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A B S T R A C T

Mine operations in the future will require automatic rock characterization at many different stages, since it can be
used to supervise and optimize various processes in the laboratory as well as at the mine locations for planning
and exploitation. Different methods for classifying rocks based on image analysis have been proposed in the past.
In this paper, we report the use of hyperspectral sensors in the classification of rock lithology. The lithology
provides information about the chemical composition of the rock, and its physical properties. According to our
literature review, this is the first time hyperspectral sensors have been employed in rock type classification.
Additionally, it is the first time the use of three different technologies in rock type classification has been reported:
hyperspectral sensors, laser range and a color camera. We use two hyperspectral sensors, one has sensibility
within the visible and near-infrared range of 400–1000 nm, and the second has sensibility within the short-
wavelength infrared range of 900–2500 nm. The range and high definition color images are used to perform
accurate segmentation of the rock samples. Images are tessellated into sub-images in which various features from
the three sensor types are extracted. In a first stage, the sub-images are classified by using a support-vector
machine (SVM) classifier with the extracted features as inputs. In a second stage, the rock segmentation is
used to perform a voting process among all the sub-images of each rock and improve the classification. The
method was tested using a database with 13 lithologies from a copper mine in Chile. The results show that
lithological classification performance obtained by using hyperspectral images greatly exceeds the performance of
the color and range images. The achieved classification performance was 98.62% using sub-image classification
and 99.95% using a voting process among sub-images. The number of features was also reduced by using the
CMIM (Conditional Mutual Information Maximization) feature selection method, achieving a performance of over
99% with using only 3% of the total number of features.
1. Introduction

Rock type classification is very useful in many stages of mine opera-
tions. This classification can be used from the mine planning to the
control of various processes, for example, the grinding [1,2] which
consumes about 50% of the energy used in a mining plant. Information
about the rock types and hardness can be used in controlling the feeding
and speed of the mill, optimizing the energy consumption, processing the
ore [3,4], and reducing CO2 emissions. The classification and charac-
terization of rocks is usually carried out visually by geologists and min-
eralogists, or by performing laboratory tests [2]. However, manual
classification is time-consuming, and sometimes it is necessary to stop the
ore processing in order to perform it. Moreover, manual classification
yields only a coarse approximation, since it is usually carried out using a
small number of samples.
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It is desirable to develop a technology for automatic rock classifica-
tion that would enable monitoring rock type continuously at any stage of
the mine operation [3]. Several attempts to develop such a technology
have been done in the past two decades. A method based on color images
and neural networks (NNs) to classify seven rock types was developed
almost two decades ago, as reported in Ref. [5]. Later, extracted features
from color images were selected using genetic algorithms as inputs to a
NN which improved classification results slightly [1].

In Ref. [6] a rock classification system combining texture information
and co-occurrence likelihoods were introduced. A rock classification
technique using Gabor filtering with various color spaces was developed
in Ref. [7]. Histogram processing using RGB channels and texture anal-
ysis based on the co-occurrence matrix on gray levels, together with edge
detection for the classification of ferruginous manganese ore was per-
formed in Ref. [8]. Later, a pilot plant was created to estimate the rock
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1 http://www.specim.fi/downloads/sCMOS%20SpeCam%20ver1-17.pdf.
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type composition mixture for classifying five different minerals using an
SVM, Principal Component Analysis (PCA), and Wavelet Texture Anal-
ysis (WTA) to extract color and textural features [4].

Classification of 26 rock types was reported in Ref. [9] who used a
PCA and frequency components in a NN. Another study used a hierar-
chical neuro-fuzzy model for the classification of rock textures [10].
Later, using genetic algorithms, k-means clustering, and NNs, the ore
grade was determined in samples extracted from a drill-hole in a
lead-zinc deposit as described in Refs. [2,11]. The texture of various
basalts in RGB and gray scale images was determined using NN in
Ref. [12]. Granite tiles with rotations were classified by measurements
using different types of Local Binary Patterns (LBP), Improved Local Bi-
nary Patterns (ILBP), and Coordinated Cluster Representation (CCR) with
the best results achieved with ILBPs [13]. In another application the Hu
and Zernike moments were extracted from segmented rocks, and classi-
fication was performed by a NN [14]. Perez [15] used a multi-way PCA to
extract color features, and a WTA to extract texture features from a
database of various rock types. The method selected the most relevant
features and used an SVM to classify sub-images by using mutual infor-
mation. Rock type classification was improved by a voting process among
all classified sub-images within the rock boundary. More recently, this
rock type classification system was improved by adding multi-scale
Gabor filters to extract features [16]. Another application was devel-
oped for the classification of granite tiles and reached the best perfor-
mance with the co-occurrence matrix [17]. Limestone rock-types were
classified using histogram based features from color images and proba-
bilistic NNs in Ref. [18]. More recently, texture features computed in
range and color images were used to perform rock lithological classifi-
cation in Ref. [19].

Multi- and hyper-spectral images show the electromagnetic emissions
of different wavelengths in the electromagnetic spectrum. Color (RGB)
images are considered to be multi-spectral images with 3 channels (red,
green, blue) within the visible light range of 400–750 nm. It is intuitive to
think that better results in rock classification could be obtained by using
more than 3 channels. Hyperspectral images have been used to identify
many types of materials [20,21]. For example, the use of hyperspectral
images in the near-infrared and visible spectrum to predict the properties
of extruded wood/plastic composite materials was reported in Ref. [22].
Also, hyperspectral images have been used for detecting damage on po-
tatoes [23] and apples [24], or for classifying coffee species [25,26]. The
presence of specific minerals can be detected by their “hyperspectral
signature”. Multi- and hyper-spectral images can be acquired remotely
[27] or at a microscopic level [28] to identify the minerals present in a
zone or in an ore sample, respectively.

In Ref. [29] a nearest-subspace classification (NSC) method with
distance-weighted Tikhonov regularization was proposed for hyper-
spectral classification of aerial images. Spatial features computed with
Gabor filters were incorporated in the method by Ref. [30]. In Ref. [31], a
dictionary optimized by a task-driven formulation was used to classify
images acquired with airborne sensors. The method used Laplacian
regularization to incorporate spatial information. Joint robust sparse
representation-based classification (JRSRC) was introduced in Ref. [32],
and tested in aerial images. The method can handle outliers and takes the
neighborhood around the pixel into account in the classification.

In Ref. [33], a convolutional neural networks was used to classify the
pixels of airborne hyperspectral data sets using the original data as input.
A deep NN with two branches was used to compute spectral-spatial
features and classify aerial images in Ref. [34]. In Ref. [35], a joint
sparse and low-rank multitask learning (MTL) method with
Laplacian-like regularization, named sllMTL, was proposed. The method
incorporates morphological operators to compute the features, and was
tested on aerial hyperspectral images. A method that uses features based
on a 2D variational mode decomposition, (2-D-VMD), and a kernel
low-rank MTL (KL-MTL) classifier was presented in Ref. [36].

In mining, multispectral information has been used to classify and
analyze drill cores. In Ref. [37], a method based on spectroscopy in the
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visible and IR spectrum was developed to determine the mineralogy and
lithology of drill core pulps, and achieved results similar to those ob-
tained using X-Ray diffraction. A system, called multi-sensor core logger
(MSCL), for acquiring data from drill rock cores used in mineral explo-
ration was presented in Ref. [38]. The system can acquire data of volu-
metric magnetic susceptibility, density using gamma-ray attenuation,
and several chemical elements through energy-dispersive X-ray fluores-
cence spectrometry, and visible/near infrared spectrometry. The
HyLogger developed by CSIRO is a similar system used in drill cores,
which incorporates a laser profilometer and can capture high color im-
ages and one-dimensional hyperspectral scans [39–41].

In this paper, we report the use of hyperspectral sensors in the clas-
sification of rock type. According to our literature review, this is the first
time hyperspectral sensors have been employed in rock type classifica-
tion. Additionally, it is the first time the use of three different technol-
ogies in rock type classification is reported: hyperspectral sensors, color
camera, and laser 3D range camera. More specifically, we use the
hyperspectral sensor, VNIR, with sensibility within the visible and near-
infrared range of 400–1000 nm, and the SWIR sensor with sensibility
within the short-wavelength infrared range of 900–2500 nm. Captured
images within these spectral ranges are combined with range and high
definition color images to perform segmentation of the rock samples.
Images are tessellated into sub-images in which various features are
extracted. In the color and range images, features based on Gabor filters
and Local Binary Patterns (LBP) are computed within each sub-image. In
the hyperspectral images, the mean and standard deviation inside each
channel of the sub-images are used as features. The features are
computed on the same sub-images of images coming from the different
sensors, and the features are concatenated to build a feature vector. The
rock lithology for each sub-image is determined by using a support-vector
machine (SVM) classifier. Then, using the rock segmentation, a voting
process among all the sub-images of each rock is used to improve rock
classification. The method is validated on a database with 13 different
rock lithologies. Results proved to be significantly better than previous
results had been on the same database.

2. Materials

2.1. Color-range, hyperspectral VNIR, and hyperspectral SWIR image
acquisition

In order to improve our previous method of lithological classification
of rock types based on color and range images [19], two hyperspectral
cameras were used to acquire rock images.

We use a SICK ColorRange Ranger-E55444 for color and laser range
image acquisition. This camera acquires 3D range images using a laser
and a high-definition color image. The camera, using a CMOS sensor,
acquires the range images, line by line, as objects move. Three lines of the
CMOS sensor are employed in acquiring the red, green, and blue channels
for the high resolution color images. Each line has a resolution of 3072
columns. The same sensor has another 411 lines, each one with a reso-
lution of 1536 columns that are used for creating the range image using
an infrared (IR) laser. The IR laser was mounted at 45� relative to the
surface of a camera dolly on which the rocks lay. A line that is projected
by the IR laser is deformed by the rocks on the dolly. This deformation is
captured by the CMOS sensor with an IR filter. Then, using a previous
calibration and the laser line deformation, a 3D surface of the rocks is
computed as the dolly moves.

The first hyperspectral camera is a SPECIM spectral sCMOS camera
VNIR1 (visible and near-infrared) with an ImSpector N10E imaging
spectrograph. The camera is equipped with a 23mm lens and acquires
images using 968 wavelengths in the visible and near-infrared region of
the electromagnetic spectrum (393–1008 nm). It has a line-scan sensor

http://www.specim.fi/downloads/sCMOS%20SpeCam%20ver1-17.pdf


Fig. 1. Acquisition system: Hyperspectral SWIR, hyperspectral VNIR, and a
range-color camera mounted together to acquire the four types of images.

Fig. 2. Examples of acquired color, range, hyperspectral VNIR and hyper-
spectral SWIR images. The red boxes show the computed positions of the marks
used to register the images. (a) Color image. (b) Range image. (c) VNIR image,
one channel. (d) SWIR image, one channel. (For interpretation of the references
to color in this figure legend, the reader is referred to the Web version of
this article.)

Fig. 3. Registration of color, range, hyperspectral VNIR and hyperspectral SWIR
images. (a) Color image. (b) Color image with the range image superimposed.
(c) Color image with one channel of the VNIR image superimposed. (d) Color
image with one channel of the SWIR image superimposed. (For interpretation of
the references to color in this figure legend, the reader is referred to the Web
version of this article.)

Fig. 4. Examples of the channels of a VNIR image acquired at different wave-
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from which 1064 pixels were used. The second hyperspectral camera is a
SPECIM Spectral Camera SWIR2 (Short-wavelength infrared) with a
cryogenically cooled mercury cadmium telluride (MCT) detector. This
camera acquires images with 288 wavelengths in the near-infrared re-
gion of the electromagnetic spectrum (904–2516 nm). It has a line-scan
sensor with 384 pixels.

A camera dolly was used to move the sample rocks under the cameras.
Marks visible in the four types of images were placed over the camera
dolly to calibrate the cameras and register the images (see Fig. 1 right).
Halogen lamps were used for the hyperspectral acquisition, and LEDs
were used for the color images. An infrared laser was used for the range
acquisition. Fig. 1 shows the acquisition system with the three mounted
cameras.

The spectra acquired with both hyperspectral cameras were corrected
and transformed to reflectance by using a pixelwise calibration model
[42], as follows:

Iðx; yÞ ¼ I0ðx; yÞ � BðxÞ
WðxÞ � BðxÞ ; (1)

where B is a black calibration image, W is a total reflectance image, I0 is
the original hyperspectral image, and I is the corrected image. The black
calibration image, B, is acquired to measure the detector dark current by
blocking the camera lens after each image acquisition. The total reflec-
tance images, W, were acquired using a surface made of Spectralon. The
values WðxÞ and BðxÞ are the means of the images along the y axis.

Each type of image has a different resolution. The color image has the
highest resolution of 3072 columns, the range image has 1536 columns,
the hyperspectral SWIR image has 384 columns, and the hyperspectral
VNIR has 1064 columns. The images are not registered. Also, because of
the laser triangulation system, the range image must be corrected using
the acquisition system geometry and the known location of the regis-
tration marks. Two types of marks were used in the acquisition: QR
codes, and a tool shaped like a saw. The QR codes are visible in the color,
and hyperspectral images, and in the laser intensity image associated
with the range images; and the saw is visible in all the image types. In
order to calibrate and register the acquired images, the marks must be
detected in all the image types. The template matching Correlation Co-
efficient method together with the oriented BRIEF (ORB) [43] and the
Binary Robust Invariant Scalable Keypoints (BRISK) [44] methods, are
used to find the location of the marks in each image. Then, these loca-
tions are used to register the images. The transformation used in the
registration is computed to have isotropic pixels. Fig. 2 shows examples
of the four types of images and the computed position of the marks in
each image. Fig. 3 shows the result of the registration.
2 http://www.specim.fi/index.php/products/industrial/spectral-camer
as/swir.
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Fig. 4 shows different channels of a hyperspectral VNIR image, each
channel representing the intensity of the electromagnetic spectrum at a
different wavelength. Fig. 5 shows different channels of a hyperspectral
SWIR image.
lengths using the hyperspectral camera. The color scale represents the reflec-
tance. The background color is saturated when exceed the maximum reflectance
of the rock samples. The wavelengths in nanometers are: (a) 408.62, (b) 465.46,
(c) 620.93, (d) 668.97, (e) 842.57. (For interpretation of the references to color
in this figure legend, the reader is referred to the Web version of this article.)

http://www.specim.fi/index.php/products/industrial/spectral-cameras/swir
http://www.specim.fi/index.php/products/industrial/spectral-cameras/swir


Fig. 5. SWIR image acquired at different wavelengths using the hyperspectral
camera. The color scale represents the reflectance. The background color is
saturated when exceed the maximum reflectance of the rock samples. The
wavelengths in nanometers are: (a) 1039.83, (b) 1356.42, (c) 1750.89, (d)
2126.44, (e) 2349.4. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)
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3. Database

A database was built using ore samples of 5 lithologies from a copper
mine in Chile [16], and samples of 8 lithologies from the Andina division
of Codelco. The lithologies were determined by experts from Andina. The
lithologies of the ore samples are: Andesite (site 1); Andesite (site 2);
Dacitic Diatreme; Granodiorite Cascada (site); Granodiorite,
Fig. 6. Color images of the rock database. (a) Andesite (site 1). (b) Andesite (site 2).
(f) Rhyolitic Diatreme. (g) Granodiorite Cascada (site). (h) Granodiorite Rio Blanco (
Breccias. (k) Porphyritic Dykes. (l) Porphyry don Luis (site). (m) Quartz monzonite
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Molybdenite, and Primary rock Rio Blanco (site); Granodiorite Rio
Blanco (site); Other Breccias; Porphyritic Dykes; Porphyry don Luis (site);
Quartz monzonite porphyry; Rhyolitic Diatreme; Tourmaline Breccia;
and Tourmaline and Tufa Breccias. Sets of 20 range, color, hyperspectral
VNIR, and hyperspectral SWIR images were acquired for these
lithologies.

In each image acquisition, various samples were selected and placed
in different orientations and positions as in Ref. [2]. Fig. 6 shows sample
color images of the 13 lithologies. The sizes of the rock samples are be-
tween 4 and 20 cm. Some lithologies have rock samples of grater size
than others, and therefore fewer samples of these lithologies can be put in
the same image. Nevertheless, the information about the size and the
number of samples in each image is not taken into account in the clas-
sification method. There are some lithologies in the database that can be
differentiated from one another by a non-expert, but in general the
precise classification of these lithologies requires expert knowledge. For
example, as shown in Fig. 6, samples from Tourmaline Breccia (c) and
Tourmaline and Tufa Breccias (d); or Dacitic Diatreme (e) and Porphy-
ritic Dykes (k); are not distinguishable for the non-expert.

4. Methods

Features computed in color, range, and hyperspectral images were
tested for lithological classification. Fig. 7 shows a block diagram of the
proposed method. The images are tessellated into sub-images to perform
the first classification. Features are computed in each sub-image and an
SVM is used to classify the lithology of each sub-image. The rocks present
(c) Tourmaline Breccia. (d) Tourmaline and Tufa Breccias. (e) Dacitic Diatreme.
site). (i) Granodiorite, Molybdenite and Primary rock Rio Blanco (site). (j) Other
porphyry.



Fig. 7. Block Diagram of the proposed lithological classification method.
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in the images are also segmented in order to perform the final rock
classification using their contour information. In this classification, a
voting process is performed among the sub-images of each rock to classify
the rock lithology. This second classification improves the performance
of the method.

4.1. Rock segmentation

The resolution of the hyperspectral images is lower than the resolu-
tion of the range and color images. Therefore the range and color images
were used in the segmentation to achieve a better result. The segmen-
tation approach presented in our previous work [19] was used. The range
images are segmented first because it is easier to identify every rock in
these images. The range image segmentation is based on morphological
operators, the seed growing algorithm [45,46], the watershed algorithm
[47], and on the edge analysis from the connected elements obtained by
the watershed algorithm. Then, the range image segmentation was used
as a starting point in segmenting the color images. The color image
segmentation is based on morphological operators, bilateral filtering
[48], the watershed algorithm [47], and on an ad-hoc analysis of con-
nected elements. Because the four types of images are registered, the
segmentation is valid for all of them.

Fig. 8(a) and (b) show examples of the range and color image seg-
mentations, respectively.

4.2. Feature extraction

The registered hyperspectral, color, and range images, are tessellated
into sub-images, in a way similar to that proposed in Ref. [4]. The
sub-images are squares of 60� 60 pixels in the color image which is the
Fig. 8. Segmentation of range and color images. (a) Range image segmentation.
(b) Color image segmentation. (For interpretation of the references to color in
this figure legend, the reader is referred to the Web version of this article.)
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image type with the highest resolution. All features are computed within
each sub-image. In the color and range images, we compute features
based on Gabor filters and Local Binary Patterns (LBP). Some textures
have particular orientations and features with rotation invariance are
therefore considered (Grea and BRINT_CS_CM [19]). In the color images,
the features are computed in each channel of the HSV color space. The
selected texture features are the best evaluated features reported in our
previous publication [19]. In the color images these features provide
information about the visual texture of the rock samples; and in the range
images provide information about the 3D texture in the surface of the
rocks. For example, when a rock fractures, the produced texture in the
surface of the fracture (roughness, smoothness, flatness, etc.) is related to
the lithology of the rock. In the hyperspectral images, the mean and
standard deviation inside each channel for each sub-image are used as
features. The features computed in the same sub-images from the
different sensors were concatenated to build a feature vector. Table 1
shows the length of the feature vector when the different features are
concatenated. A feature selection method was also used to reduce the
number of features.

4.2.1. Gabor features
Gabor filters extract features with a particular spatial frequency and

orientation. In this work we use Gabor filters computed using 5 scales, ν,
and 8 orientations, μ. In order to extract the Gabor features, a convolution
between the Gabor filters and the sub-images is performed, i.e.,

Gμ;ν;iðx; yÞ ¼ Ψν;μ�Ii; (2)

where Ii is the sub-image i of image I.Gμ;ν;iðx; yÞ are complex numbers and
can be represented by their magnitude Mμ;ν;iðx; yÞ ¼ jGμ;ν;ij and phase
Φμ;ν;iðx;yÞ ¼ argðGμ;ν;iÞ. The magnitudeMμ;ν;i provides information about
the present frequencies, and the gradient of the phase G μ;ν;iðx; yÞ ¼ r
ðΦμ;ν;iÞ provides information about how these frequencies change.

The same Gabor features with the best performance in Ref. [19],
named Grea, were used in this work. The Grea features use the mean and
the standard deviation of the magnitude inside each sub-image,Mμ;ν;i and
stdðMμ;ν;iÞ, respectively; and the mean and the standard deviation of the
gradient, G μ;ν;i and stdðG μ;ν;iÞ, respectively. These features take scale and
orientation into account. In order to consider rotation invariance, the
features are rearranged according to a reference angle. The mean ofMμ;ν;i

is computed across the scales in every orientation, and the orientation
μmax with maximum value is taken as the reference angle:
Table 1
Number of features when the range, color and hyperspectral features are
concatenated.

Range and Color img. Features Hyperspectral img.
Features

Number of Features

– Mean þ std 2424
BRINT_CS_CM þ Grea – 1440
BRINT_CS_CM þ Grea Mean þ std 3864



F.J. Galdames et al. Chemometrics and Intelligent Laboratory Systems 189 (2019) 138–148
μmaxi ¼ arg maxμ
X4

Mμ;ν;i: (3)

i¼0

The featuresMμ;ν;i, stdðMμ;ν;iÞ, G μ;ν;i and stdðG μ;ν;iÞ are then rearranged
according to μmax

i and used in the classification process. The Grea features
are represented by a vector of length 160 for each channel of the pro-
cessed sub-image. Therefore, the Grea vectors of a range and color sub-
images are of length 160 and 480, respectively.

4.2.2. Local binary pattern features
The LBP features use binary comparisons between neighboring pixels

by sampling around each pixel, generating a binary code in each neigh-
borhood to characterize the texture [49]. The LBP features are extracted
for each sub-image, building a histogram of all the binary codes resulting
from the LBP codes within each sub-image. We chose to implement the
BRINT_CS_CM (Binary Rotation Invariant and Noise Tolerant_CS_CM)
LBP feature, because it achieved the best performance in our previous
work [19]. The BRINT_CS_CM LBP was proposed in Ref. [50], and is
computed by using three types of LBPs: BRINT_S (BRINT_Sign), BRINT_M
(BRINT_Magnitude), and BRINT_C (BRINT_Center). Other properties of
this LBP feature is that it is invariant under rotation, includes local
thresholds, and has an average from the sampling of pixels in the
neighborhood to achieve more robustness. The BRINT_CS_CM features
were computed using 8 neighbors and 5 scales ([19]). The BRINT_CS_CM
features are represented by a vector of length 200 for each channel of the
processed sub-image.

4.2.3. Hyperspectral features
Because of the large number of channels available in the hyperspectral

images, it was not necessary to compute texture features as is the case with
color and laser images. The spectral signature of a lithology is a combi-
nation of the spectral signatures of the minerals present in the rock [51].
In order to remove the brightness variations, the spectra were normalized
by dividing the spectrum in each pixel by its mean. Fig. 9 shows ten
random examples of the normalized spectral signatures acquired for
various pixels of one sub-image. Some of these spectral signatures are
different from each other because they show the reflectance of the
different grains of minerals that form the rock. Fig. 9 also shows the mean
reflectance of each channel of the hyperspectral sub-image and its stan-
dard deviation. This mean reflectance can be considered the spectral
signature of the lithology, and it is similar among different sub-images of
rocks of the same lithology. Fig. 10 shows examples of the mean spectra of
the different lithologies. Each curve represents the mean spectrum along
the sub-images of one image of the lithology. Reflectance values are offset
from origin for clarity, and the VNIR and SWIR spectra are concatenated.
For a better visualization, the offsets of the VNIR and SWIR spectra are
different in order to match the reflectance of both curves. The mean
reflectance and its standard deviation in each channel of the hyperspectral
sub-images were therefore the hyperspectral features used for lithological
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classification. Since the bordering channels of the hyperspectral images
are noisy, a range of the central channels is considered. In the VNIR im-
ages, the 944 channels from 399.51 to 1000.06 nm are used. In the SWIR
images, the 268 channels from 1000.21 nm to 2499.26 nm are used.
Hence, 2424 hyperspectral features are computed in each sub-image.
Fig. 11 shows the mean spectra and mean standard deviations of two li-
thologies, computed in 500 sub-images.

We also studied the reduction of the number of hyperspectral features
for sub-image classification. First, the performance obtained by using
only the VNIR or SWIR portions of the spectrum was studied. Then, a
feature reduction method was used with the features computed in the full
spectrum (both VNIR and SWIR). A method for reducing the number of
features, such as PCA, performs a transformation of the full feature space
which, in our case, is associated with the hyperspectral wavelengths.
Nevertheless, our aim is to analyze the best hyperspectral wavelengths
for lithological classification. The identification of these wavelengths
makes it possible to avoid the computation and acquisition of non-
relevant wavelengths when the method is used for online classification.
Hence, the CMIM feature selection method [52–55] was chosen. The
CMIM method is based on mutual information [56,57]. This method
selects relevant features, avoids redundancy, and includes feature
complementarity. In each iteration of the CMIMmethod, the features that
maximize the mutual information with the class to be predicted are
selected, given each one of the features already selected separately. The
CMIM method assumes that a feature is relevant when it provides more
significant information of the class, and if this information is not already
contained in the other selected features [58].

4.3. Classification

The rock type classification is performed following two stages in
cascade, sub-image classification, and rock contour classification as
follows:

4.4. Classification by sub-images

The state-of-the-art SVM classifier was used to achieve the best per-
formance of the proposed method. The SVM is a very popular classifi-
cation method because of its excellent results in many different fields.
Linear and nonlinear SVMs were tested for classification. The publicly
available LibSVM [59] was used for the implementation of the nonlinear
classifier. A C–SVC SVM was used to classify the sub-images [60]. Using
a non-linear transformation, the SVM maps the input vectors to a
high-dimensional space where linear decision hyperplanes are con-
structed to separate the classes. The kernel functions to map the input
vector were the RBF (radial basis functions), (Kðu; vÞ ¼ expð� γ*

���u�
vj2Þ). The publicly available LIBLINEAR [61] library was used for the
linear classifier. The one-versus-one multi-classification strategy was
used in the linear and nonlinear SVM classifiers. The regularization
Fig. 9. VNIR and SWIR mean spectrum of one sub-image.
The black curves represent the spectra of 10 pixels
randomly chosen in a sub-image. The red line and the blue
stripe are the mean spectrum of the sub-image and its
standard deviation, respectively. The VNIR and SWIR
spectra do not match at 1.000 nm Because they were ac-
quired with different cameras which have different sensi-
tivities. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of
this article.)



Fig. 10. Examples of the spectra of different lithologies. The curves show the mean spectrum computed on one image of each lithology. Reflectance values are offset to
match the VNIR and SWIR spectra which are acquired with different sensors in order to have a better visualization.

Fig. 11. VNIR and SWIR spectra of two lithologies. The curves and stripes represent the mean spectrum and the mean standard deviation of the spectrum of two
different lithologies. The means were computed using 500 sub-images for each lithology.
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parameter C of the linear and nonlinear SVMs [59], and the parameter γ
for the radial basis functions of the nonlinear SVM were obtained by
searching in a training subset of the data which contained 3% of the data.

A cross validation procedure, and a test set were used to measure the
performance of the proposed method. To do so, the database was divided
into a cross validation set, and a test set. The cross validation set was
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divided into subsets. In each iteration of the cross validation, one subset
was used as the validation set and the others as the training sets. Only
sub-images with more than 90% rock area are classified. The sub-images
with background that are not used for training are detected using the
color image segmentation. The classifiers trained in each iteration of the
cross validation were also evaluated in the test set.
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4.5. Classification by rock contour

As described in Refs. [15,16], the classification by rock contour al-
lows correcting errors in classifying individual rock sub-images into rock
type classes. The classification of rock sub-images is based on features
extracted from each sub-image alone, and, using the rock contour in-
formation, the rock classification is improved. This can be performed by
using a voting process with all the sub-images that belong to a single
rock. The color and range image segmentation is used to identify the
contour of the rocks and the sub-images that are inside them. Then, the
most frequent lithology in the sub-images within each rock contour as-
signs its class to all the sub-images within the contour. Therefore, if the
percentage of sub-images within a rock contour is over a confidence
threshold, all the sub-images of the rock are assigned to this lithology
class. This voting process improves the performance of the final classi-
fication because it corrects some misclassified sub-images [15,16].

5. Experiments

The 90% of the database (18 images of each rock type) was used as
cross validation set and 10% (2 images of each rock type) was reserved as
test set. The cross validation set was divided into 9 subsets, and a leave-
one-out cross validation scheme was used to perform the experiments. In
each iteration, 8 subsets were used for training and one for validation. To
carry out a balanced training of the classifier, the same number of training
examples of each class were used in each iteration. In each experiment, the
parameters of the SVM were determined by searching on a grid with a
logarithmic scale using a 5-fold cross validation in a subset of the training
set. The values of the grid were in the range log2ðCÞ ¼ ½0; 35� and log2ðγÞ ¼
½�20;�6� for C and γ, respectively. We used a step of length 2, and a fine-
tuning was performed around the best value using a step of length 0.4. To
search C and γ, 3% of the available sub-images were selected randomly.
The best performance obtainedwith the SVMswas also comparedwith the
performance achieved by using a random forest (RF) classifier. A RF
classifierwith 300 treeswas used in the comparison. The classifiers trained
in each iteration of the cross validation were then evaluated in the test set.

The classification performance was measured using the
BRINT_CS_CM and Grea features in the range and color images, and the
hyperspectral features (mean þ std) in the hyperspectral VNIR and SWIR
images.

The method was implemented in MATLAB R2015 for training and
testing. A personal computer with Ubuntu 16.1 (64 bits), equipped with
an Intel Core i7-7700 CPU@ 3.6 GHz� 8 processor, and 64 GB RAM was
used to run the method.

6. Results

Table 2 shows the classification performance obtained by using the
Table 2
Percentage of correct sub-image classification considering various types of features in t
using a nonlinear SVMwith RBF as kernel functions, and a linear SVM. The result obta
achieved in the classification by SVMs, is also included. These classifiers were used fo
voting among sub-images within each rock. The symbol “–” means that none of the f

Range and Color img. Features Hyperspectral img. Features Sub-image classification

Training set Val

SVM (RBF)
– Mean þ std 99.90 � 0.01 97.
BRINT_CS_CM þ Grea – 100.00 � 0.00 59.
BRINT_CS_CM þ Grea Mean þ std 100.00 � 0.00 94.
SVM (Linear)
– Mean þ std 100.00 � 0.00 97.
BRINT_CS_CM þ Grea – 72.76 � 0.52 55.
BRINT_CS_CM þ Grea Mean þ std 99.88 � 0.04 94.
RF
– Mean þ std 100.00 � 0.00 84.
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various range, color, and hyperspectral features with the linear and
nonlinear (RBF) SVM classifiers. It is important to note that the sub-
image classification assesses the performance of each type of feature,
and the rock classification is guided by the rock segmentation. In order to
verify the statistical significance (p < 0:05) of the differences among the
classification performances, an analysis of variance (ANOVA), and a
multiple comparison test were carried out. The Fisher's least significant
difference procedure was used in the multiple comparison test. In the
validation and test sets, the performances obtained in sub-image classi-
fication by using the different features have statistical differences among
them. Nevertheless, the use of a linear or nonlinear classifier only pro-
duces a statistically significant difference if the color and range features
are used exclusively. The performances obtained in the rock classification
of the validation and test set, using only color and range features with
linear or nonlinear classifiers, are the only ones that are statistically
different from the rest. Table 2 shows that the best performance for sub-
image classification was achieved using only the hyperspectral features.
The classification performances obtained in the test set using only the
hyperspectral features were 98.62% and 99.95% in the sub-image and
rock classification, respectively. Table 1 shows the length of the feature
vectors used in each experiment. The largest feature vector is produced
when the hyperspectral, range, and color images are used together. In
this vector, 62.7% of the elements are hyperspectral features and 37.2%
of the elements are texture features computed in the color and range
images. Although most of the features are hyperspectral features, the
performance in this case is lower than the performance obtained by using
only the hyperspectral features (length 2424). The reason behind this
result may be that the texture features are noisy. In fact, the performance
obtained in the test set by using only texture features is the lowest,
56.86% in the sub-image classification. Table 2 also shows the perfor-
mance obtained by using a RF classifier and the features with which the
best performance in the SVM classification was achieved, the hyper-
spectral features. The performances obtained by using a RF were lower
than those achieved by the linear and non-linear SVMs, in both the
validation and test sets.

Table 3 shows the classification performance obtained by using only
the VNIR or the SWIR portion of the spectrum with the linear or
nonlinear classifier. These results were compared with the performance
obtained by using the full spectrum (Table 2). In the sub-image classifi-
cation of the test set, the performances obtained by using the full spec-
trum with the linear or nonlinear classifier are the only ones that do not
have a statistical difference between them. In the sub-image classification
of the validation set, these performances are not statistically different
from the one obtained using the SWIR spectrum and the nonlinear clas-
sifier. The performances obtained in the rock classification of the vali-
dation set are not statistically different. Nevertheless, the performances
obtained using the VNIR spectrum in the test set are statistically different
from the others and between themselves. The results show that the best
he color, range, and hyperspectral images. The table shows the results obtained by
ined by using a RF classifier, on the features with which the best performance was
r the sub-image classification, and then the classification was improved by using
eatures were used. The results show the [mean]�[standard deviation].

Rock classification

idation set Test set Training set Validation set Test set

91 � 1.42 98.62 � 0.10 100.00 � 0.00 99.29 � 1.50 99.95 � 0.01
38 � 2.33 61.10 � 0.57 100.00 � 0.00 86.74 � 4.95 90.26 � 1.44
33 � 0.65 94.09 � 0.50 100.00 � 0.00 99.53 � 0.49 99.26 � 0.35

68 � 1.49 98.46 � 0.10 100.00 � 0.00 99.28 � 1.51 99.95 � 0.00
32 � 1.14 56.86 � 0.98 96.75 � 0.29 83.93 � 1.75 84.86 � 2.01
59 � 0.53 94.30 � 0.24 100.00 � 0.00 99.31 � 0.33 99.39 � 0.18

95 � 1.08 83.77 � 0.24 100.00 � 0.00 96.88 � 0.62 96.68 � 0.35



Table 3
Percentage of correct sub-image classification considering hyperspectral features computed in the VNIR or SWIR portions of the spectrum. The table shows the results
obtained by using a nonlinear SVM with RBF as kernel functions, and a linear SVM. These classifiers were used for the sub-image classification, and then the classi-
fication was improved by using voting among sub-images within each rock. The symbol “–” means that none of the features were used. The results show the [mean]�
[standard deviation].

Hyperspectral img. type Sub-image classification Rock classification

Training set Validation set Test set Training set Validation set Test set

SVM (RBF)
VNIR 95.77 � 0.09 87.07 � 1.64 85.78 � 0.49 99.95 � 0.03 98.28 � 1.61 98.11 � 0.42
SWIR 98.91 � 0.08 96.76 � 1.48 97.42 � 0.09 99.90 � 0.03 99.46 � 1.24 99.91 � 0.06
SVM (Linear)
VNIR 96.43 � 0.69 84.26 � 1.89 83.25 � 0.32 99.94 � 0.07 98.11 � 1.63 99.08 � 0.51
SWIR 99.18 � 0.40 96.26 � 1.39 96.76 � 0.32 99.92 � 0.09 99.37 � 1.36 99.75 � 0.29
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performance is achieved by using the full spectrum, and that the use of a
linear or nonlinear classifier does not affect this performance. The per-
formances obtained by using the SWIR spectrum are similar to those
obtained by using the full spectrum. The worst results were obtained by
using only the VNIR spectrum. The number of hyperspectral features
used can be even further reducedwithout a loss in performance, as shown
below.

Fig. 12 shows the classification performance obtained in the valida-
tion and test sets using the hyperspectral features when the number of
features is reduced by the CMIM method. A linear SVM was used in the
sub-image classification. The figure shows that even if only 3% of the
features are used (73 features), a performance of over 99% accuracy is
achieved in the rock classification, and over 97% in the sub-image clas-
sification. This result is very important because it allows a reduction in
the number of computations by ignoring 97% of the extracted features
without significantly affecting classification performance. This reduction
in the number of required features has a direct impact on the computa-
tional time required to implement and operate a rock type classification
system. Fig. 12 shows that if a reduction in the performance is accepted,
using only 2% (48 features) of the hyperspectral features, classification
performances of over 99% and over 96% are achieved in the rock and
sub-image classifications, respectively. Fig. 13 shows the hyperspectral
features selected as the number of features is reduced using the CMIM
method. Fig. 13 shows that if only a small number of features are
selected, the mean is preferred to the standard deviation as feature. The
selected wavelengths do not follow a strong pattern, but there are some
preferred wavelengths close to 500, 1400, 1900, 2200 and 2400 nm. It is
important to note that the wavelengths selected in the visual spectrum
(from 400 to 750 nm) provide more information about the spectra of the
lithologies in this range than the color images, which only provide the
sum of the spectral response of the sensor centered at three positions of
the spectrum (red, green, blue). Fig. 14 shows the mean-centered spectra
of the different lithologies (see Fig. 10), and the wavelengths used if 3%
Fig. 12. Classification performance of the hyperspectral features as the number of fea
and a linear SVM was used in the sub-image classification. The graph shows the res
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of the features are selected by the CMIM method. Most of the selected
wavelengths are in bands that match some minima of the spectra, or
absorption features. The chemical composition of the rock samples is
related to these minima [62]. In general, the minima near 1400 nm are
related to absorption due to the presence of OH/H2O. The minima near
1900 nm are related to the presence of OH/H2O and CO3; and theminima
near 2200 and 2400 nm are related to the presence of mica, OH, and CO3.
The different chemical compositions of these rocks are the result of their
formation and subsequent metamorphism.

7. Conclusions

Automatic rock characterization will be needed at many different
stages of future mine operations, and used to supervise and optimize
different processes in the laboratory as well as at mine locations for mine
planning and exploitation. The lithology of the rocks processed at a
mining plant can be very useful, for example, in mine planning or in
controlling the grinding process. The lithology provides information
about the chemical composition of the rock, and its physical properties.
In this paper we propose a newmethod for rock lithological classification
using range, color, and hyperspectral images, which, according to our
literature review, is the first method that uses a combination of these
types of images to perform lithological classification of rocks. Our study
shows that the classification is improved significantly by using hyper-
spectral information from rocks (from 90.26% to 99.95% in rock
classification).

The classification method is divided into two stages. First the images
are tessellated into sub-images which are classified by an SVM, using
features computed within each sub-image. In the second stage, each rock
is classified using a voting process among the sub-images that belong to
the same rock. This second stage improves the classification performance
significantly. The rocks are identified by performing a segmentation
based on range and high resolution color images. The range 3D
tures is reduced. The CMIM method was used to select the most relevant features,
ults of the sub-image and rock classifications in the validation and test sets.



Fig. 13. Hyperspectral features selected as the number of features is reduced using the CMIM method. The graph shows the wavelengths (channels of the hyper-
spectral images) selected to compute the mean and the standard deviation as hyperspectral features.

Fig. 14. Wavelengths (channels of the hyperspectral images) used to compute the 73 hyperspectral features selected when the number of features is reduced to 3%
using the CMIM method. The black curves represent the mean-centered spectra of the different lithologies.

F.J. Galdames et al. Chemometrics and Intelligent Laboratory Systems 189 (2019) 138–148
information improves rock segmentation even if their colors and textures
are similar to the surrounding rocks. The experiments were performed
using a database with 13 different lithologies from a copper mine in
Chile.

In the color and range images, the best evaluated features reported in
our previous publication [19] were used. In the hyperspectral images, the
mean and standard deviation inside each channel of the sub-image were
used as features. The performances obtained by using the various features
were measured dividing the database into a tow set: a set to perform a
leave-one-out 9-fold cross validation, and a set for testing. The best
classification performance was achieved by using only the hyperspectral
features (99.95%). The CMIM feature selection method was used to
analyze the number of features needed for classification. The result ob-
tained, 99.73% accuracy in test set using only 3% of the features, was not
significantly different from that obtained using all the features. This
method allowed a reduction in the number of features from 2424 to 73
with no significant loss in classification performance. This reduction in
the number of features makes it possible to reduce the computational
time required to operate a rock type classification system. Furthermore,
this reduction is very important because a multispectral imaging system
could be used for classification instead of a hyperspectral one, because it
is cheaper and easier to implement for on-line applications [24,26]. The
high accuracy in lithological classification obtained justifies real appli-
cations of this method in industry which will be our next step.
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