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Abstract—Motivated by the need for simultaneous localisa-
tion and mapping (SLAM) algorithms which circumvent the
requirement of external data association routines and map
management heuristics, and account for realistic sensor detection
uncertainty, recent literature has adopted Random Finite Set
(RFS) based approaches. Solutions based on the Probability
Hypothesis Density (PHD) filter and more recently the Labelled
Multi-Bernoulli (LMB) filter have been demonstrated. The LMB
filter was introduced as an efficient approximation of the com-
putationally expensive δ-Generalised LMB (δ-GLMB) filter. The
LMB filter converts its representation of an LMB distribution
to δ-GLMB form and back during the measurement update
step. This conversion results in a loss of information and in
general yields inferior results compared to the δ-GLMB filter. To
address this issue, we present a SLAM solution using an efficient
variant of the δ-GLMB filter (δ-GLMB-SLAM) based on Gibbs
sampling, which is computationally comparable to LMB-SLAM,
yet more accurate and robust against sensor noise, measurement
clutter and feature detection uncertainty. The performance of
the proposed δ-GLMB-SLAM algorithm is compared to the
LMB-SLAM algorithm with a Gibbs sampling based joint map
prediction and update approach using a series of simulations.

Index Terms—SLAM, robotics, tracking, random finite sets

I. INTRODUCTION

Simultaneous localisation and mapping (SLAM) is the pro-
cess of incrementally building a map of the environment using
data from noisy sensors (exteroceptive and proprioceptive)
mounted on a mobile robot and estimating the robot’s position
over time with respect to this map. SLAM is considered as an
integral process required by many mobile robotic applications.

Starting from the seminal work of Smith et al. in [1], many
improvements have been proposed to the estimation theoretic
SLAM problem. In [2] Dissanayake et al. proposed an ex-
tended Kalman Filter based SLAM (EKF-SLAM) solution. In
[3] the FastSLAM algorithm was proposed, which adopts the
concept of a Rao-Blackwellized particle filter. In [4], an ex-
tended information filter based SLAM (EIF-SLAM) algorithm
was proposed as an alternative to EKF-SLAM with improved
computational requirements. In recent years, SLAM has been
modelled as a factor graph [5] and solved as a maximum a
posterior (MAP) estimation problem. Some of the original
contributions under this paradigm include [6] [7]. Although
such methods in general produce superior results, they still
inherit several fundamental problems [8]. One such problem

is the heuristic based data association phase, which can affect
the optimization and severely degrade the performance of
the algorithm. Also, the accuracy of these solutions relies
on the assumption that the environment is static, which may
produce inferior results in challenging dynamic environments.
This article proposes that the above mentioned issues can be
efficiently addressed using the recent RFS filtering framework.

In both the estimation theoretic and optimisation based
SLAM paradigms, robot position, landmark map and the
measurements are traditionally represented as random vectors.
Representing the landmark map, and measurements as random
vectors requires solutions to additional sub-problems such as
finding measurement to landmark associations, clutter (false
measurements) removal and map management before applying
the Bayes recursion or optimisation.

Parallel to developments in SLAM, Mahler [9] proposed
to represent a multi-target state by a finite set in Bayesian
multi-target tracking as it caters for a mathematically con-
sistent notion of estimation error. Mahler further devised a
set of mathematical tools called finite set statistics (FISST)
using integration and probability density for characterizing a
random finite set (RFS), which is consistent with point process
theory [10]. The RFS representation of the multi-object state
can cater for target detection uncertainty, data association
uncertainty and clutter filtering that are common in real-
world target tracking applications. Mahler further devised the
Probability Hypothesis Density (PHD) filter [11], Cardinalized
PHD (CPHD) filter [12] and the multi-Bernoulli filter [9] as
tractable approximations to the optimal Bayesian multi-target
filter. More recently in [13] [14] Vo et al. introduced the δ-
Generalized Labelled multi-Bernoulli (δ-GLMB) filter as an
analytic solution to the multi-target Bayes recursion. In [15],
Reuter et al. proposed the Labeled multi-Bernoulli (LMB)
filter as an efficient approximation to the more computationally
expensive δ-GLMB filter. In [16], Vo et al. introduced an
efficient implementation of the δ-GLMB filter by combining
the prediction and update steps and introducing a truncation
approach using Gibbs sampling.

The similarities between multi-target tracking and SLAM
led to the adoption of RFS modeling of landmark map and
measurements in SLAM. In [17] Mullane et al. presented
the first SLAM formulation using RFSs and later they pro-
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posed improved SLAM solutions based on Rao-Blackwellized
particle filtering in [18] and [19]. Although the PHD-SLAM
solution is robust against noisy sensory information and mea-
surement clutter, it models the landmark map as a Poisson
distributed RFS. In [20], an improved solution to the SLAM
problem was proposed by propagating the landmark map using
a Labeled Multi-Bernoulli (LMB) filter (named LMB-SLAM),
where a landmark is represented not only by its kinematic state
but also by a label. Such a representation may be beneficial for
filter based SLAM solutions with semantic features, especially
during loop closure detection. Furthermore, labeled features
provide a convenient identification and classification method
for SLAM algorithms having multiple feature types (see [21]
for a recent approach that may benefit from labeled features).

Unlike PHD-SLAM, which assumes the landmark map is a
Poisson distributed RFS, LMB-SLAM makes no assumptions
about the map and in general produces superior performance.
However, the LMB filter internally converts its LMB rep-
resentation of the map to a δ-GLMB distribution and back
to an LMB distribution during the measurement update step,
yielding a loss of information and hence accuracy (see [22] for
comparisons). Moreover, the performance of the LMB-SLAM
filter depends on the partitioning of landmarks present in the
sensor field of view (FOV) [22]. If the landmarks are easily
separable into partitions, LMB-SLAM performs efficiently. On
the other hand if the landmarks are not easily separable into
partitions, the computational cost is equivalent to employing
a δ-GLMB filter. Although in multi-target tracking, closely
spaced targets are not common, in SLAM it is highly likely to
encounter clustered and unevenly distributed landmarks which
appear in the sensor FOV. Furthermore, feature extraction
algorithms may produce multiple closely spaced features (for
example when using low resolution lidar), which may result
in possible performance degradation in LMB-SLAM.

In a manner similar to PHD-SLAM and LMB-SLAM, in
this article, we rely on the Rao-Blackwellized particle filter for
robot trajectory estimation but adopt the recently developed
efficient δ-GLMB filter [16] for landmark map estimation.
The proposed algorithm, called δ-GLMB-SLAM inherits the
joint prediction/update method of the efficient δ-GLMB filter
[16] for landmark map posterior propagation. Furthermore, the
Gibbs sampling based truncation approach [16] results in large
computational savings compared to the original δ-GLMB filter
[13] [14]. Using a series of simulations, it is shown that the
proposed δ-GLMB-SLAM solution, outperforms LMB-SLAM
in terms of pose estimation error, quality of the map and
running time yielding robust performance under varying clutter
conditions and feature detection uncertainty.

II. PROBLEM FORMULATION

Let u1:k = [u1,u2, . . . ,uk]T denote the time sequence of
control commands applied to the robot up to time k, where
uk denotes the control command applied at time k. Let the
time sequence of the pose history of the robot be denoted by
x1:k = [x1,x2, . . . ,xk]T , where xk denotes the pose of the
robot with respect to the global frame of reference at time k.

Let the time sequence of sets of measurements obtained using
an exteroceptive sensor mounted on the vehicle be denoted by
Z1:k = [Z1,Z2, . . . ,Zk], where Zk = {zk,1, zk,2, . . . , zk,mk}
denotes the measurement detection set received at time k,
where mk denotes the number of detections.

A. Labelled RFS representation of the Map

Let the landmark map be represented as a labeled RFS
M = {m̂k,1, m̂k,2, . . . , m̂k,nk} where nk denotes the number
of estimated landmarks at time k. Each realisation of a
landmark m̂ ∈M is of the form m̂ = (m, l), where m ∈M
is the kinematic state and l ∈ L is a distinct label of the point
m. Distinct labels provide a method to distinguish between
landmarks [13] [14].

Let the kinematic state space of a landmark be denoted by
M and the discrete label space be denoted by L. Further, let
L : M×L→ L be the projection from labeled RFSs to labels
defined by L(m, l) = l. Let the Kronecker delta function
for arbitrary arguments (such as vectors, sets or integers) be
denoted by δY(X ), which takes the value of 1 only if X = Y
and 0 otherwise. The indicator function 1X (Y) takes the value
of 1 if Y ∈ X and 0 otherwise. Let ∆(M)

∆
= δ|M|(|L(M)|)

denote the distinct label indicator, which takes the value of
1 if and only if the labeled set M has the same cardinality
as its labels L(M) = {L(m̂) : m̂ ∈ M} and 0 otherwise.
Let F(J ) represent all finite subsets of a set J . The inner
product of two continuous functions is denoted by 〈f, g〉 ∆

=∫
f(x)g(x)dx and for a real valued function h(x), the multi-

object exponential is defined as h(·)X ,
∏

x∈X h(x).

B. Rao-Blackwellization of the SLAM problem

In the SLAM problem, it is required to evaluate the posterior
probability distribution,

pk|k(Mk,x1:k|Z1:k,u1:k,x0) (1)

for all times k, where x0 denotes the initial pose of the vehicle.
In other words, it is required to evaluate the joint posterior
density consisting of the map and the robot pose history at all
times k, given the time sequences of sets of observations, and
control commands up to and including time k and the initial
robot pose.

The joint posterior density consisting of the landmark map
Mk and robot trajectory x1:k at time k, is evaluated using the
existing mapMk−1, history of robot poses x0:k−1 evaluated at
time k − 1, the time sequence of sets of observations Z1:k and
the applied control commands u1:k up to and including time k.
In a manner similar to Montemerlo’s approach in FastSLAM
[3], we factorise the SLAM posterior into a product of the
robot trajectory posterior and the map posterior conditioned
on the robot trajectory as follows,

pk|k(Mk,x1:k|Z1:k,u1:k,x0)

= pk|k(Mk|Z1:k,x0:k)

× pk|k(x1:k|Z1:k,u1:k,x0)

(2)

This decouples the SLAM problem into two separate (condi-
tionally dependant) estimation problems. The key advantage
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of this factorisation is two-fold, firstly it can benefit from
using Monte Carlo methods (particle filtering) for joint robot
trajectory estimation, making it possible to adopt complex non-
linear motion models. Secondly, it can benefit from using an
RFS representation and FISST techniques for landmark map
posterior estimation. By representing the map and measure-
ments as RFSs and appropriately modelling the map transition
model, it is possible to estimate multiple landmarks in the
presence of measurement noise and clutter by implicitly taking
data association, landmark detection and landmark survival
uncertainties into account within a single joint estimation
framework.

C. δ-GLMB-SLAM Observation Model

The measurement set received from the onboard sensor at
time k contains both landmark generated measurements and
false alarms (measurement clutter). Let the RFS Ck denote the
measurement clutter, then the measurements received at time
k can be modelled by the RFS,

Zk = Ck ∪

 ⋃
(mk,lk)∈Mk

Hk(mk, lk)

 (3)

where, Hk(mk, lk) is a Bernoulli RFS representing the
measurement corresponding to the observation of landmark
(mk, lk) ∈ Mk. Due to the limited field of view (FOV) of
the sensor Hk(mk, lk) can have a value of the form {zk} with
probability of detection pD(mk, lk|xk) or ∅ with probability
of 1− pD(mk, lk|xk). Note that probability of detection is a
function of landmark state and robot position. The measure-
ment likelihood function conditioned on the detection of the
landmark with state (mk, lk) is given by gk(zk|mk, lk,xk).
Assuming that the measurements are conditionally indepen-
dent and the measurement clutter is an independent process,
the measurement likelihood function corresponding to the
observations can be written as,

g(Z|M,x) = e−〈κ,1〉κZ
∑

θ∈Θ(L(M))
[ψZ(·; θ)]M (4)

where κ denotes the intensity of Poisson distributed measure-
ment clutter and,

ψZ(m, l; θ) =

{
pD(m,l)g(zθ(l)|m,l,x)

κ(zθ(l))
if θ(l) > 0

1− pD(m, l) if θ(l) = 0
(5)

where θ is an association map of the form, θ : L →
0, 1, . . . , |Z| such that each distinct estimated feature is asso-
ciated to a distinct measurement (i.e. θ(i) = θ(i′) > 0 implies
i = i′). The set Θ of all such association maps is called the
association map space and a subset of association maps with
domain I is denoted by Θ(I). Note that, unlike multi-target
tracking, in SLAM, already estimated landmarks that exit the
current sensor FOV are retained in the map with probability
of detection pD(m, l) = 0 during the measurement update
step and therefore in general contribute to the robot trajectory
posterior estimate.

D. δ-GLMB-SLAM Map transition model

As the robot continues to explore the unknown environment,
new observations are collected in the limited FOV of the sensor
and fused into the landmark map. These new landmarks are
modelled as the labelled RFS Qk with the birth label space B,
and the corresponding birth density is assumed to be a labelled
multi-Bernoulli density of the form,

fB(Qk) = ∆(Q)[1− r(.)
B ]B−L(Qk)[1B(.)r

(.)
B ]L(Qk)[pB ]Qk

(6)
where a realisation of r(·)

B is of the form r
(l)
B = rB(m, l) for

any label l ∈ B− L(Qk) and denotes the birth probability
of the landmark with label l and pB(m, l) denotes its spatial
distribution.

Furthermore, a portion of the already existing landmarks in
the map appears in the current sensor FOV. Given the state of
the current landmark map,M, a landmark (mk, lk) ∈M may
appear in the sensor FOV in the next time step with probability
pS(m, l) and change its state to (mk+1, lk+1) with probability
density δmk

(mk+1)δlk(lk+1), or leave the sensor FOV with
probability qS(m, l) = 1−pS(m, l). It is important to note that
unlike multi-target tracking, in SLAM, landmarks are usually
assumed stationary and hence the motion of a landmark
is modelled as a Kronecker delta function, δmk

(mk+1). In
addition, the label of a landmark is preserved during the state
transition. Assuming that the state of the landmark map is
represented by M, the set of surviving landmarks in the next
time step is modelled as a labeled multi-Bernoulli (LMB) RFS
W with parameter set {(pS(m, l), δm(·)δl(·)) : (m, l) ∈M}.
The state transition is modelled as a LMB distribution given
by,

fS(W|M) = ∆(W)∆(M)1L(M)(L(W))[Φ(W; ·)]M, (7)

where,

Φ(W;mk+1, lk+1) =
∑

(mk+1,lk+1)∈W

δlk(lk+1)pS(mk, lk)δmk
(mk+1)

+ [1− 1L(W)(lk)]qS(mk, lk).
(8)

The newly appearing (birth) landmarks are independent of the
already existing landmarks in the map. Therefore, it can be
shown that the probability density of the predicted state of
the map Mk+1 conditioned on the current map Mk can be
written as a product of birth density and the transition density
of the surviving landmarks as follows [13],

f(Mk+1|Mk) = fS(Mk+1 ∩ (M× L)|Mk)

× fB(Mk+1 − (M× L)).
(9)

Note that, the estimated landmarks that exit the current sensor
FOV should remain in the map and be modelled with proba-
bility of survival pS(m, l) = 1 during the prediction step and
contribute to the robot trajectory posterior estimation.

E. δ-GLMB-SLAM Map Estimation

To propagate the landmark map in time, we adopt the
recently proposed efficient δ-GLMB filter [16]. This approach
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avoids the traditional prediction/update steps of a filter and
directly updates the posterior at time k to time k + 1, achieving
significant computational savings. Let the map posterior at
time k, p(Mk|Z1:k,x0:k) be abbreviated as p(M) and let the
measurement updated landmark map posterior at time k + 1
be abbreviated as p(M+|Z+). Assume that p(M) at time k
is given by the δ-GLMB distribution of the following form,

p(M) = ∆(M)
∑

(I,ξ)∈F(L)×Ξ

ω(I,ξ)δI(L(M))[p(ξ)]M, (10)

where I ∈ F(L) represents a set of landmark labels and
ξ ∈ Ξ represents a history of association maps upto time k
and denoted by ξ = (θ1, ..., θk). The pair (I, ξ) represents
the hypothesis that the set of landmarks I has history ξ
of association maps and the weight ω(I,ξ) represents the
probability of the hypothesis (I, ξ) and p(ξ)(m, l) represents
the probability density of the kinematic state of the feature
with label l and the association map history ξ.

Assume that the birth landmarks (newly appearing land-
marks) and the surviving landmarks in the FOV follow labeled
multi-Bernoulli distributions. Let B+ denote the label space
of newly appearing features in the FOV at time k + 1. Then,
adopting the joint prediction/update approach proposed in [16],
the measurement updated map posterior p(M+|Z+) can be
written as,

p(M+|Z+) ∝ ∆(M+)
∑

I,ξ,I+,θ+

ω̄
(I,ξ,I+,θ+)
Z+

× δI+(L(M+))[p
(ξ,θ+)
Z+

]M+ ,

(11)

where L+ = L ∪ B+, I+ ∈ F(L+), θ+ ∈ Θ+, where Θ+

denotes the association map space at time k + 1, and

ω̄
(I,ξ,I+,θ+)
Z+

= ω(I,ξ)ω
(I,ξ,I+,θ+)
Z+

, (12)

w
(I,ξ,I+,θ+)
Z+

= 1Θ+(I+)(θ+)[1− P̄ (ξ)
S ]I−I+ [P̄S ]I∩I+

[1− r(·)
B,+](B+−I+)r

(B+∩I+)
B,+ [ψ̄

(ξ,θ+)
Z+

]I+ ,
(13)

P̄
(ξ)
S (l) = 〈p(ξ)(·, l), pS(·, l)〉, (14)

ψ̄
(ξ,θ+)
Z+

(l+) = 〈p̄(ξ)
+ (·, l+), ψ

(θ+(l+))
Z+

(·, l+)〉, (15)

where ψ
(θ+(l+))
Z+

(m+, l+) = ψZ+(m+, l+; θ+) (see Eq.(5)),
and

p̄
(ξ)
+ (m+, l+) = 1L(l+)

×
〈pS(·, l+)δ(·)(m+), p(ξ)(·, l+)〉

P̄
(ξ)
S (l+)

+ 1B+
(l+)pB,+(m+, l+),

(16)

p
(ξ,θ+)
Z+

(m+, l+) =
p̄

(ξ)
+ (m+, l+)ψ

(θ+(l+))
Z+

(m+, l+)

ψ̄
(ξ,θ+)
Z+

(l+)
(17)

where the notation + has been used to abbreviate the symbols
at time k + 1 and r

(l+)
B,+ denotes the probability of birth

of the landmark l+. The spatial distribution of each birth
landmark, pB,+(m+, l+), is modelled as a Gaussian and

hence the resultant δ-GLMB filter follows a Gaussian mixture
representation, where the spatial distribution of each landmark
in the map with label l in each hypothesis results in a mixture
of Gaussians (see III-B for more details).

The idea behind the joint prediction/update approach using
a Gibbs sampler is to generate a smaller number of highly
probable hypotheses using existing hypotheses, probability
of detection and probability of survival values of landmarks
and the set of received measurements at time k + 1. This
prevents the generation of insignificant and contradicting hy-
potheses and drastically reduces the computational complexity
compared to the traditional prediction/update based δ-GLMB
filter implementation [14] yielding a computationally efficient
alternative for real-time implementations.

F. Trajectory estimation

Similar to PHD-SLAM in [3], the robot trajectory posterior
is factorised as follows,

pk|k(x1:k|Z1:k,u1:k,x0)

=
gk|k−1(Zk|Zk−1,x0:k)pk|k−1(xk|x1:k−1,Z1:k−1,u1:k,x0)

p(Zk|Zk−1,u1:k,x0)

× pk−1|k−1(x1:k−1|Z1:k−1,u1:k−1,x0),
(18)

and to cater for non-linear and non-Gaussian motion we adopt
a Rao-Blackwellised particle filter [23] as explained in the
section III-A.

III. IMPLEMENTATION

This section presents the implementation details of the
proposed δ-GLMB-SLAM algorithm. The robot trajectory is
propagated using a Rao-Blackwellised particle filter to cater
for non-linear and possibly multimodal motion models in both
2D and 3D environments. The trajectory dependant landmark
map is modeled as a labeled RFS and propagated using a δ-
GLMB filter [16].

The δ-GLMB distribution of the landmark map posterior at
time k can be approximated using a set of H highest probable
hypotheses in the following form,

p(M|x0:k) = ∆(M)
H∑
h=1

ω(h)δI(h)(L(M))
[
p(h)

]M
, (19)

where the right hand side of the above equation can
also be represented as a parameter set of the form{

(I(h), ω(h), p(h))
}H
h=1

, where for each hypothesis h, I(h)

represents a set of landmark labels, ω(h) represents the prob-
ability of the hypothesis and p(h) consists of the spatial dis-
tribution p(h)(m, l) of each landmark within this hypothesis.

Suppose that the robot trajectory posterior,
pk|k(x1:k|Z1:k,u1:k,x0) can be represented by a set of

weighted particles of the form Ωk =
{
w

[i]
k ,x

[i]
1:k

}Ns
i=1

, where

w[i] represents the weight of the particle i. Then, SLAM
posterior (1) can be represented as,{

w
[i]
k ,x

[i]
1:k,
{

(I(i,h), ω(i,h), p(i,h))
}H
h=1

}Ns
i=1

, (20)

The 2018 International Conference On Control Automation & Information Sciences (ICCAIS 2018)
October 24-27, 2018, Hangzhou, China.

978-1-5386-6020-1/18/$31.00 ©2018 IEEE 178Authorized licensed use limited to: Universidad de chile. Downloaded on August 18,2021 at 00:55:55 UTC from IEEE Xplore.  Restrictions apply. 



since the δ-GLMB distribution of the landmark map is condi-
tioned on the robot trajectory. The details on the implemen-
tation of the particle filter and the Gaussian mixture (GM)
implementation of the δ-GLMB filter is presented in the
following sub-sections.

A. Robot trajectory estimation

Assume that the weighted set of particles Ωk−1 represent
the robot trajectory posterior at time k− 1. Then at time k, a
new robot pose is sampled from each particle by applying the
control commands as follows,

x
[i]
k ∼ fx(xk|x[i]

k−1,uk). (21)

The new robot pose, x
[i]
k , is then added to the set of parti-

cles Ωk−1, creating a temporary set of particles distributed
according to the proposal distribution given by,

qk|k(x
[i]
1:k|Z1:k−1,u1:k,x0)

= qk|k−1(x
[i]
k |x

[i]
1:k−1,Z1:k−1,u1:k,x0)

× qk−1|k−1(x
[i]
1:k−1|1:k−1|Z1:k−1,u1:k−1,x0),

(22)

where the transition density in the proposal distribution
(Eq.(22)) is chosen to be equivalent to that of the robot
trajectory posterior (Eq.(18)) as,

qk|k−1(x
[i]
k |x

[i]
1:k−1,Z1:k−1,u1:k,x0)

= pk|k−1(x
[i]
k |x

[i]
1:k−1,Z1:k−1,u1:k,x0).

(23)

Now, each particle in the temporary set is assigned an impor-
tance weight given by,

w
[i]
k =

pk|k(x
[i]
1:k|Z1:k,u1:k,x0)

qk|k(x
[i]
1:k|Z1:k−1,u1:k,x0)

∝ gk|k−1(Zk|Z1:k−1,x
[i]
0:k)w

[i]
k−1,

(24)

where gk|k−1(Zk|Z1:k−1,x0:k) is the normalisation constant
in the δ-GLMB filter posterior given by,

gk|k−1(Zk|Z1:k−1,x0:k) =
∑

I,ξ,I+,θ+

ω̄
(I,ξ,I+,θ+)
Z+

. (25)

The importance weight of each particle in the temporary set
is normalised such that,

∑Ns
i=1 w

[i]
k = 1. Then, a new set of

Ns particles are drawn with replacement, where each particle
is sampled with a probability proportional to its importance
weight. The resultant particle set with its importance weights,
denoted by Ωk, represents the robot trajectory posterior density
at time k.

B. Map estimation

In this section, we briefly summarize the details of the
Gaussian mixture implementation of the δ-GLMB filter used
in the estimation of the landmark map. Let N (., µ,P) denote
a Gaussian probability density function with mean µ and
covariance P, and assume that the probability of detection
of a landmark within the sensor FOV is of the form pD =

pD(m, l). Let the observation model be a non-linear function
of the form,

zk = hk(mk, lk,x
[i]
k, νk), (26)

where νk represents a zero-mean Gaussian measurement noise
source with covariance Rk and x[i] is the robot pose according
to particle i. Then, assuming that the spatial distribution of
(mk, lk) is of the form N (mk;µk,Pk), the measurement
likelihood can be approximated as a Gaussian distribution by
linearising:

gk(z|mk, lk,x
[i]
k)

≈ N (z;hk(µk, lk,x
[i]
k, 0),UkRkUk

T + HkPkHk
T ),

(27)
where Uk is the Jacobian of hk(mk, lk,x

[i]
k, νk) with re-

spect to νk at νk = 0 and Hk denotes the Jacobian of
hk(mk, lk,x

[i]
k, 0) with respect to mk, at mk = µk.

Furthermore, assume that the RFS Q+ of newly appearing
features in the sensor FOV can be modelled by a labelled
multi-Bernoulli distribution given by,

fB(Q+) = {r(l+)
B,+, pB,+(m+, l+|z+)}|Z+|

l+=1, (28)

where, r(l+)
B,+ denotes the probability of birth of landmark l+,

and its spatial distribution pB,+(m+, l+|z+) is modelled as a
Gaussian distribution (or a mixture of Gaussian distributions)
using the adaptive birth approach proposed in [15]. Assume
that each hypothesis of the landmark map distribution p(M)
(Eq.(10)) at time k is represented by the hypothesis weight
ω(I,ξ) and the set of spatial distributions of each landmark
in the set I with label l is given by a mixture of weighted
Gaussian distributions as,

p(ξ)(m, l) =
∑J(ξ)(l)

j=1
α

(ξ)
j N (m;µ

(ξ)
j (l),P

(ξ)
j (l)), (29)

where, α(ξ)
j denotes the weight of jth Gaussian component.

Then, using Eq.(15)-(17) it can be shown that the measurement
updated spatial density for a given association map θ+ in
the measurement updated δ-GLMB distribution (Eq.(11)) also
results in a mixture of weighted Gaussian distributions of the
form,

p
(ξ,θ+)
Z+

(m, l) =
∑J(ξ)(l)

j=1
α

(ξ,θ+)
Z+,j

N (m;µ
(ξ,θ+)
Z+,j

(l),P
(ξ,θ+)
Z+,j

(l)),

(30)
where α

(ξ,θ+)
Z+,j

, µ(ξ,θ+)
Z+,j

(l) and P
(ξ,θ+)
Z+,j

(l) denote the weight,
mean and covariance of the measurement updated jth Gaus-
sian distribution component using the association map θ+. The
weight ω̄(I,ξ,I+,θ+)

Z+
of each hypothesis can be obtained using

Eq.(12)-(16). Note that the sum of the hypothesis weights,
is equivalent to the normalisation constant of the δ-GLMB
update posterior (Eq.(11)), and is used in the trajectory update
step in Section III-A.

In order to extract the landmark map, the cardinality
distribution component of the δ-GLMB distribution of the
landmark map of the highest weighted particle is obtained
using its hypothesis weights. The highest weighted hypothesis
component with the cardinality equivalent to the maximum a
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posteriori (MAP) cardinality estimate (see [14]) contains the
labels and the mean locations of the landmarks in the map.

IV. RESULTS

The performance of the proposed δ-GLMB-SLAM algo-
rithm is evaluated using a set of Matlab simulations and
compared with an efficient variant of LMB-SLAM using the
recently proposed fast implementation of the LMB filter with
Gibbs sampler [24]. Standard measurement gating approaches
are used in both algorithms with identical parameters to
reduce the computational costs. However we opt out of using
measurement clustering in LMB-SLAM and instead we use
parallelization at the particle level (using the Matlab parallel
computing toolbox) in both algorithms. Birth features (newly
appearing) are modeled using the adaptive birth approach [20]
and a birth probability value of 0.01 is used with measurements
that are not associated to any existing feature and a probability
value of 0.005 is used if a measurement can be associated with
at least one existing feature.

A robot is driven on a pre-planned path in a simulated en-
vironment consisting of 23 landmarks. The control commands
and measurements are generated from a single run of the
robot with added Gaussian noise according to the parameters
in the Table. I and measurement clutter is generated with
four separate runs with rates λc 1, 5, 10 and 15 points per
scan. The probability of detection pD of a landmark within
the sensor FOV was set to 0.7 and the pD of a landmark
(already existing in the map) out of the FOV is set to 0.
The probability of survival pS of a feature within the sensor
FOV is set to 0.95 and pS of a landmark (already existing
in the map) and out of the current sensor FOV is set to 1.
These settings make sure that a landmark in the estimated map
remains in the map when it leaves the current sensor FOV,
which is consistent with the assumption that the landmarks
remain static. A pruning threshold value of 0.08 is chosen in
LMB-SLAM to prune insignificant features, and a hypothesis
pruning threshold of 0.00001 is chosen in δ-GLMB-SLAM to
remove insignificant hypotheses. These values produce com-
parable estimation results and were chosen by executing the
simulations (without control noise and measurement clutter)
multiple times with LMB-SLAM and δ-GLMB-SLAM under
all four clutter conditions.

Both algorithms are executed with 15 Monte Carlo (MC)
runs per each clutter rate. The estimated and actual robot
trajectory of a sample MC run under each clutter rate is shown
in Fig. 1. It can be seen that both algorithms produce almost
identical results at low clutter rates, however, under high
clutter, LMB-SLAM produce inferior results with multiple
false features and drift in the trajectory estimate compared
to δ-GLMB-SLAM. Root mean squared (RMS) robot pose
estimation error in X, Y and heading angle are compared in
Fig.2, Fig.3 and Fig.4 respectively. It is clear that δ-GLMB-
SLAM produces smaller average pose estimation errors com-
pared to LMB-SLAM in all clutter conditions (except λc=1).
It can also be seen that LMB-SLAM produces inferior results
during loop closure as the clutter rate increases yielding drifts

TABLE I: Parameters Used in the Simulation

Robot/Sensor Parameters Values

Velocity v 1m/s
Sensor FOV Range (r) 0 - 3m

Bearing (b) −π - +π
Control Noise Velociy (σv) 0.1m/s

Steering Angle (σa) 20

Measurement Noise Range (σr) 0.3m
Bearing (σb) 20

TABLE II: Comparison of average OSPA distance (in meters)
with standard deviation, with cut-off (c) value of 0.5 and the
order (p) of 1.

Clutter (λc) LMB-SLAM δ-GLMB-SLAM
1 0.160 ± 0.035 0.114 ± 0.024
5 0.172 ± 0.031 0.095 ± 0.030
10 0.150 ± 0.033 0.113 ± 0.037
15 0.228 ± 0.052 0.114 ± 0.044

TABLE III: Comparison of average run time per step (in
seconds) with standard deviation.

Clutter (λc) LMB-SLAM δ-GLMB-SLAM
1 1.042 ± 0.258 0.758 ± 0.127
5 1.301 ± 0.318 0.804 ± 0.112
10 1.503 ± 0.380 0.957 ± 0.143
15 1.558 ± 0.509 1.166 ± 0.168

in Y and heading angle. A comparison of the estimated feature
map against the actual ground truth map is compared in terms
of average OSPA distance in Table. II, and it is clear that
even at the highest clutter rate, the average OSPA error of
δ-GLMB-SLAM is smaller than that of LMB-SLAM. The
average running time is compared in Table.III, and it is clear
that the running time increases significantly with the clutter
rate in LMB-SLAM compared to δ-GLMB-SLAM. These
results are consistent with the fact that, LMB-SLAM expands
its LMB distribution into a δ-GLMB distribution prior to
measurement update and combines the resultant hypotheses
after the update step. In comparison, δ-GLMB-SLAM retains
the hypotheses until further measurement updates invalidate
insignificant hypotheses, which results in a significantly robust
performance in terms of pose estimation accuracy, OSPA
distance and running time compared to LMB-SLAM.

V. CONCLUSION

In this paper, we have presented a new RFS based SLAM al-
gorithm called δ-GLMB-SLAM. Similar to earlier RFS based
SLAM algorithms, δ-GLMB-SLAM factorizes the SLAM
posterior into the landmark map posterior and robot trajectory
posterior via Rao-Blackwellization. The robot trajectory is
propagated using a particle filter, and the landmark map is
estimated using an efficient variant of the δ-GLMB filter based
on Gibbs sampling. The performance of δ-GLMB-SLAM is
evaluated using a series of simulations, and compared to the
LMB-SLAM algorithm with a Gibbs sampling based joint map
prediction and update approach. From the simulation results,
it can be seen that the proposed δ-GLMB-SLAM algorithm
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(a) LMB-SLAM [λc = 1] (b) δ-GLMB-SLAM [λc = 1]

(c) LMB-SLAM [λc = 15] (d) δ-GLMB-SLAM [λc = 15]

Fig. 1: A comparison of the estimated robot trajectory (in red) superimposed on the ground truth robot trajectory (in dashed
blue) for varying clutter conditions. The black plus signs represent the actual feature positions and the red circles represent the
estimated feature positions. The green crosses represent accumulated measurement clutter and the magenta lines corresponds
to feature observations.

(a) LMB-SLAM (b) δ-GLMB-SLAM

Fig. 2: Comparison of RMSE in the X direction under varying clutter rates.

(a) LMB-SLAM (b) δ-GLMB-SLAM

Fig. 3: Comparison of RMSE in the Y direction under varying clutter rates.
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(a) LMB-SLAM (b) δ-GLMB-SLAM

Fig. 4: Comparison of RMSE in the heading under varying clutter rates.

outperforms LMB-SLAM in terms of pose estimation error,
quality of the map and running time under varying clutter
conditions. The quality of the pose estimation error and the
map can be attributed to the fact that the δ-GLMB filter
maintains multiple hypotheses for the landmark map state
and removes insignificant hypotheses as further measurements
invalidate contradicting hypotheses. LMB-SLAM however,
combines multiple hypotheses during the measurement update
step into a single LMB distribution resulting in a loss of infor-
mation and drifts during loop closure. Standard measurement
gating, particle level parallelization and Gibbs sampler based
hypothesis generation result in a lower run time performance
of δ-GLMB-SLAM, which outweighs the savings expected by
combining multiple hypotheses in LMB-SLAM.
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