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Abstract—Recently, various algorithms which adopt Random
Finite Sets (RFS) for the solution of the fundamental, autonomous
robotic, feature based, Simultaneous Localization and Mapping
(SLAM) problem, have been proposed. In contrast to their
vector based counterparts, these techniques jointly estimate the
vehicle and map state and map cardinality. Most of the proposed
RFS solutions are based on a Rao-Blackwellized particle filter
representing the vehicle state, accompanied by an RFS filter to
represent the map. This article shows that an RFS maximum
likelihood approach to SLAM is also possible.

By maximizing the RFS based measurement likelihood this
article demonstrates that Maximum Likelihood (ML) SLAM is
possible without the need for external data association algorithms.
It will be demonstrated that RFS based ML-SLAM converges
to the same solution as its traditional vector-based counterpart.
However, fundamentally RFS-ML-SLAM does not require the
correct data association decisions necessary for the correct
convergence of traditional random vector based approaches.

I. INTRODUCTION

Random finite set (RFS)-based filters have been shown to

outperform traditional vector-based filters when exposed to

significant clutter (i.e., false alarms), both in target tracking

and simultaneous localization and mapping (SLAM) applica-

tions [1]. Probability hypothesis density (PHD) filters have

been used in solutions to SLAM in dynamic environments

[2, 3]. However, the PHD filter, which is the main RFS based

method that has been applied to SLAM using experimental

data to date, has been described as having “poor memory”;

i.e., it tends to discard old information in favour of new

measurements [4]. It has also been found to have a lower

performance than vector based filters under low amounts of

clutter in some SLAM applications [1]. Some of the methods

that attempt to solve the problems of the PHD filter are the

cardinalized PHD (CPHD) and cardinality balanced multi-

target multi-Bernoulli (CB-MemBer) filters, and more recently

the labelled multi Bernoulli (LMB) filter [4, 5, 6]. The LMB

filter has been adapted to SLAM and has been shown to

outperform PHD-SLAM in simulation [7].

Concurrent to the development of RFS based filters in

the tracking community, the robotics SLAM community has

moved away from filtering based solutions to batch estimation

approaches, which use non-linear optimization methods to
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obtain a Maximum Likelihood (ML) solution [8, 9]. Such

methods include graphSLAM [10], iSAM [11] and iSAM2

[8]. These algorithms, which are usually based on non-linear

least squares optimization, provide more accurate solutions

over larger datasets than their filtering counterparts. However,

these methods still rely on external routines to perform data

association and map management, usually based on either

maximum likelihood or place recognition algorithms. The RFS

formulation of the problem in this batch form complicates

the optimization process considerably, even when assuming a

known number of landmarks.

The facts presented above provide a compelling reason

to derive a maximum likelihood RFS based method, which

should result in a superior performance both for large datasets

and under high clutter and detection uncertainty. In this

paper an initial version of such a method will be presented.

By maximizing the RFS based measurement likelihood, this

article demonstrates that Maximum Likelihood (ML) SLAM

is possible without the need for external data association algo-

rithms. Fundamentally, it will be shown that RFS based ML-

SLAM converges to an equivalent solution as its traditional

vector-based counterpart, but without the need for correct data

association information. The validity of this approach will be

shown through the solution of 1D and 2D simulated datasets.

Section II shows the traditionally used random vector least

squares approach. In Section III the formulation of the maxi-

mum likelihood SLAM problem will be presented within the

RFS framework. In Section IV the particle swarm optimization

algorithm is presented, which is then adapted in Section V to

the RFS-SLAM problem. Results of 1D and 2D simulations

are shown in Section VI, and Section VII summarizes the main

contributions of the article.

II. RANDOM VECTOR BASED SLAM BATCH ESTIMATION

SLAM solutions using the batch estimation approach are

usually maximum likelihood strategies in which the measure-

ment likelihood function, p
(
Z0:k

∣∣∣x0:k,m,u0:k−1

)
, is max-

imized over all possible trajectories, x0:k, and feature maps,

m = [m1, ... ,m|m|]. Z0:k corresponds to all measurement

detections Zi = {z1
i , ... , z

|Zi|
i } from time 0 to k inclusive,

and u0:k−1 corresponds to odometry measurements from time

0 to k− 1 inclusive. Assuming that the number of landmarks

is known, and using a known data association hypothesis
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function θ(·), this likelihood can be expressed as:

p
(
Z0:k

∣∣∣x0:k,m,u0:k−1, θ
)

=
k∏

i=1

g(xi|xi−1,ui−1)
k∏

i=0

|Zi|∏
j=1

h(zj
i |xi,m

θ(j)) , (1)

where the function θ(j) represents the data association of

detection zj
i with map element mθ(j). Assuming that the

motion and measurements are modelled with additive Gaussian

noise,

g(xi|xi−1,ui−1) = N(xi; x̂i(xi−1,ui−1),Σg), (2)

h(zj
i |xi,m

θ(j)) = N(zj
i ; ẑ

j
i (xi−1,m

θ(j)),Σh) , (3)

where ẑj
i (xi−1,m

θ(j)) and Σh are the mean and covariance of

the measurement model, and x̂i(xi−1,ui−1) and Σg are the

mean and covariance of the motion model. This allows the

maximization likelihood problem to be expressed in a non-

linear least squares form, by applying the log() function to

(1):

arg max
x1:k,m

k∏
i=1

g(xi|xi−1,ui−1)
k∏

i=0

|Zi|∏
j=1

h(zj
i |xi,m

θ(j))

= arg min
x1:k,m

k∑
i=1

(xi − x̂i)
TΣ−1

g (xi − x̂i)

+
k∑

i=0

|Zi|∑
j

(zj
i − ẑj

i )
TΣ−1

h (zj
i − ẑj

i ) , (4)

where, for briefness, the arguments of ẑj
i and x̂i have been

omitted, i.e. ẑj
i = ẑj

i (xi−1,m
θ(j)) and x̂i = x̂i(xi−1,ui−1).

This can be solved using any of the several dedicated al-

gorithms to solve non-linear least squares problems, such

as the Levenberg-Marquardt (LM) [12] or Broyden-Fletcher-

Goldfarb-Shanno (BFGS) [13] methods.

A. A note on assuming data association
A problem with the formulation stated previously was

shown in [4] (page 340). This problem is that by conditioning

the measurement likelihood in (1) to the data association

function θ(·) a particular order or numbering of the mea-

surements is necessarily assumed. If a different order of the

measurements Zi were to be measured, then the association

function θ(·) would have to change also. Given this, it may

be that by including this extraneous information, on the order

of measurements, a statistical bias could be introduced.
To address this problem, RFS methods replace the mea-

surement likelihood with the average over all possible data

associations:

p
(
Zi

∣∣∣xk,M
)
=

∑
θ

p
(
Zi

∣∣∣xk,M, θ
)

(5)

where θ represents a possible data association between map

element mθ(j) and measurement zj
i . In this likelihood, if

the order of measurements is changed, then the correct data

association is still part of the total sum, and therefore the

likelihood does not change.

III. RFS-BASED SLAM BATCH ESTIMATION

Similarly to the formulation in the previous section, the

objective function p
(
Z0:k

∣∣∣x0:k,m,u0:k−1

)
can be stated

using the RFS framework, by using the set-based measurement

and motion models:

p
(
Z0:k

∣∣∣x0:k,m,u0:k−1

)
=

k∏
i=1

g(xi|xi−1,ui−1)
k∏

i=0

p
(
Zi

∣∣∣xi,M
)

. (6)

As can be seen from (6), the likelihood is very similar to (1)

but uses the RFS based measurement model p
(
Zi

∣∣∣xi,M
)

:

p
(
Zi

∣∣∣xi,M
)
= p

(
Zi

∣∣∣xi,
{
m1,m2, . . . ,m|M|

})
=

∑
θ

pκ

(
ZĀθ

i

) ∏
mj∈MĀθ

(
1− PD

(
mj |xk

))
·

∏
zj
i∈Z

Aθ
i

PD

(
mθ(j)|xi

)
p
(
zji

∣∣∣mθ(j),xi

)
(7)

where θ is a possible association between the elements of M
and Zi, and ZĀθ

i is the set of measurements in Zi that are

not associated with a landmark in the map according to θ.

pκ (Zk) is the probability of all measurements in Zk being

clutter1. Similarly, ZAθ
i is the set of measurements in Zi that

are associated with a landmark in M, again according to θ.

Applying the log() function to (6) and using the relation from

(7) gives:

l
(
Z0:k

∣∣∣x0:k,m,u0:k−1

)
=

k∑
i=1

log (g(xi|xi−1,ui−1)) +
k∑

i=0

log
(
p
(
Zi

∣∣∣xi,M
))

=
k∑

i=1

log (g(xi|xi−1,ui−1)) +
k∑

i=0

log

(∑
θ

p
(
Zi

∣∣∣xi,M, θ
))

,

(8)

Where l(·) = log(p(·)) represents the log-likelihood. In [1,

14], (7) is derived and shown to generalize its random vector

based counterpart.

Using the RFS-based objective function from (7), non-

linear optimization can be performed over all possible map

sizes |M|. This function would not require a data association

hypothesis to perform the optimization. However, the partly

integer nature of the optimization (i.e. the number of features

in the map) is expected to cause significant difficulties for the

optimization method.

IV. PARTICLE SWARM OPTIMIZATION

One method to maximize a non-linear function, as needed

by any Maximum Likelihood solution to SLAM, is Particle

Swarm Optimization (PSO) [15]. Due to the heuristic nature of

1Measurements/detections resulting from “objects on non-interest” - i.e. not
part of the target state.
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PSO, many variations exist. An explanation of one of the most

common variations, known as Standard PSO 2007 (SPSO-

2007), and used in this article, follows.

Let the optimization problem to solve be

min
x

f(x) , (9)

where x is the variable to optimize with respect to function

f(·). In PSO a set of particles with positions x and velocities

v is defined with the expectation that, as the particles move

according to their velocities

xi
j+1 = xi

j + vi
j , (10)

the positions of the particles will converge to the optimal

solution x∗. SPSO-2007 uses a fixed number of particles np

according to

np = �10 + 2
√
D� (11)

where D is the number of dimensions of x. This formula is

considered a suggested particle swarm size, but is not required

for SPSO-2007 compatibility. Particle positions and velocities

are initialized randomly following the uniform distribution

within the search space [xmin,xmax]

xi
0 = U(xmin,xmax) (12)

vi
0 = 0.5(U(xmin,xmax)− xi

0) . (13)

Where U(a, b) is the uniform distribution in the interval [a, b].
Then each particle will calculate its new velocity as a function

of its own position and current velocity and the positions of

the particles within a neighbourhood - i.e. for each component

of particle i at iteration j, the velocity will be

vi
j = wvi

j + r1φp(l
i
j − xi

j) + r2φg(g
i
j − xi

j) , (14)

where r1 and r2 are random numbers uniformly distributed in

the interval [0, 1], lij is the best (lowest f(·)) position visited

by particle i and gi
j is the best position visited by any of

the particles in particle i’s neighbourhood. w, φp and φg are

parameters typically set to the values2:

w =
1

2 ln(2)
� 0.721 (15)

φp = φg = 0.5 + ln(2) � 1.193 .

This neighbourhood is defined randomly by having each parti-

cle inform K other particles at random (i.e. adding themselves

to the other particles’ neighbourhoods). Typically K = 3. If at

any iteration the best solution found does not improve, then all

neighbourhoods are randomly redrawn using the same process

[15].

2As stated in [15], these parameters have been shown empirically to produce
good results.

V. PSO-RFS-SLAM

To maximize the likelihood from RFS based equation (6)

using a PSO approach, a modified SPSO-2007 is used. First,

for numerical stability, the log-likelihood (8) is used. A set of

particles is created, each with state consisting of a trajectory

and a map:

xi
j = (xi

0:k,Mi). (16)

A. Particle initialization

Given that the search space is not constrained as in the

SPSO-2007 definition, to initialize the particle set, the robot

motion model is used to generate a random dead reckon-

ing trajectory. Once a particle has a trajectory for each of

the measurements obtained, a new landmark is created with

probability Pinit. Landmarks are created with the inverse

measurement model and the already initialized robot pose, and

sampling noise from the landmark uncertainty generated from

the inverse measurement model.

B. Particle motion

In most PSO definitions, the state is a vector. This means

that equation (14) can be directly applied to the robot trajectory

x0:k, however, the map M is a set, thus (14) needs to be

adapted.

We therefore define the velocity of a set by attaching a

velocity component to each vector element of the set. Then,

to modify the velocity of a set we use a method inspired by

the optimal sub-pattern assignment (OSPA) metric [16]. Map

elements are associated by linear assignment as if calculating

the OSPA metric, and then the velocity of the associated

elements can be calculated directly, using equation (14).

For the unassociated measurements a new parameter φcard

is added. Then, if a map element in xi
j is not associated

it will be eliminated with probability equal to φcard, and

unassociated map elements in lij and gi
j will be added to xi

j

with probability φcard. This parameter is set to a small value

(e.g. φcard � 0.15). As an added modification, even associated

features can be removed with a smaller probability (� 0.01).

C. Gradient based optimization step

Given the high correlation between states, which character-

izes the SLAM problem, when the particle motion is applied to

the trajectory, the measurement likelihood usually decreases.

To compensate for this and to improve the convergence prop-

erties of PSO, a gradient based optimization step is performed

for every particle every Kopt steps (Kopt ∈ [10, 100]).

To maximize the likelihood from equation (6) the log-

likelihood (8) is used. The summation on the left of (8) is

just a traditional non-linear least squares optimization problem

(assuming Gaussian noise in g(·)), however, in the summation

on the right, the log(·) does not cancel with the exponentials.

For the left summation the gradient can be calculated in a
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straight forward manner, but for the summation on the right

we obtain

∂

∂xk
log

(∑
θ

p
(
Zi

∣∣∣xk,M, θ
))

=

∂
∂xk

∑
θ

p
(
Zi

∣∣∣xk,M, θ
)

∑
θ

p
(
Zi

∣∣∣xk,M, θ
) .

(17)

If the single feature measurement model is Gaussian and the

clutter rate and probability of detection are assumed constant

then the gradient would be

1∑
θ

p
(
Zi

∣∣∣xk,M, θ
) ∑

θ

[
p
(
Zi

∣∣∣xk,M, θ
)

·
∑

zj
i∈Z

Aθ
i

Ωzj (zj
i − ẑj

i (m
θ(j),xk))

∂

∂xk
ẑj
i (m

θ(j),xk)

]
(18)

where Ωzj is the square root of the information matrix of

measurement zj . Therefore, we obtain a weighted average

of the traditional non-linear least squares, weighted by the

RFS measurement likelihoods. However, the non-log likeli-

hoods still need to be evaluated, which can cause numerical

instabilities, especially if the initialization point is too far away

from the real values for the map and trajectory (as occurs most

of the time with a random initialization). Therefore to increase

the numerical stability, the log-sum-exp trick is used

1) The log-sum-exp trick: Adding a log-exp pair to the right

hand side term in equation (8) gives

l
(
Z0:k

∣∣∣x0:k,m,u0:k−1

)
=

k∑
i=1

log (g(xi|xi−1,ui−1))

+
k∑

i=0

log

(∑
θ

exp(log(p
(
Zi

∣∣∣xi,M, θ
)
))

)
. (19)

Expanding p
(
Zi

∣∣∣xi,M, θ
)

in the right hand side of (19):

rhs(19) =

k∑
i=1

log (g(xi|xi−1,ui−1)) +
k∑

i=0

log

(∑
θ

exp

[

log

( ∏
zj
i∈Zi

κ(zj
i )

exp(
∫
κ(z)dz)

∏
mj∈M

(1− PD(m
j |xi))

∏
zj
i∈ZAθ

PD(m
θ(j)|xi)

(1− PD(mθ(j)|xi))κ(z
j
i )
p
(
zj
i

∣∣∣xi,m
θ(j)

))])
.

(20)

Turning the log of the products into sums gives:

l
(
Z0:k

∣∣∣x0:k,m,u0:k−1

)
=

k∑
i=1

log (g(xi|xi−1,ui−1))

+
k∑

i=0

log

(∑
θ

exp

[ ∑
zj
i∈Zi

log(κ(zj
i )) +

∫
κ(z)dz

+
∑

mj∈MAθ

log(1− PD(m
j |xi)) +

∑
zj
i∈ZAθ

logit(PD(m
θ(j)|xi))

− log(κ(zj
i )) + l

(
zj
i

∣∣∣xi,m
θ(j)

)])
(21)

where l (·|·) is the single-feature log-likelihood, and the logit

function is defined as logit(x) = log(x)
1−log(x) . Then the most

likely data association can be taken out of the log function,

by subtracting its value in every exponential giving:

l
(
Z0:k

∣∣∣x0:k,m,u0:k−1

)
=

k∑
i=1

log (g(xi|xi−1,ui−1))

+
k∑

i=0

∑
zj
i∈Zi

[
log(κ(zj

i )) +

∫
κ(z)dz

+
∑

mj∈M
log(1− PD(m

j |xi)) +
∑

zj
i∈ZAθ

max

logit(PD(m
θmax(j)|xi))

− log(κ(zj
i )) + l

(
zj
i

∣∣∣xi,m
θmax(j)

)]

+ log

(∑
θ

exp

[ ∑
zj
i∈ZAθ

logit(PD(m
θ(j)|xi))− log(κ(zj

i ))

+ l
(
zj
i

∣∣∣xi,m
θ(j)

)
−

∑
zj
i∈ZAθ

max

logit(PD(m
θmax(j)|xi))

− log(κ(zj
i )) + l

(
zj
i

∣∣∣xi,m
θmax(j)

)])
. (22)

This objective function can now be interpreted as the log-

likelihood using the most likely data association θmax, which

is calculated using the Hungarian method, plus a correction

factor, which accounts for all other association possibilities.

This correction factor approaches zero whenever only one data

association is likely. Conversely, the correction factor will be

nonzero whenever multiple data associations are likely. Note

therefore, that the Hungarian method is only necessary in

order to rewrite equation (21) in terms of differences between

the log-likelihoods of the associations and the most likely

association, resulting in a more numerically stable form. This

avoids the calculation of exponentials of large negative values.

This function is then optimized using the BFGS algorithm.

Note that only the spatial position of the landmarks and poses

of the robot are optimized, meaning that during this step the

map size does not change. However, the estimate of the map

size is optimized in the PSO particle motion step.
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VI. SIMULATED SLAM RESULTS

A. Proof of concept for RFS maximum likelihood SLAM in 1D

To show that using an RFS approach to maximum likelihood

SLAM is feasible, a 1D simulation is carried out and compared

with a traditional method using the correct data association.

In this simulation, a 1D robot moves through a 1D map,

observing landmarks and its own odometry. Both of these

measurements are corrupted by zero mean Gaussian noise.

To be able to use a traditional least squares random vector

method, measurements are simulated with a label representing

the landmark that generated it. These labels are then used by

the traditional method for measurement detection to landmark

association. On the contrary, the RFS formulation ignores

these labels. A constant probability of detection of 0.9 and

a clutter intensity of 0.01 were used to generate missed detec-

tions and Poisson distributed false alarms in the robot’s field

of view. Measurements were generated with a spatial variance

of 10−4[m2], while odometry readings used a variance of

10−2[m2].

Figures 1 and 2 show an example solution to this problem,

solved by maximizing the traditional measurement likelihood

and the RFS based measurement likelihood from (6), respec-

tively. As can be seen from the figures, both solutions converge

to the ground truth trajectory and map. An important note

is that, in addition to not having the data association, the

RFS-based solution is also solving for the map size, making

the optimization problem partly integer, which is significantly

more difficult than solving only for the positions of the map

elements. Figure 3 shows the robot position error of both

algorithms, averaged over 5 Monte Carlo runs. Both errors

are of the same order of magnitude.

B. RFS maximum likelihood in 2D

To demonstrate the validity of RFS ML SLAM further, a 2D

simulation was carried out and compared with the traditional

vector based approach. Measurements were simulated with a

0.9 probability of detection and a clutter intensity of 0.001
in the sensor’s field of view. Measurements were generated

with a range variance of 10−4[m2] and a bearing variance

of 10−4[rad2], while odometry readings used a variance of

2× 10−4[m2], both in the x and y directions, and an angular

variance of 2× 10−4[rad2]. As can be seen from figures 4

and 5, both trajectories and maps converge to a solution very

close to ground truth. Further, both solutions are similar to

each other, presenting a small translational error in the same

direction. This error may be because of the random nature of

the measurements, meaning that the most likely trajectory is

not necessarily the correct one. Figure 6 shows the x and y
positional errors (averaged over 5 Monte Carlo runs) between

the estimates and the simulated ground truth. As can be seen

from the figure, again both algorithms yield very similar error

curves, to the point that they are closer to each other than to

the ground truth.

0 5 10 15 20 25 30
time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x
[m

]

Ground-truth trajectory
Estimated trajectory
Dead Reckoning

3 4 5 6 7 8
x [m]

M

M̂

Z1:k

Fig. 1. The solution to a 1D SLAM problem using the traditional least
squares approach. The ground truth, estimated and dead reckoning
trajectories are plotted as red, green, and dashed red lines, respec-
tively (top). In the lower graph, the ground truth map is shown as
red stars , the estimated map as red points and all the measurements
are shown as green points.
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Fig. 2. The solution to a 1D SLAM problem by maximizing the RFS
measurement likelihood using an adapted PSO method. The particle,
ground truth, estimated and dead reckoning trajectories are plotted as
blue, red, green, and dashed red lines, respectively (top). Note that
most particles have converged to the ground truth so they appear
almost superimposed. The noisy trajectories that can be seen are a
small fraction of the particles. In the lower graph, the ground truth
map is shown as red stars (at y = −1), the estimated map is shown as
red points (at y = index of the most likely particle) and the estimated
map of each particle is shown as blue points plotted at y = index of
each particle.
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runs. As can be seen both errors are of the same order of magnitude.
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landmarks).
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VII. SUMMARY

In this article, an RFS based maximum likelihood solution

to SLAM has been introduced. The likelihood function to

maximize was presented using RFS theory and the PSO

algorithm was adapted to this problem and used together with

gradient based methods. The optimization of this function

was compared to the use of non-linear least squares solvers

on the traditional likelihood function which assumes known

data association and no clutter, using 1D and 2D simulated

SLAM datasets. It was shown that the optimization of this

new function can converge to the solution obtained with

known data association, even though no such information

was provided to the ML-RFS-SLAM algorithm. The ability

to perform robust SLAM, without the necessity of fragile

data association decisions, opens avenues for significant future

research. Algorithms which maximize the RFS measurement

likelihood and simultaneously offer computationally tractable

solutions could vastly increase the robustness of SLAM.

Future work will address the computational complexity of

the optimization method, so that the RFS maximum likelihood

SLAM concept can be successfully applied to larger real world

datasets.
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