
An improved feature extractor for the Lidar
Odometry and Mapping (LOAM) algorithm

Clayder Gonzalez
Department of Electrical Engineering

Universidad de Chile
Santiago, Chile

Email: claydergc@gmail.com

Martin Adams
Department of Electrical Engineering

Universidad de Chile
Santiago, Chile

Email: martin@ing.uchile.cl

Abstract—This work proposes an improved feature extractor
for the Lidar Odometry and Mapping (LOAM) algorithm, which
is currently the highest ranked algorithm in the Karlsruhe Insti-
tute of Technology and Toyota Technological Institute (KITTI)
visual odometry ranking. This article proposes and justifies
the substitution of LOAM’s current feature extraction method
with the Curvature Scale Space (CSS) based feature extraction
algorithm for the processing of 3D Point Cloud Data (PCD). The
justification is based on in improvement of the repeatability of the
detection of robust features for LOAM and an improvement in the
associated computational cost. The LOAM’s feature extractor and
CSS feature extractor were tested and compared with simulated
and real data including the KITTI visual odometry dataset
using the Optimal Sub-Pattern Assignment (OSPA) and Absolute
Trajectory Error (ATE) metrics. The results showed that LOAM
based on the CSS feature extractor out performed that based
on the original LOAM feature extractor with respect to these
metrics.

I. INTRODUCTION

Feature extraction is a critical task in feature-based Si-
multaneous Localization and Mapping (SLAM), which is one
of the most important problems in the robotics community
[2] [17]. An algorithm that solves SLAM using Lidar based
features is the Lidar Odometry and Mapping (LOAM) algo-
rithm [19]. This algorithm is currently regarded as the best
performing SLAM algorithm according to the KITTI visual
odometry benchmark [6].

The LOAM algorithm solves the SLAM problem through a
feature matching approach and its feature extraction algorithm
detects features classifying points of a point cloud as smooth
or non-smooth. This classification is based on an equation
that defines the level of smoothness for each point. However,
this equation does not consider the range noise of the sensor.
Therefore, if the lidar range noise is high, the LOAM feature
extractor can confuse smooth and non-smooth points, causing
the feature matching task to fail.

This work proposes the replacement of the original LOAM
feature extraction algorithm with the Curvature Scale Space
(CSS) algorithm [11]. The choice of this algorithm was made
after studying various feature extractors in the literature. The
CSS algorithm can potentially improve the feature extraction
task in noisy environments because of its various levels of
Gaussian smoothing. The replacement of the original LOAM
feature extractor with the CSS algorithm was achieved by
adapting the CSS algorithm to Velodyne 3D LiDAR data.

The LOAM and CSS feature extractors were tested and
compared with simulated and real data including the KITTI
visual odometry dataset using the Optimal Sub-Pattern As-
signment (OSPA) [15] and Absolute Trajectory Error (ATE)1

metrics. For all these datasets the CSS feature extraction
performance was better than that of the LOAM algorithm in
terms of the OSPA and ATE metric values.

II. LOAM REVISITED

The LOAM algorithm can be divided into several blocks as
shown in Figure 1. The Lidar block returns a raw point cloud

Lidar Point Cloud
Registration

Lidar
Odometry

Lidar Mapping

Transform Integration

Feature Extraction

10 Hz Transform
Update

1 Hz Undistorted Pk

Pk 1 Hz Map Output

10 Hz Transform Output

P̂

1 Hz Transform Update

Fig. 1: The LOAM software system adapted from [19].

P̂ . Then, the Point Cloud Registration block is responsible
for organizing the point cloud by attaching to it a property
called sweep k. This results in a point cloud Pk. According
to the original paper [19], a sweep k is a non-negative integer
that labels each point cloud, based on its elevation angle - i.e.
every 360 degrees. Therefore, when the algorithm starts, the
first 360 degrees of rotation produces a point cloud P1, the
second rotation a point cloud P2, etc. Additionally, the Point
Cloud Registration block divides each Pk based on its scan.
Since the Velodyne lidars (VLP-16, HDL-32, HDL-64) are
composed of several individual lasers, a scan is the set of points
returned by one laser. Subsequently, the Lidar Odometry block
contains the feature extraction task. Based on these features,
the LOAM algorithm estimates the motion of the lidar. The
motion is estimated by matching the features belonging to two
consecutive 3D scans to find the optimal transform between
them. It is important to note that this task depends on the
number of estimated features and how accurately located
they are. The Lidar Odometry block constantly feeds the
Lidar Mapping block with data at 1Hz and the Transform
Integration block with data at 10Hz. These two frequencies
are important because they determine how fast the map is

1http://www.rawseeds.org/rs/methods/view//9.

2019 International Conference on Control, Automation and Information Sciences (ICCAIS)

978-1-7281-2311-0/19/$31.00 ©2019 IEEEAuthorized licensed use limited to: Universidad de chile. Downloaded on August 18,2021 at 00:39:23 UTC from IEEE Xplore. Restrictions apply.

generated and how fast the transform is updated. Consequently,
the feature extraction task is important for the Lidar Mapping
and Transform Integration blocks.

A. The LOAM feature extractor

Before describing the LOAM feature extraction method, it
is important to mention that this task processes each scan by
dividing it into four identical sub-regions. A sub-region is a
subset of points of each scan. Therefore, the LOAM feature
extractor is responsible for classifying each point of all sub-
regions as smooth (flat) or non-smooth (sharp) according to
a threshold. This threshold is represented by CLOAM and it is
defined as

CLOAM =
1

|R| · ||p(i,k)||
||
∑

j∈R,j 6=i

(p(i,k) − p(j,k))||, (1)

where R is the set of points from a sub-region of a scan (R ⊂
Pk). Additionally, p(i,k) and p(j,k) represent the ith and jth
point vectors of the sweep k of R. Additionally, || || represents
the L2 norm.

III. FEATURE EXTRACTORS FOR POINT CLOUDS
COMMONLY USED IN SLAM

In the literature, general feature extractors, which are those
that process any kind of point cloud, and feature extractors that
are commonly used in feature-based SLAM solutions are pre-
sented. Among the general feature extractors, algorithms such
as the Harris corner detector [7], the Scale Invariant Feature
Transform (SIFT) keypoint detector [9] and the Intrinsic Shape
Signatures (ISS) detector [18] are often used. According to F.
Silvio [5], among these algorithms, the one that has the best
performance in terms of repeatability of detected features is
the ISS algorithm.

Among the feature extractors that are commonly used in
feature-based SLAM solutions, notable algorithms such as the
Split and Merge (SM) algorithm [13], the Split and Merge
Fuzzy (SMF) algorithm [3], the Iterative End Point Fit (IEPF)
algorithm [4], the Hough Transform (HT) algorithm [8], the
Curvature Scale Space (CSS) algorithm [11] and the Adaptive
Curvature Estimation (ACE) algorithm [12] exist. Most of
these algorithms are used with 2D point clouds and they
commonly extract lines, corners and circles. According to P.
Nuñez et al. [12], among these algorithms, the one that has
the best performance (recognition rate, accuracy of feature
locations and processing time of the algorithm) is the ACE
algorithm.

A. General Feature Extractor Validity in LOAM

To adopt the previously mentioned general feature extrac-
tors it is necessary to remember that Lidar Odometry block
needs to feed the Transform Integration block with its data at
a frequency of 10 Hz (Figure 1). Additionally, it is important to
consider that these feature extractors are based on an algorithm
called radius search. The radius search algorithm is responsible
for obtaining a set of neighbors for each point within a sphere
of a certain radius.

To analyze the complexity of the Harris, SIFT and ISS
algorithms in terms of extracting features, an experiment was
carried out in which these algorithms were evaluated with
a point cloud composed of n = 21572 points. This point
cloud was recorded in an indoor environment and obtained
with a Velodyne VLP-16 LiDAR. The experiment consisted of
varying the radius of the search volume for each algorithm and
then recording the time each algorithm took to perform the task
and noting how many features each algorithm returned. This
experiment was carried out with the Point Cloud Library (PCL)
[14] and a computer Intel Core i7-7500U CPU @ 2.70GHz ×
4.

Figure 2 shows the time (in seconds) each algorithm
takes to process the point clouds and how many features
are extracted by each algorithm. The time is represented on

0.1 0.2 0.3 0.4 0.5
radius [m]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

ti
m

e
 [

s]

17

26

15

18

18

1216

1367

1638

1818

2162

15

89

137

113

99

Harris
SIFT
ISS

Fig. 2: Processing time of general feature extractors based on
their search radius.

the vertical axis from 0 to 5.5 seconds and the number of
features extracted by each algorithm for each radius is located
next to the colored points. In this figure, it can be seen that
the feature extractors take approximately 0.25 to 4.3 seconds
to extract features from the point cloud. Additionally, except
for the SIFT algorithm, the algorithms return less than 150
features. This is a low quantity of features compared to the
LOAM feature extractor, which returns 3000 features per
sweep, approximately. Hence, including any of these algorithm
in the LOAM algorithm would be too slow for the Lidar
Odometry block.

B. SLAM based Feature Extractor Validity in LOAM

SLAM based feature extraction algorithms were included
in the comparison by P. Nuñez et al. [12]. The feature extrac-
tors had to detect corners, circular segments, line segments and
edges. Table I gives a comparison of these algorithms in terms
of run time, True Positive Rate (TPR) and False Positive Rate
(FPR).
TABLE I: Feature Extraction Algorithm Comparisons Accord-
ing to P. Nuñez et al. [12].

Algorithm SM SMF IEPF HT CSS ACE

Time (ms) 6.7 14.2 3.8 31.2 37.7 9.4

TPR 0.76 0.79 0.77 0.71 0.92 0.91

FPR 0.19 0.19 0.21 0.23 0.02 0.02

An important characteristic of this table is that the first
four algorithms have a low TPR. This occurs because these

2019 International Conference on Control, Automation and Information Sciences (ICCAIS)

Authorized licensed use limited to: Universidad de chile. Downloaded on August 18,2021 at 00:39:23 UTC from IEEE Xplore. Restrictions apply.

feature extractors used polygons to represent circular segments.
On the other hand, the SM, SMF, IEPF and ACE algorithms’
processing time values were the lowest and the HT and CSS
algorithms’ processing time values were the highest. With this
information, we observed that the CSS and ACE algorithms
had the best performance.

Since these processing time values are compatible with
those necessary in the Lidar Odometry Block, we proceed to
choose between the CSS and ACE feature extractors. The use
of the ACE feature extractor was first considered, however
it was discarded because the point cloud data obtained from
Velodyne lidars presented a higher range noise compared to
the data processed in the original paper [12], which introduced
the ACE algorithm. Therefore, the CSS feature extractor was
chosen to replace the original LOAM feature extractor.

IV. METHODOLOGY AND IMPLEMENTATION

To record the data we used the mobile robot Husky A-200,
a computer with Intel Core i7-7500U CPU @ 2.70GHz × 4,
a Velodyne VLP-16 LiDAR and a Topcon Hyper V GPS only
for trajectory ground truth verification purposes. Then, the data
obtained with this hardware was compared with that obtained
from two versions of the LOAM algorithm, one which includes
the LOAM feature extractor and the other which replaces it
with the CSS feature extractor. Finally, the estimated feature
positions and their trajectories produced by both algorithms
were compared with ground truth features and trajectories,
respectively. For the comparison of features, the Optimal Sub-
Pattern Assignment (OSPA) metric was used. It is important to
note that in this case the comparison was only carried out for
the simulated data. Finally, the comparison of trajectories was
carried out using the Absolute Trajectory Error (ATE) metric
for both simulated and real data based experiments.

Before implementing the CSS algorithm, it is important
to note that this feature extractor was used to extract only
non-smooth features. Smooth features are extracted using the
original LOAM feature extractor (Equation 1). Therefore, the
first step necessary to implement the CSS algorithm is to divide
the whole point cloud from the Velodyne VLP-16 into its 16
elevational scans. Figure 3 shows a zoomed view of a segment
showing its 16 elevational scan components as different colors.
This segment corresponds to S1, which can be seen from a top
view in Figure 4. The subsequent step is to divide the point
clouds from each scan into segments. The objective of this is
to facilitate the detection of curvature extrema with the CSS
algorithm and to decrease its computational complexity. The
algorithm used in this work is called the Adaptive Breakpoint
Detector [3].

The adaptive breakpoint detector detects a breakpoint based
on the comparison of the current point and the previous point.
For these points, the Euclidean distance between them is
compared with a threshold. If the Euclidean distance is greater
than the threshold, then a new segment is created.

An example of how a point cloud from one scan projected
on an xy plane is divided into segments of different colors is
shown in Figure 4. In this figure, Sj represents a set of points
of the jth segment (Sj ⊂ Pk).

At this point, we have several point cluster segments per
scan. With the data in this form, we can use the CSS algorithm

Fig. 3: Zoomed view of a segment of a 3D point cloud.

1 2 3 4 5 6 x [m]

1

2

3

4

5

y [m]

S1

S2

S3

S4
S5

S6

Fig. 4: Scan of a point cloud divided into six segments.

to detect the curvature extrema. To use this algorithm, first we
have to parameterize the curve segment as proposed by [10]
to obtain different ti values that vary from 0 to 1 as shown in
equations 2, 3 and 4.

di =

{
0, if i = 1√

(xi − xi−1)2 + (yi − yi−1)2, otherwise,
(2)

Dp =
n∑

i=1

di, (3)

ti =

{
0, if i = 1
1
Dp

∑i
j=1 dj , otherwise.

(4)

In the previous equations, the sub-index i varies from 1
to n, where n is the number of points of the curved segment

2019 International Conference on Control, Automation and Information Sciences (ICCAIS)

Authorized licensed use limited to: Universidad de chile. Downloaded on August 18,2021 at 00:39:23 UTC from IEEE Xplore. Restrictions apply.

Sj . Additionally, ti represents the ith element of the set that
represents the variable t. After the parameterization, the point
cloud segment is expressed in its Euclidean components x and
y as a function of t using the equation

CEUCLID = {x(t), y(t)}. (5)

It is then necessary to convolve x(t) and y(t) with
the Gaussian derivatives, which is also known as Gaussian
smoothing. These convolutions are represented by Ẋ(t, σ),
Ẍ(t, σ), Ẏ (t, σ) and Ÿ (t, σ). Finally, the results of previous
convolutions are used to compute the curvature κ(t, σ) for each
point of each segment in the 16 scans using the equation

κ(t, σ) =
Ẋ(t, σ)Ÿ (t, σ)− Ẏ (t, σ)Ẍ(t, σ)

(Ẋ(t, σ) + Ẏ (t, σ))3/2
. (6)

The following task is to find the curvature extrema in the
functions κ. This task should be time efficient. Therefore, an
algorithm that does not increase the computational complexity
of the scale space is required. In this work, we used a simple
approach proposed by R. Madhavan and H.Durrant-Whyte [10]
given by

|κi−1| < |κi| > |κi+1| and |κi−2| < |κi| > |κi+2|. (7)

In the previous conditions, the curvature extrema is found
by comparing the current curvature value, κi, with its two
neighbors on the left κi−1, κi−2 and right κi+1, κi+2. The
result of finding the curvature extrema can be seen in Figure
5. In this figure, the curvature extrema are marked with red

-0.6
-0.4

-0.2
0.0
0.2
0.4
0.6
0.8

0.0 0.2 0.4 0.6 0.8 1.0t

ⲕ

(a) Curvature function κ of segment S1 for σ = 0.1

0.0 0.2 0.4 0.6 0.8t 1.0
-0.025
-0.020

-0.015

-0.010
-0.005
0.000
0.005
0.010

ⲕ

(b) Curvature function κ of segment S1 for σ = 0.8

Fig. 5: Curvature functions κ of segment S1 for two values of
σ.

dots for two curvature functions κ(t, σ) with different values
of σ (Figs. 5(a) and 5(b)).

With the curvature extrema, we can create the scale space
as shown in Figure 6. To extract the features in the scale space,

0.0 0.2 0.7 1.0t

0.8

σ

0.1

Fig. 6: Curvature scale space created with the functions κ
shown in Figure 5.

we have to search for the curvature extrema that survived the
Gaussian smoothing. Therefore, we need to iterate the whole
scale space. To do this, we have to consider an important note
made by Asada and Brady [1], which is also mentioned in
[10]. This note states that curvature changes found at different
scales, σ, are reliably localized at σmin. However, if they are
found at σmin and do not persist across many scales, they are
less likely to determine the shape of the curve. Finally, the
segment S1 is composed of two features, one at t = 0.2 and
the other at t = 0.7.

V. RESULTS

To obtain the results, we divided the experiments into three
parts based on simulated data, real data and the KITTI dataset.
In all the experiments the ATE metric was used to determine
the LOAM trajectory error. In the case of the simulated data,
the OSPA metric was also used to determine the mapping error.
From here on, the LOAM algorithm using its original feature
extractor will be referred to as the Original LOAM algorithm
and the LOAM algorithm using the CSS feature extractor as
the CSS LOAM algorithm. Additionally, it is important to note
that the implementation of the original LOAM algorithm was
based on the code uploaded by the original author to the ROS
Indigo website2.

A. Simulated data

The purpose of the simulated data experiments is to control
the range noise added to the measurements of the simulated
lidar. The tested range noise standard deviation (σr) values
were 0.01 m, 0.02 m and 0.03 m, however, only the results
for σr = 0.02 m will be shown. Additionally, for this scenario,
we used the Gazebo simulation software to simulate the motion
of the Husky A-200 robot platform and the data acquisition of
the Velodyne VLP-16 LiDAR.

This scenario was composed of the robot platform mounted
with the lidar located at (x y z)T = (0 −10 0)T . Additionally,
a set of walls forming 12 corners was used together with boxes
of cubic shape forming 28 corners. All the corners represent
sharp features. The layout of this scenario can be seen in Figure

2http://docs.ros.org/indigo/api/loam velodyne/html/files.html.

2019 International Conference on Control, Automation and Information Sciences (ICCAIS)

Authorized licensed use limited to: Universidad de chile. Downloaded on August 18,2021 at 00:39:23 UTC from IEEE Xplore. Restrictions apply.

7 in which the ground truth features are marked with light blue
stars and the predefined trajectory is represent with a blue
dashed line.

Fig. 7: Scenario with simulated data.

The first metric used was the OSPA metric with cutoff
parameter c = 5m and power p = 2 [15], to determine the
LOAM mapping error as shown in Figure 8 with σr = 0.02
m. In this figure, the metric values are separated by an average

0 50 100 150 200
time [s]

3

3.5

4

4.5

5

O
SP

A
D

is
ta

nc
e

[m
]

LOAM
CSS

Fig. 8: LOAM feature estimation error using the OSPA metric
(σr = 0.02 m).

value of 0.56 meters and reach a maximum difference of 1.62
meters.

The second metric used in this scenario was the ATE
trajectory metric. As occurred with the previous metric, the
most important finding occurred when using σr = 0.02 m.
Figures 9a and 9b show the estimated trajectories of the
original LOAM and the CSS LOAM algorithms, respectively.
In these figures, the estimated trajectory with the original

LOAM algorithm presents high error values in the area near
to the point x = 0, y = 15. This trajectory error is also
represented in the error in y at time 100 s shown in Figure 10a.
In Figure 10a, the mean error of the original LOAM algorithm
was equal to 0.12 meters, while in Figure 10b the mean error
of the CSS LOAM algorithm was 0.06 meters.

-20 -15 -10 -5 0 5 10 15
x [m]

-10

-5

0

5

10

15

y
[m

]

Original LOAM
GPS

(a) Estimated trajectory using the original LOAM algorithm.

-15 -10 -5 0 5 10 15
x [m]

-10

-5

0

5

10

15

y
[m

]

CSS LOAM
GPS

(b) Estimated trajectory using the CSS LOAM algorithm.

Fig. 9: Estimated trajectories compared to ground-truth using
simulated data (σr = 0.02 m).

B. Real data

The environment used to conduct the real experiment was
the surroundings of Universidad de Chile - Campus Beauchef,
located in Santiago de Chile’s downtown area. This scenario
is mainly composed of buildings and trees which can feed the
LOAM and CSS feature extraction algorithms with a variety
of shapes.

Figure 11 shows the complete trajectory of the original
LOAM algorithm (red line, Figure 11a) and the CSS LOAM
algorithm (red line, Figure 11b) compared to the ground truth
trajectory generated by the GPS (blue dashed line). In Figs.
11(a) and (b), the estimated trajectories of the circular area
located at the bottom are shown separately as zoomed views.
This is to show that the trajectory of the CSS LOAM algorithm
is aligned better with the blue line than the trajectory of the
original LOAM algorithm.

C. KITTI Dataset

The results of the original LOAM algorithm and the CSS
LOAM algorithm using the KITTI visual odometry dataset
varied in some sequences. It is important to note that the
KITTI dataset provides the point cloud data as individual
files corresponding to each full scan of the environment. The
original LOAM algorithm processes each of these files at its
own rate, i.e. not necessarily in real time. Therefore to more

2019 International Conference on Control, Automation and Information Sciences (ICCAIS)

Authorized licensed use limited to: Universidad de chile. Downloaded on August 18,2021 at 00:39:23 UTC from IEEE Xplore. Restrictions apply.

0 50 100 150 200 250
-1

0

1
er

ro
r i

n
x

[m
]

0 50 100 150 200 250
time [s]

-1

0

1

er
ro

r i
n

y
[m

]

(a) Errors in x, y produced by the Original LOAM algorithm.

0 50 100 150 200 250
-1

0

1

er
ro

r i
n

x
[m

]

0 50 100 150 200 250
time [s]

-1

0

1

er
ro

r i
n

y
[m

]

(b) Errors in x, y produced by the CSS LOAM algorithm.

Fig. 10: Errors in x, y of the original LOAM algorithm and
the CSS LOAM algorithm using simulated data (σr = 0.02
m).

realistically evaluate the performances of both the original
and CSS LOAM algorithms, the KITTI data set files were
converted to data scan files, which were produced at the frame
rate of the Velodyne HDL-64E lidar - i.e. 10 frames per
second. The impact of this lidar data frame rate on the original
LOAM algorithm is not analyzed in the KITTI ranking, but
is considered here. It will be shown that the original LOAM
algorithm is not fast enough to process full Velodyne HDL-64E
data at the frame rate of the sensor.

An notable difference in results occurred when testing
sequence 06 of the KITTI dataset. Figure 12 shows the
trajectory of sequence 06 estimated with the original LOAM
algorithm (red line, Figure 12a) and the CSS LOAM algorithm
(red line, 12b) compared to ground truth (blue lines) with
the real sampling frequency of the lidar, as stated before.
Figure 13 shows the ATE error of the estimated trajectories.
In these figures, we can observe that the lowest error in the
x Euclidean component belongs to the CSS LOAM algorithm
(Figure 13b). In the case of the y component error the CSS
LOAM algorithm also shows a slight improvement over its
original LOAM counterpart.

The explanation for the results shown in Figures 12 and
13 are related to the LOAM algorithms’ processing times.
As described in section II, the performance of LOAM’s Lidar
Odometry block depends on the number of features extracted.
Therefore, we decided to see if this number affected the
original implementation of the LOAM algorithm. Figure 14
shows that some point clouds (Pk) of the KITTI dataset
were not being processed (referred to as ”Quantity of dropped

(a) Estimated trajectory using the original LOAM algorithm.

(b) Estimated trajectory using the CSS LOAM algorithm.

Fig. 11: Estimated trajectories using real data.

-200 -100 0 100 200
x [m]

-150

-100

-50

0

50

100

150

200

250

300

y
[m

]

Original LOAM
GPS

(a) Estimated trajectory using the
original LOAM algorithm.

-200 -100 0 100 200
x [m]

-150

-100

-50

0

50

100

150

200

250

300
y

[m
]

CSS LOAM
GPS

(b) Estimated trajectory using the
CSS LOAM algorithm.

Fig. 12: Estimated trajectories compared to ground-truth in the
sequence 06.

Pk”) by the original implementation of the LOAM algorithm.
This was producing incorrect trajectories when matching the
features.

VI. CONCLUSIONS AND FUTURE WORK

This article addressed the problem of feature misdetection
and inability to account for sensor range noise in the LiDAR
Odometry and Mapping (LOAM) algorithm. As a solution,

2019 International Conference on Control, Automation and Information Sciences (ICCAIS)

Authorized licensed use limited to: Universidad de chile. Downloaded on August 18,2021 at 00:39:23 UTC from IEEE Xplore. Restrictions apply.

0 20 40 60 80 100 120
-20

-10

0

10
er

ro
r i

n
x

[m
]

0 20 40 60 80 100 120
time [s]

-4

-2

0

2

er
ro

r i
n

y
[m

]

(a) Errors in x, y produced by the Original LOAM algorithm.

0 20 40 60 80 100 120
-20

-10

0

10

er
ro

r i
n

x
[m

]

0 20 40 60 80 100 120
time [s]

-4

-2

0

2

er
ro

r i
n

y
[m

]

(b) Errors in x, y produced by the CSS LOAM algorithm.

Fig. 13: Errors in x, y of the original LOAM algorithm and
the CSS LOAM algorithm in the sequence 06.

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

Fig. 14: Quantity of dropped point clouds, Pk, per sequence.

the replacement the original LOAM feature extractor with the
Curvature Scale Space (CSS) algorithm was proposed.

The original LOAM and CSS LOAM algorithms were
compared using simulated and real data including the KITTI
dataset. The Optimal Sub-Pattern Assignment (OSPA) and the
Absolute Trajectory Error (ATE) metrics were used to gauge
algorithmic performances. Both metrics demonstrated the su-
perior performance of the proposed CSS LOAM algorithm.

A significant difference in the original and proposed CSS
LOAM results occurred when using the KITTI dataset. The
original LOAM algorithm produced high ATE errors in various
data sequences. A major factor which contributed to this poor
performance was the inability of the original LOAM algorithm
to process data from the Velodyne HDL-64E at frame rate,
resulting in “dropped point clouds” and therefore a loss of
information. This problem did not occur with the CSS LOAM

algorithm due to its lower computational complexity.

Finally, the inclusion of the CSS feature extractor in
other SLAM algorithms such as the LeGO-LOAM algorithm
[16] could be considered. The LeGO-LOAM algorithm is a
modified version of the LOAM algorithm which is optimized
for a horizontally placed LiDAR on a ground vehicle. The
main difference between the LOAM algorithm and the LeGO-
LOAM algorithm is that the LeGO-LOAM algorithm assumes
that there is always a ground plane in the current 3D scan.

REFERENCES

[1] Haruo Asada and Michael Brady. The Curvature Primal Sketch. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 8(1):2–14,
1986.

[2] Tim Bailey and Hugh Durrant-Whyte. Simultaneous localization and
mapping (SLAM): Part I. IEEE Robotics and Automation Magazine,
13(3):108–117, 2006.

[3] Geovany Araujo Borges and Marie-José Aldon. Line Extraction in 2D
Range Images for Mobile Robotics. Journal of Intelligent and Robotic
Systems, 40:267–297, 2004.

[4] David H. Douglas and Thomas K. Peucker. Algorithms for the
Reduction of the Number of Points Required to Represent a Digitized
Line or its Caricature, chapter 2, pages 15–28. John Wiley & Sons,
Ltd, 2011.

[5] Filipe Silvio and Alexandre Luis. A Comparative Evaluation of 3D
Keypoint Detectors. In 9th International Conference on Computer
Vision Theory and Applications, pages 145–148, 2014.

[6] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready
for Autonomous Driving? The KITTI Vision Benchmark Suite. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2012.

[7] C. Harris and M. Stephens. A Combined Corner and Edge Detector.
Procedings of the Alvey Vision Conference 1988, pages 23.1–23.6, 1988.

[8] P.V.C. Hough. Method and means for recognizing complex patterns,
1962.

[9] David G Lowe. Distinctive Image Features from Scale Invariant
Keypoints. International Journal of Computer Vision, 60(2):91–110,
2004.

[10] R. Madhavan and H. F. Durrant-Whyte. Natural landmark-based
autonomous vehicle navigation. Robotics and Autonomous Systems,
2004.

[11] Farzinand Mokhtarian and Alan Mackworth. Scale-Based Description
and Recognition of Planar Curves and Two-Dimensional Shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(1),
1986.

[12] P. Núñez, R. Vázquez-Martı́n, J. C. del Toro, A. Bandera, and F. San-
doval. Natural landmark extraction for mobile robot navigation based
on an adaptive curvature estimation. Robotics and Autonomous Systems,
56(3):247–264, 2008.

[13] Theodosios Pavlidis and Steven L. Horowitz. Segmentation of Plane
Curves. IEEE Transactions on Computers, C-23(8):860–870, 1974.

[14] Radu Bogdan Rusu and S. Cousins. 3D is here: Point Cloud Library
(PCL). IEEE International Conference on Robotics and Automation,
pages 1 – 4, 2011.

[15] Dominic Schuhmacher, Ba Tuong Vo, and Ba Ngu Vo. A consistent
metric for performance evaluation of multi-object filters. IEEE Trans-
actions on Signal Processing, 56(8 I):3447–3457, 2008.

[16] Tixiao Shan and Brendan Englot. LeGO-LOAM : Lightweight and
Ground-Optimized Lidar Odometry and Mapping on Variable Terrain.
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2018.

[17] Sebastian Thrun. Probabilistic robotics. Communications of the ACM,
45(3):1999–2000, 2002.

[18] Zhong Yu. Intrinsic shape signatures: A shape descriptor for 3D object
recognition. 2009 IEEE 12th International Conference on Computer
Vision Workshops, ICCV Workshops 2009, pages 689–696, 2009.

[19] Ji Zhang and Sanjiv Singh. Loam: Lidar odometry and mapping in
real-time. In Robotics: Science and Systems Conference, July 2014.

2019 International Conference on Control, Automation and Information Sciences (ICCAIS)

Authorized licensed use limited to: Universidad de chile. Downloaded on August 18,2021 at 00:39:23 UTC from IEEE Xplore. Restrictions apply.

