M 

(x ) 〈
(1 − P D ) f 

′ 
� M 

, 1 
〉 , r + 

� M , 0 
= 

r ′ 
� M 

〈
( 1 − P D ) f 

′ 
� M 

, 1 
〉

1 − r ′ 
� M 

+ r ′ 
� M 

〈
(1 − P D ) f 

′ 
� M 

, 1 
〉 , 

(30) 

nd the parameters of the LMB component representing detected

argets are given by: 

 D = 

∏ 

� D ∈ L D 
r ′ 
� D 
〈 P D l z (z j |·) f ′ � D , 1 〉 , (31)

f lmb 
D [ h ] = 

∏ 

� D ∈ L D 

(
1 − r + 

� D , j 
+ r + 

� D , j 

〈
f + 
� D , j 

, h 

〉)
, (32)

f + 
� D , j 

(x ) = 

P D (x ) l z (z j | x ) f ′ 
� D 

(x ) 

〈 P D l z (z j |·) f ′ � D , 1 〉 , r + 
� D , j 

= 1 , (33)

here L M = L ( ̊Y M ) represents the labels of the target hypotheses

hat were misdetected, and L D = L ( ̊Y D ) represents the labels of the

etected target hypotheses, corresponding to measurements Z D . 

.6. Target Track Propagation 

Each multi-Bernoulli component in the mixture of (19) can be

nterpreted as a possible configuration of the multi-target state.

ach target hypothesis is identified with a unique label which has

he following properties P1 and P2 : 

P1 : Within a multi-Bernoulli component, all labels are unique. 

P2 : A track identity is maintained between different multi-

Bernoulli components and different time-steps. 

Given the observation model described in Section 2.3 , since

ach target can generate at most one observation at a time, if | Z |

bservations correspond to targets (they do not correspond to clut-

er), then | Z | different targets are assumed to have generated those

bservations. The proposed algorithm identifies an observation as

potentially) coming from a target on two occasions: 1) When a

ew MB component is created from the birth model or; 2) When

he state of an existing LMB component is corrected. 

roposition 1. A target identified by the pair ( t, j ), where j is the in-

ex of the j-th measurement used to initialize the component at time-

tep t (using Eq. (24) ), has properties P1 and P2 . 
roof of Proposition 1. Property P2 can be guaranteed since the

roposed definition of the identity of tracks makes reference to

he time and measurement index in which the track was created.

herefore the identity of a track is always maintained. 

By induction, at time-step 1, when no prior target existed, the

GFl after the filter is executed is of the form of Eq. (21) , identi-

ying every created target with the pair (t = 1 , j) , which has prop-

rty P1 . Assuming that properties P1 and P2 are maintained af-

er T iterations of the filter, when a single iteration of the filter is

hen applied, multiple Bernoulli components are created. Note that,

rom Eq. (18) , the different com ponents of the mixture are cre-

ted using disjoint subsets of prior components and disjoint sub-

ets of the newly received measurements to either update prior

omponents or create new components. Since these partitions are

isjoint, a prior component cannot be repeated within a mixture

omponent. Taking into consideration the newly created targets,

hich differ in the time t component, property P1 is maintained. 

Since the track identification makes reference to the time the

rack was initialized, they maintain track identity between time-

teps and in different com ponents of the mixture, thus having

roperty P2 . �

. Histogram Poisson Labeled Multi-Bernoulli (HPLMB) Filter 

mplementation 

In this work, in order to achieve faster computing times, a

ingle LMB density is used as an approximation of the posterior

MBM density. 

.1. Weight Simplification 

In order to reduce the number of weight components, ω N̄ is

efined as 

 N̄ = 

∏ 

z ∈ Z D 
D �(z j ) + 〈 D B P D l z (z | ·) , 1 〉 . (34)

he simplification of weight ω σ is then obtained by multiplying

nd dividing it by ω N̄ : 

 σ = 

(
ω N × ω N̄ 

)︸ ︷︷ ︸ 
constant ∀ σ

×ω M 

×
(

ω D 

ω N̄ 

)
︸ ︷︷ ︸ 

ω ′ 
D 

, ∝ ω M 

× ω 

′ 
D , 

= 

∏ 

� M ∈ Y M 
( 1 − r � M + r � M 〈 (1 − P D ) f � M , 1 〉 ) 

×
∏ 

� D ∈ Y D 

r � D 
〈
P D l z (z j 

� D 
| ·) f � D , 1 

〉
D �(z j 

� D 
) + 〈 D B l z (z j 

� D 
| ·) , 1 〉 , (35) 

here the term ω N × ω N̄ = [ D �(z ) + 〈 D B P D l z (z | ·) , 1 〉 ] Z is constant

or any partition set. Therefore it can be omitted in the weight cal-

ulation. The term ω 

′ 
D can be considered to represent the detected

arget likelihood. 

.2. Ranked Assignment 

The posterior density given by its PGFl in Eq. (19) , with weight

 σ given by Eq. (35) , is composed of all possible partitions σ . The

artition σ is equivalent to an assignment of the matrix C , where

he assignment is defined as the set of pairs ( i, j ) for all rows i ,

uch that there is a bijective function L (·) , in which � = L (i ) and

olumns j , which represent the target-measurement assignment or

isdetections. C is given by 

 = 

(
C D C M 

)
, (36) 

here, C D is an n × m matrix representing the cost of associat-

ng m = | Z| measurements to n = | Y | existing targets (the second
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product term in Eq. (35) ). C M 

is an n × n diagonal matrix repre-

senting the cost of misdetecting a known target (the first product

term in Eq. (35) ). Thus, the specific elements ( i, j ) in each of these

matrices are: 

C D [ i, j] = 

r i 
〈
P D l z (z j | ·) f i , 1 

〉
D �(z j ) + 〈 D B l z (z j | ·) , 1 〉 , (37)

C M 

[ i, j] = 

{
1 − r i + r i 〈 (1 − P D ) f i , 1 〉 i = j 
0 otherwise 

. (38)

Given an assignment σ of the C matrix at the current time step,

the weight can be obtained as: 

ω σ = 

∏ 

(i, j) ∈ σ
C [ i, j] . (39)

It should be noted that, since C M 

is a diagonal matrix, the only

possible valid associations of a row i within C M 

is a single value

located on its diagonal, which corresponds to the target being mis-

detected. Note also that all measurements j with no assignment in

σ produce a new target with parameters ( r, f ) given by Eq. (27) .

Thus, the resulting LMB component will model n + m possible tar-

gets (all existing targets plus all possible new targets). 

Due to the intractability of maintaining the huge number of

posterior components, only a limited number of assignments with

the highest weights ω σ from C are obtained. State of the art meth-

ods to find the highest weights ω σ , and therefore the associated

assignment σ , are Murty’s algorithm [12] , which solves the k -best

assignment problem for the cost matrix − log (C ) , and Gibbs sam-

pling used in [13] that samples the assignments σ from the poste-

rior distribution. In this article, the Gibbs sampling method is used

because of its linear complexity compared to the cubic complex-

ity of Murty’s algorithm with respect to the number of measure-

ments. To further improve the computational efficiency however,

a histogram posterior approximation is also introduced. First, the

Gibbs sampling process is explained in Section 4.3 followed by the

classical posterior approximation in Section 4.4 , which yields the

PLMB filter, and finally the proposed histogram posterior approxi-

mation is given in Section 4.5 , yielding the HPLMB filter. 

4.3. Gibbs Sampling Procedure for the Update Process 

Following [13] , it is possible to define a Markov Chain to sample

associations from the C matrix as follows: 

ω σ ∝ 1 
(σ ) 
n ∏ 

i =1 

ηi (σi ) , (40)

where, in general, an indicator function 1 Y ( X ) is defined by: 

1 Y (X ) = 

{
1 X ⊆ Y, 

0 otherwise , 
and ηi (σi ) = 

{
C M 

[ i, i ] σi = 0 

C D [ i, σi ] otherwise , 

(41)

where σ is a realization of f lmb and 
 is the set of positive 1-1

vectors in {0: m } n . 

The number of repeated samples produced by the Gibbs sam-

pler is proportional to the weight ω σ and Vo et al. proved that it

converges exponentially, guaranteeing that after only a few itera-

tions, the sampled MB components will be those with the highest

weights [13] . The Gibbs sampler must be initialized with a valid

realization σ (0) . Two simple valid realizations for the initialization

σ (0) could be: 

1. All targets correspond to misdetections and all measurements

to new targets, or 

2. A one-time solution to the optimal ranked assignment ex-

plained in Section 4.2 , which could be obtained with the Hun-
garian algorithm [25] . c  
The Gibbs sampling procedure for the PLMB filter is similar to

hat used in the LMB and δ-GLMB filters. The difference is that 
,

or the LMB and δ-GLMB filters, is a set of 1-1 vectors in {−1 :

 } n and represented by separate weights 1 − r and r 〈 (1 − P D ) f, 1 〉 .
owever in the PLMB filter, 
 is a set of 1-1 vectors in {0: m } n ,

ecause the non-surviving and misdetected target likelihoods are

ombined and represented by a single weight ( Eq. (38) ). Gibbs

ampling is explained in detail in [13] . 

.4. Classical Posterior Approximation 

Iterating the Gibbs sampler S times yields S possible assign-

ents σ ( s ) , 1 ≤ s ≤ S . Many of these assignments will be repeated.

fter the removal of the repeated assignments, N lmb unique as-

ignments remain. The posterior labeled Multi-Bernoulli Mixture

MBM) is then represented by the mixture weights in Eq. (39) and

he set {( r σ , � , f σ , � )} corresponding to each assignment σ . Finally the

pproximated LMB density is represented by: 

 � = 

N lmb ∑ 

σ=1 

ω σ 1 L σ (� ) r σ,� and f � = 

N lmb ∑ 

σ=1 

ω σ 1 L σ (� ) f σ,� . (42)

ote that ω σ 1 L σ (� ) = 0 if � ∈ L σ , where L σ are the target labels of

artition σ . 

.5. Histogram Posterior Approximation 

The proposed histogram based procedure uses all the sampled

B components, while avoiding the removal of components, which

s necessary in the traditional procedure given in Section 4.4 . It

roceeds by sampling possible assignments from Eq. (40) and then

sing these assignments, it calculates the expected value of each

ypothesized target’s probability of existence and spatial distribu-

ion parameters. 

To achieve this, the creation of a histogram of the Gibbs sam-

les σ ( s ) is useful, since the number of times an assignment σ is

ampled is proportional to the weight of its posterior MB compo-

ent. The 2D histogram’s elements ( i, j ), where i represents the i th

rior target hypothesis and j represents the j th measurement, are

iven by H i,j , which are defined as the number of times that ele-

ent ( i, j ) was sampled. Note that j = 0 corresponds to a misde-

ected target hypothesis. 

Table 1 shows an example of three target hypotheses and four

easurements and how each iteration of the Gibbs sampler (left

ables) increases the histogram values H ( i, j ) (center tables). When

n element ( i, j ) ∈ σ is sampled, a cross ( ×) is shown. The left

ables show sampled assignments and the center tables show the

orresponding histograms at that iteration of the Gibbs sampler.

he rows beginning with β represent measurements assigned to

ew targets. Note that when a sample contains an element ( i,

 ) ∈ σ ( × in the left tables), the corresponding element ( i, j ) in H

center tables) is incremented by one - i.e. H(i, j)+ = 1 , ∀ (i, j) ∈
(s ) . The first row shows iteration s = 0 , where no samples (as-

ignments) yet exist, thus the histogram values are all 0. The sec-

nd row shows iteration s = 1 , where the sample (assignment)
(1) is initialized with all target hypotheses as misdetections and

ll measurements as birth target hypotheses (row β), which cor-

esponds to a unit increment in each corresponding cell in the

istogram table H . Finally, after s = S iterations (Gibbs samples),

he normalized histogram (or weight) h i, j = 

H(i, j) 
S can be calculated

lower right table). In the example of Table 1 , S = 5 . 

Hence, the value of each element ( i, j ) of h i,j , is proportional

o the importance of the corresponding single target hypothesis.

hen the posterior LMB density component for target � = L (i ) is

 weighted sum of all single-target densities over the i -th row of

 i,j . It can be seen that all columns and all rows sum to unity, ex-

ept column ∅ , because there is no restriction on the number of
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Table 1 

Example procedure for calculating the histogram for the HPLMB Filter. 
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argets which can be misdetected, and row β , because there is no

estriction on the number of measurements that can be assigned

o birth targets or clutter. However a target must be assigned to

ither a measurement or a misdetection and a measurement must

e assigned to either a target, birth target, or clutter. 

Note that by definition h i, 0 = 1 −∑ m 

j=1 h i, j , which represents

he proportion of samples for which target � was misdetected, or

quivalently, the proportion of assignments using entry i, n + i of

he cost matrix C . Similarly, h 0 , j = 1 −∑ n 
i =1 h i, j , which represents

he proportion of samples in which measurement j was not asso-

iated with any target. 

In the posterior MBM distribution, when a target is assigned

o a measurement, the probability of existence is r = 1 , and when

he target is misdetected its probability of existence is given by

q. (30) . Therefore, for the PLMB filter, the expected probability of

xistence for target � = L (i ) is calculated as the weighted average

sing the weights h i,j as: 

 

+ 
� = 

m ∑ 

j=0 

h i, j r 
+ 
�, j 

= h i, 0 

r ′ � 〈 (1 − P D ) f 
′ 
� , 1 〉 

1 − r ′ � + r ′ � 〈 (1 − P D ) f 
′ 
� , 1 〉 + 

( 

m ∑ 

j=1 

h i, j 

) 

, 
= h i, 0 

r ′ � 〈 (1 − P D ) f 
′ 
� , 1 〉 

1 − r ′ � + r ′ � 〈 (1 − P D ) f 
′ 
� , 1 〉 + ( 1 − h i, 0 ) , 

= 1 −
h i, 0 

(
1 − r ′ � 

)
1 − r ′ � + r ′ � 〈 (1 − P D ) f 

′ 
� , 1 〉 . (43) 

Similarly, when target i is assigned to measurement j , its up-

ated spatial distribution is given by Eq. (33) , while when the

arget is misdetected its updated spatial distribution is given by

q. (30) . Again, the expected spatial distribution is calculated as

he weighted average of these expressions: 

f + � (x ) = h i, 0 

(1 − P D (x )) f ′ � (x ) 

〈 (1 − P D ) f 
′ 
� , 1 〉 + 

m ∑ 

j=1 

h i, j 

P D (x ) l z (z j | x ) f ′ � (x ) 〈
P D l z (z j | ·) f ′ � , 1 

〉 . (44)

Finally, new targets arise from measurements that were not as-

ociated with any targets, captured by h 0, j . From Eq. (23) , for each

easurement, a new Bernoulli component with label � = (t, j) , is

reated with probability of existence and spatial distribution equal
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Fig. 1. Ground truth trajectories, starting at positions marked with the symbol “◦”, 

and ending at positions marked with symbol “ × ”. The gray dots show the super- 

imposed measurements (including clutter) acquired during the 100 time steps. 
to: 

r + � = h 0 , j 

〈 D B l z (z j | ·) , 1 〉 
D �(z ) + 〈 D B l z (z j | ·) , 1 〉 , f + � (x ) = 

D B (x ) l z (z j | x ) 

〈 D B l z (z j | ·) , 1 〉 , (45)

respectively. This posterior approximation results in the HPLMB fil-

ter to be demonstrated in the results. 

4.6. Discussion 

It was shown that each component of the mixture is a PGFl of

a LMB distribution, thus the full mixture and its truncated versions

are both mixtures of labeled multi-Bernoulli PGFl. 

The methodology used in the LMB filter [15] needs to use the

Gibbs sampler S times, and the resulting posterior labeled MBM

is composed of repeated LMB components that must be identi-

fied and removed, obtaining a total of N 

lmb ≤ S LMB components.

The proposed histogram based procedure uses all the sampled LMB

components, circumventing the necessity of identifying and re-

moving components, thus providing an efficient implementation

method. 

It can be seen that the probability of existence r + 
�, j 

in the first

row of (43) is equivalent to the LMB updated probability of exis-

tence in [15, Eq. 19] , except for the term r + 
�, 0 

. 

5. Experimental Results 

In this section simulated results using the proposed Gibbs sam-

pled PLMB ( Section 4.4 ) and HPLMB ( Section 4.5 ) filters are shown

and comparisons are made with the Gibbs sampled versions of

the LMB [15] , δ-GLMB [13,26] , LMBM [24] , PMBM [20] filters, as

well as an LBP implementation of the PLMB filter. This is car-

ried out in a manner similar to [27] , except that in [27] , sev-

eral Murty’s algorithm based MB filters were compared. The re-

sults here are compared using the Optimal Sub-Pattern Assignment

(OSPA) [28] and OSPA 

(2) [29] metrics and the Multi Object Track-

ing Precision (MOTP) and Multi Object Tracking Accuracy (MOTA)

CLEAR MOT metrics [30] . Both the OSPA and OSPA 

(2) metrics mea-

sure the precision and cardinality of two sets of targets (ground

truth and estimates in this case). The MOTP metric gives the es-

timated target location errors, when correctly detected, and the

MOTA metric gives the accuracy in tracking targets, taking into ac-

count misdetections, false alarms and label switching. 

5.1. Multi-Target State Extraction 

5.1.1. State Extraction for the LMB, PLMB, LBP-PLMB & HPLMB Filters 

The final position estimates of the LMB, PLMB, LBP-PLMB and

HPLMB filters are obtained via Maximum A Posteriori (MAP) esti-

mation using the following procedure: 1) The cardinality distribu-

tion ρ( n ) of the LMB component of the filters is calculated; 2) The

most probable cardinality is chosen as the number of targets N ρ ;

3) The target hypotheses f � with the highest N ρ probabilities of ex-

istence are selected as targets; 4) Individual target hypotheses are

modeled as a Gaussian mixture f � (x ) = 

∑ N 
g 
� 

ι=1 
ω �,ιN (x ; m �,ι, ��,ι) .

For each target f � , � ∈ L , the final target estimate is selected as the

mean value of the Gaussian distribution with the highest weight,

i.e., ˆ x � = m �, argmax (ω �,ι ) 
. 

5.1.2. State Extraction for the LMBM and PMBM Filters 

For final state extraction, the MBM component of the PMBM

density is converted to a MB density as shown in Eqs. (42) . In the

same manner, the LMBM density is reduced to an LMB density, and

the same multi-target state extraction method used for the LMB

filter is adopted. 
.1.3. State Extraction for the δ-GLMB Filter 

The final target estimates in the δ-GLMB filter are extracted as

ollows: 1) The cardinality distribution ρ( n ) of the MB component

f the filters is calculated; 2) The most probable cardinality is cho-

en as the number of targets N ρ ; 3) All the MB components with

ardinality N ρ are selected; 4) The MB component with the high-

st weight is selected; 5) For each target f � , � ∈ L , its final estimate

s given by ˆ x � = m �, argmax (ω �,ι ) 
. 

.2. Simulated Results 

As a proof of concept, Fig. 1 shows a simulated scenario com-

osed of 20 independent tracks, which initiated and terminated

t different times. The time steps for the appearance of new tar-

ets are t = 1 (5 targets), t = 20 (9 targets), t = 40 , 60 , 80 (2 targets

ach). 

The states of the moving targets are composed of their posi-

ions and velocities in 2-dimensional space, x t = [ x t , y t , ˙ x t , ˙ y t ] . A

ingle-target state for target � is modeled by a Gaussian mixture

ith N 

g 
� 

components, f � (x ) = 

∑ N 
g 
� 

ι=1 
ω �,ιN (x ; m �,ι, ��,ι) . A constant

elocity model is assumed as the motion model and the observa-

ion model measures the Cartesian position of targets in the en-

ironment. Both models can be written in linear form using the

ollowing motion ( F ) and observation ( H ) matrices: 

 = 

⎡ 

⎢ ⎣ 

1 0 �t 0 

0 1 0 �t 
0 0 1 0 

0 0 0 1 

⎤ 

⎥ ⎦ 

, H = 

[
1 0 0 0 

0 1 0 0 

]
, (46)

here �t = 1 [s] is the sampling time, and the covariance matri-

es of the motion noise Q and the measurement noise R are as

ollows: 

 = 5 . 0 2 q q 

T , R = 10 . 0 2 I 2 ×2 , q 

T = 

[
0 . 5�t 2 0 �t 0 

0 0 . 5�t 2 0 �t 

]
, 

(47)

ith I being the identity matrix. 

All filters have the following parameters: Probability of sur-

ival: P S = 0 . 99 ; Probability of detection: P D = 0 . 98 ; Uniformly dis-

ributed clutter with average rate λc = 30 per scan; The region of
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Table 2 

Filter parameters used in the experiments. 

Parameter Applicable to filters: 

Number of iterations of Gibbs sampler S = 1 , 0 0 0 All, except LBP-PLMB 

Limit on number of posterior components N mb ≤ 1 , 0 0 0 δ-GLMB, LMBM & PMBM 

Pruning threshold for components ω k ≥ 10 −15 δ-GLMB, LMBM & PMBM 

Maximum number of tracks N b ≤ 100 LMB, PLMB, LBP-PLMB & HPLMB 

Threshold to prune tracks r � ≥ 10 −3 All, except δ-GLMB 

Max. no. Gaussian components in each track N g � ≤ 10 All 

Pruning threshold for Gaussian comps. per track ω �,ι ≥ 10 −5 All 

Merging threshold for Gaussian comps. per track 4 All 
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l  
nterest is between the bounds [ −10 0 0 , 10 0 0][ m ] for the x and y

xes. 

To demonstrate the possible advantages and disadvantages of

he Poisson and MB birth models, the simulations are executed

ith three different birth configurations: 

1. A single Gaussian in the whole interest space. In the case of the

filters with LMB birth distributions, this can produce at most

one new track per time step. The single Gaussian distribution

that covers the whole region of interest is given by p (1) 
B 

(x ) =
N (x ; 0 4 ×1 , �) , where � = diag ([707 2 , 707 2 , 10 2 , 10 2 ]) . The rea-

son for using this birth configuration is to show that using a

Poisson distribution for the birth process enables the PMBM,

PLMB and HPLMB filters to converge to the correct target state

faster than the LMB and δ-GLMB filters when there are insuf-

ficient labeled Gaussian components comprising the LMB birth

density. 

2. An array of 5 × 5 Gaussian distributions in the interest space.

This is equivalent to 25 labels in the case of LMB birth distribu-

tions (for the LMB and δ-GLMB filters), and a sum of Gaussians

in the case of the Poisson birth distributions (for the PMBM,

PLMB and HPLMB filters). The Gaussian distributions that cover

the whole region of interest are given by p (i ) 
B 

(x ) = N (x ; m i , �) ,

where � = diag ([235 . 5 2 , 235 . 5 2 , 10 2 , 10 2 ]) and { m 1 , ..., m 25 } =
g × g, where g = [ −6 6 6 , −333 , 0 , 333 , 6 6 6] T , all units being [m].

Under this birth configuration, a similar performance of all the

tested filters is expected, since the Gaussian distributions cover

the whole space, and the number of new targets frame by

frame in the experiments never exceeds 25. 

3. To provide a birth configuration that favors the use of an LMB

birth model, 20 Gaussian distributions p (i ) 
B 

(x ) = N (x ; m i , �i )

are located at the positions where the ground truth targets ini-

tially appeared, i.e. the position components of m i are located

at the circles “◦” in Fig. 1 . The covariance matrix is diagonal

with standard deviations of 10[m] for positions and 10[ ms −1 ]

for the velocities. Therefore, �i = diag ([10 2 , 10 2 , 10 2 , 10 2 ]) ∀ i ∈
{ 1 , ..., 20 } . Under this artificial 4 configuration it is expected that

the δ-GLMB and LMB filters should perform better than with

birth configurations 1 and 2. 

For all the three configurations, the Poisson birth intensity is

iven by D B (x ) = λB 

∑ N B 
i =1 

1 
N B 

p (i ) 
B 

(x ) , where the average target birth

ate λB = 0 . 15 per scan, and N B is the number of corresponding

aussian distributions. The single target state of the LMB distribu-

ion is given by p (i ) 
B 

(x , � ) = p (i ) 
B 

(x ) δ� i 
(� ) with probability of exis-

ence r B = 0 . 15 for all birth targets, where for label � i = (t, i ) , t is

he time step and i is the index of the Gaussian distribution. Other

arameters used in the filters are given in Table 2 . 

Although requiring a significant increase in computational time,

 version of the δ-GLMB filter, referred to as δ-GLMB 2 , is also

ested with parameters: Number of iterations of the Gibbs sampler:

 = 10 , 0 0 0 ; Limit on number of posterior components: N 

mb ≤
4 Since the ground truth initial location of the targets would not usually be 

nown. 

t  

G  

m  

s  
0 0 , 0 0 0 . This is to demonstrate that higher accuracy results are

ossible with the δ-GLMB filter, when the truncation of the pos-

erior density is reduced, at the expense of greatly increased com-

utational time. In the results, the processing time in this case is

ncreased on average by a factor of 3 (see Fig. 5 ). 

To account for the randomness of the system and measurement

oises and the Gibbs sampling procedure, ten different measure-

ent sets were randomly generated, and the filters where run ten

imes per measurement configuration. The results are the mean

and standard deviation) of these 100 tests. 

As a proof of concept, Fig. 2 a shows the resulting trajectories

f one realization for the LMB filter ( 2 a,c,e) and the HPLMB filter

 2 b,d,f), for birth configurations 1 to 3, respectively. In the Figure,

ifferent colors represent unique labels. In a qualitative sense, it

an be seen that both the LMB and HPLMB filters show similar

erformances in terms of both label and trajectory estimation. 

Comparing birth configuration 1 with 2 and 3, we observe that

he LMB filter requires more time to estimate targets, particularly

nder birth configuration 1 (note the increased distances between

he ◦ and the trajectory initializations). However this does not oc-

ur with the HPLMB filter, which is able to initiate target tracks

ery close to the beginning of their true trajectories under all

hree birth models. The performance of each filter under each birth

cenario can also be quantified in terms of track deviation from

round truth. Therefore, Fig. 3 shows the OSPA and OSPA 

(2) met-

ics (cut-off c = 100[ m ] , power p = 2 and for OSPA 

(2) , the window

 = 10[ time steps ] ) and Fig. 4 shows the CLEAR MOT metrics for all

irth configurations. 

.3. Filter Processing Times 

Fig. 5 shows the average processing time of the filters for the

hree birth configurations. It is important to note that all filters

ere implemented in MATLAB, with the implementations of the

MB and δ-GLMB filters taken from [26] . The computational hard-

are characteristics are: Operating system Ubuntu 18.04; Processor

ntel Core i7-4790; Memory 7.7 GB. 

.4. Analysis of the Results 

It is important to note that, as expected, the LMB filter is faster

han the δ-GLMB filter, and similarly the PLMB and HPLMB fil-

ers are faster than PMBM filter under all three birth scenarios.

his is because the LMB, PLMB and HPLMB filters are single MB-

omponent filters, while the δ-GLMB and PMBM filters are based

n mixtures of MB components. 

Birth Configuration 1: As expected, under birth configuration 1,

he PLMB, HPLMB, LBP-PLMB and PMBM filters yield the best OSPA

nd OSPA 

(2) results. The Poisson birth based algorithms perform

etter than their LMB based counterparts because there is less de-

ay in the number of time steps required to initialize new multiple

racks. In contrast, when the birth model is composed of a single

aussian component, the LMB, LMBM and δ-GLMB filters can at

ost create one new target per time step. For example, at time

tep 20 when 9 new targets appear, the rate of reduction in the
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Fig. 2. Estimated trajectories for all the different tested birth models. 
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OSPA metric ( Fig. 3 ) is significantly slower than that for the Pois-

son birth based filters. It should also be noted however that, for

the LMB and δ-GLMB filters, since this birth configuration results

in at most one new target per time step, they have lower com-

putational times than the PLMB, HPLMB filters and PMBM filters,
espectively. This is because the cost matrices, in the LMB and

-GLMB filters, generate only one new hypothesis per time step.

his is significantly less than the number generated in the PLMB,

PLMB and PMBM filters, in which one new hypothesis is cre-

ted by each measurement per time step (i.e. more than 30 clutter
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Fig. 3. OSPA (left) and OSPA (2) (right) metrics for all three birth configurations (1 to 3 from top to bottom respectively). 
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h  
nd true target based measurements per time step in this simula-

ion). The new target hypotheses created as a result of clutter by

he PLMB, HPLMB and PMBM filters will be updated but discarded

apidly because their probabilities of existence quickly reduce to a

alue lower than a threshold (“Threshold to prune tracks” in the

ist of parameters in Table 2 ). 

Birth Configuration 2: In birth configuration 2, the LMB, LMBM

nd δ-GLMB filters improved with respect to configuration 1. The

MB filter achieved the same performance as the PMBM, PLMB,

BP-PLMB and HPLMB filters, and the MOTA metric value in-

reased by 7% compared to configuration 1, which gives an in-

ication of the fraction of total targets being tracked. This im-

rovement is expected because the LMB filter uses 25 compo-

ents for the birth process. This however makes the filter slower

han under birth configuration 1. The PMBM, PLMB, LBP-PLMB

nd HPLMB filters performed similarly under a single Gaussian

irth or with 25 Gaussian birth components covering the whole

pace. 
o  
The performance of the δ-GLMB filter under birth configura-

ion 2 increased by 2% over that of birth configuration 1, with re-

pect to the MOTA metric, however its performance is still below

hat of the other filters, by approximately 9%. A similar improve-

ent is apparent in terms of the OSPA metric values. Comparing

he performance of the δ-GLMB filter and δ-GLMB 2 filter (which

ses more MB components), clear improvements in terms of the

SPA, MOTA and MOTP metrics are evident in Figs. 3 and 4 . Note

hat to obtain comparable OSPA, OSPA 

(2) , MOTA and MOTP perfor-

ance values for the δ-GLMB filter and all the other tested filters,

he higher number of MB components used in the δ-GLMB 2 filter

ere necessary. This comes at the expense of a significant increase

n processing time, as shown in Fig. 5 . 

Birth Configuration 3: In birth configuration 3, where the birth

aussians are artificially located in the positions at which the tar-

ets initially appear, all filters yield a more similar performance

han under birth configurations 1 and 2 as expected. Surprisingly

owever, under this birth configuration, although the performance

f each filter with respect to the OSPA metric appears similar, the
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Fig. 4. CLEAR MOT metrics (MOTP and MOTA) for the three birth configurations. The graphs show the average (red stars) ± one standard deviation (black lines) of the 100 

tests performed by each filter. 

Fig. 5. Average processing time for the three birth configurations. 

 

 

 

 

 

 

 

t  

t  

t  

E  

i

 

t  

l  

a  

a  
OSPA 

(2) and CLEAR MOTA metrics show higher performance of the

Poisson birth model based filters. 

5.4.1. Comparison of the different implementations of the PLMB Filter 

The PLMB and HPLMB filters show very similar performances

under all birth configurations. However, as shown in Fig. 5 the

HPLMB filter is slightly faster than the PLMB filter due to the sim-

pler implementation procedure of the HPLMB filter. This is because

the HPLMB posterior is constructed directly from the histogram

of Gibbs samples in Eqs. (43) to (45) . However in the PLMB fil-
er, the construction of the posterior requires each Gibbs sample

o be stored, followed by the removal of repeated samples, before

he resulting samples can be used to form the posterior given by

qs. (42) . This is at the expense of a very slight performance loss

n terms of the MOTA metric. 

Note that the LBP-PLMB filter is faster and more accurate than

he Gibbs sampling based PLMB filter. It is faster because it has

inear complexity in the number of measurements and targets,

nd needs fewer iterations to converge to the solution. It is more

ccurate because it is an optimization-based method that con-
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Fig. 6. CLEAR MOT metric values for all tested filters under birth configuration 2 (composed of an equally spaced Gaussian mixture), based on the following clutter rates: 

10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 false alarms per scan. The left figure shows the MOTA metric, and the right figure the MOTP metric. 
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erges to the importance value of the contribution of each prior-

ypothesis and measurement association h i,j . In contrast, Gibbs

ased sampling methods, truncate the posterior density. Gibbs

ampling based target-measurement assignment methods however

an be used in the PMBM, δ-GLMB, LMBM and other similar filters

ased on mixtures of MB densities. 

.4.2. Performance under different clutter rates 

An experiment to measure the performance of the filters un-

er different clutter rates is shown in Fig. 6 , in terms of the CLEAR

OT metric. This is based on birth configuration 2, the configura-

ion expected to result in the most equal performance of all filters.

As expected, all filters achieve a lower performance at higher

lutter rates. In general, the δ-GLMB and LMBM filters perform

orse than the other filters, all of which exhibit similar results.

he proposed PLMB based filters (PLMB, LBP-PLMB and HPLMB fil-

ers) as well as the PMBM filter all create a new target hypothe-

es per measurement that could intuitively give rise to false track

ypotheses. However if, over time, there are no new measure-

ents to substantiate these hypotheses, they are discarded during

he pruning process. Therefore, target hypotheses born from clutter

easurements are rarely selected as target tracks by the state ex-

raction method, which calculates the most likely cardinality N cd of

he posterior density and selects the N cd target tracks with higher

robabilities of existence. 

. Conclusions 

This article introduced a sample based PLMB filter. The LMB

ensity naturally results when applying Bayes theorem to a Pois-

on prior. The only assumption necessary when defining a Poisson

rior is the expected number of targets in the region of interest.

he PLMB filter is also intuitive since it models the existence prob-

bility of targets in a single MB density. It was also demonstrated

hat the PLMB filter approximates the PMBM filter in a manner

nalogous to the way the LMB filter approximates the δ-GLMB fil-

er maintaining the same advantages and disadvantages. It was

lso shown that the PLMB filter is capable of tracking targets as

ccurately as the LMB filter, with comparable computational com-

lexity, when the PHD of the LMB birth model is equal to that of

he Poisson birth model. The PLMB filter demonstrates a superior

erformance over its LMB filter counterpart, when the birth model

ardinality hypothesis is less than the number of measurements.

he PLMB filter has a more consistent performance under differ-

nt birth distribution configurations compared to the LMB filter. A

istogram based Gibbs sampling method was also proposed, that

irectly calculates the posterior PLMB distribution. Using the Gibbs

ampling approach, the weight based PLMB filter requires the re-

oval of repeated sampled MB components, whereas the HPLMB

lter does not. 
Results show that the LBP method performs faster and with

igher accuracy than the Gibbs-based implementation of the pro-

osed PLMB filter since the Gibbs-based target-measurement as-

ignment truncates the posterior density whereas the LBP algo-

ithm iterates until to an acceptable error is reached. In contrast to

he LBP approach, the histogram-Gibbs sampling approach demon-

trated in the HPLMB filter, can also be implemented in other MB-

ased filters and it is of interest to apply it in the δ-GLMB, LMBM,

MBM and LMB filters. 
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ppendix A 

erivation of Equation (18). The PGFl of the prior distribution

after prediction), is of the form: 

 

+ 
X |Z [ h ] = e 〈 D B (x ) ,h (x ) −1 〉 ︸ ︷︷ ︸ 

G B|Z [ h ] 

×
∏ 

� ∈ L 
1 − r ′ � + r ′ � 

〈
f ′ � (x ) , h (x ) 

〉
, ︸ ︷︷ ︸ 

G ′ Y|Z [ h ] 

(48)

here Y is the set of existing targets, B the set of new targets, and

 B|Z [ h ] and G 

′ 
Y|Z [ h ] their respective PGFl. 

The Poisson distribution models new targets such that no de-

ection probability, P D , is needed (equivalent to setting P D = 1 ). By

sing the standard observation model, the joint PGFl is defined as

ollows: 

 [ g, h ] = G �[ g] G B|Z [ h 〈 l z (·|·) , g〉 ] G 

′ 
Y|Z [ h (1 − P D + P D 〈 l z (·|·) , g〉 )] 

= e 〈 D �,g−1 〉 e 〈 D B ,h 〈 l z (·|·) ,g〉−1 〉 

×
∏ 

� ∈ L 
1 − r ′ � + r ′ � 〈 (1 − P D + P D 〈 l z (·|·) , g〉 ) f � ′ , h 〉 . (49) 

ifferentiating with respect to Z gives: 

δ

δZ 
F [ g, h ] = 

δ

δZ 

{ 

e 〈 D �,g−1 〉 + 〈 D B ,h 〈 l z (·|·) ,g〉−1 〉 
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×
∏ 

� ∈ L 
1 − r ′ � + r ′ � 〈 (1 − P D + P D 〈 l z (·|·) , g〉 ) f ′ � , h 〉 

} 

. (50)

This can be evaluated using the product rule for set derivatives

[8, p.395] : 

δ

δX 

n ∏ 

i 

F i = 

∑ 

X 1 � ···� X n = X 

n ∏ 

i 

δ

δX i 

F i , (51)

resulting in: 

δ

δZ 
F [ g, h ] = 

∑ 

Z 0 � ···� Z n = Z 

δ

δZ 0 

{
e 〈 D �,g−1 〉 + 〈 D B ,h 〈 l z (·|·) ,g〉−1 〉 }

×
∏ 

� ∈ L 

δ

δZ j � 

{
1 − r ′ � + r ′ � 〈 (1 − P D + P D 〈 l z (·|·) , g〉 ) f ′ � , h 〉 }, 

(52)

with Z 0 � Z 1 � · · · � Z n being a partition of the observation set Z . 

The derivative of the exponential term can be calculated as fol-

lows: 

δ

δ{ z 1 , . . . , z m 

0 } { . . . } = D �(z 1 ) + 〈 D B , hl z (z 1 |·) − 1 〉 × δ

δ{ z 2 , . . . , z m 

0 } { . . . } 
. 
. 
. 

= e 〈 D �,g−1 〉 + 〈 D B ,h 〈 l z (·|·) ,g〉−1 〉 

×
∏ 

z ∈ Z 0 
D �(z ) + 〈 D B , hl z (z |·) − 1 〉 . (53)

Using the fact that the derivative of a linear operator has non-

zero values only for the empty set and a singleton (see [8, p.395] ),

sets Z 1 to Z n can have zero or one element only. Thus, it is possi-

ble to identify the derivatives with respect to singletons and with

respect to the empty set: 

∏ 

� ∈ L 

δ

δZ j 
{ . . . } = 

∏ 

� D 

δ

δ
{

z j 
}{1 − r ′ 

� D 
+ r ′ 

� D 
〈 (1 − P D + P D 〈 l z (·|·) , g〉 ) f ′ � D , h 〉 

}
×
∏ 

� M 

δ

δ∅ 
{

1 − r ′ 
� M 

+ r ′ 
� M 

〈 (1 − P D + P D 〈 l z (·|·) , g〉 ) f ′ � M , h 〉 
}

= 

∏ 

� D 

r ′ 
� D 

〈 P D l z (z j |·) f ′ � D , h 〉 ×
∏ 

� M 

1 − r ′ 
� M 

+ r ′ 
� M 

〈 (1 − P D + P D 〈 l z (·|·) , g〉 ) f ′ � M , h 〉 , (54)

where � D ∈ L D are subsets of the label set L that are paired with

measurements, whereas � M ∈ L M are subsets of L that are not as-

signed any measurement (misdetected). This yields F [ g, h ] as fol-

lows: 

δ

δZ 
F [ g, h ] = e 〈 D �,g−1 〉 + 〈 D B ,h 〈 l z (·|·) ,g〉−1 〉 

×
∑ 

σ

( ∏ 

z ∈ Z 0 
D �(z ) + 〈 D B l z (z |·) , h 〉 

) 

×
( ∏ 

� D ∈ L D 
r ′ 
� D 
〈 P D l z (z j |·) f ′ � D , h 〉 

) 

×
( ∏ 

� M ∈ L M 
1 − r ′ 

� M 
+ r ′ 

� M 
〈 (1 − P D + P D 〈 l z (·|·) , g〉 ) f ′ � M , h 〉 

)
.

(55)
valuating at g = 0 results in: 

δ

δZ 
F [ g, h ] 

∣∣∣∣
g=0 

= e 〈 D �, −1 〉 + 〈 D B , −1 〉 ×
∑ 

σ

∏ 

z ∈ Z 0 
D �(z ) + 〈 D B l z (z |·) , h 〉 

︸ ︷︷ ︸ 
f u 
N 

[ h ] 

×
∏ 

� D ∈ L D 
r ′ 
� D 

〈 P D l z (z j |·) f ′ � D , h 〉 ︸ ︷︷ ︸ 
f u 
D 

[ h ] 

×
∏ 

� M ∈ L M 
1 − r ′ 

� M 
+ r ′ 

� M 
〈 (1 − P D ) f 

′ 
� M 

, h 〉 ︸ ︷︷ ︸ 
f u 
M 

[ h ] 

, 

(56)

here the terms f u · [ h ] are unnormalized MB components. The un-

ormalized MB components can be rewritten as MB distributions

ultiplied by a weighting factor as follows: 

 + b < g, h > = w (1 − r + r < f, h > ) , with f = 

g 

〈 g, 1 〉 , 

r = 

〈 g, 1 〉 b 
a + 〈 g, 1 〉 b , w = a + 〈 g, 1 〉 b, (57)

here a and b are the parameters of the unnormalized MB com-

onent, and ω and r are the parameters of the equivalent MB dis-

ribution. 

Distinct labels � N ∈ L N are added to hypotheses arising from

ach measurement z ∈ Z 0 by using a likelihood function l z (z | x , � ) =
 z (z | x ) δ� ′ (� ) , corresponding to measurement z j producing new tar-

et label � N = (t, j) . 

Using Eq. (58) , f u 
N 

[ h ] can be expressed in terms of the param-

ters of the posterior density f + 
� N ,N 

and r + 
� N ,N 

, as follows: 

f u N [ h ] = 

∏ 

� N ∈ L N 
D �(z j ) + 〈 D B l z (z j |·) , 1 〉 ︸ ︷︷ ︸ 

ω N 

∏ 

� N ∈ L N 
1 − r + 

� N ,N 
+ r + 

� N ,N 

〈
f + 
� N ,N 

, h 

〉
︸ ︷︷ ︸ 

f lmb 
N 

[ h ] 

,

(58)

f + 
� N ,N 

(x , � ) = 

D (x ) l z (z j | x ) δ� N (� ) 

〈 D B l z (z j | ·) , 1 〉 , r + 
� N ,N 

= 

〈 D B l z (z j |·) , 1 〉 
D �(z j ) + 〈 D B l z (z j | ·) , 1 〉 

(59)

imilarly, f u 
D 

[ h ] can be expressed in terms of f + 
� D , j 

and r + 
� D , j 

, for a

abel � D detected by the measurement j : 

f u D [ h ] = 

∏ 

� D ∈ L D 
r ′ 
� D 
〈 P D l z (z j |·) f ′ � D , 1 〉 ︸ ︷︷ ︸ 

ω D 

∏ 

� D ∈ L D 
1 − r + 

� D , j 
+ r + 

� D , j 

〈
f + 
� D , j 

, h 

〉
︸ ︷︷ ︸ 

f lmb 
D 

[ h ] 

, (60)

f + 
� D , j 

(x , � ) = 

P D (x , � ) l z (z j | x , � ) f ′ 
� D 

(x , � ) 

〈 P D l z (z j |·) f ′ � D , 1 〉 , r + 
� D , j 

= 1 (61)

inally, f u 
M 

[ h ] can be expressed in terms of the posterior MB den-

ity parameters f + 
� M , 0 

and r + 
� M , 0 

as: 

f u M 

[ h ] = 

∏ 

� M ∈ L M 
1 − r ′ 

� M 
+ r ′ 

� M 
〈 (1 − P D ) f 

′ 
� M 

, 1 〉 ︸ ︷︷ ︸ 
ω M 

∏ 

� M ∈ L M 
1 − r + 

� M , 0 
+ r + 

� M , 0 

〈
f + 
� M , 0 

, h 
〉

︸ ︷︷ ︸ 
f lmb 
M 

[ h ] 

, 

(62)

f + 
� M , 0 

(x , � ) = 

(1 − P D (x , � )) f ′ 
� M 

(x , � ) 〈
(1 − P D ) f 

′ 
� M 

, 1 
〉 , r + 

� M , 0 
= 

〈
( 1 − P D ) f 

′ 
� M 

, 1 
〉
r ′ 
� M 

1 − r ′ 
� M 

+ 

〈
(1 − P D ) f 

′ 
� M 

, 1 
〉
r ′ 
� M 

. 

(63)

hus, Eq. (56) can be rewritten as: 

δ

δZ 
F [ g, h ] 

∣∣∣∣
g=0 

= e 〈 D �, −1 〉 + 〈 D B , −1 〉 ×
∑ 

σ

ω N ω D ω M 

f lmb 
N [ h ] f lmb 

D [ h ] f lmb 
M 

[ h ] . (64)
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emembering that: 

 

+ 
X |Z [ h ] = 

δ
δZ 

F [ g, h ] 
∣∣

g=0 

δ
δZ 

F [ g, h ] 
∣∣

g=0 ,h =1 

, 

hich acts as a normalization constant, the final form of the PGFl

or the corrected labeled multi-Bernoulli mixture posterior is: 

 

+ 
X |Z [ h ] = 

1 

C 

∑ 

σ

ω N ω D ω M 

f lmb 
N [ h ] f lmb 

D [ h ] f lmb 
M 

[ h ] , (65)

ith C being a normalization constant such that all weights sum

o unity. �
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