
A Multi-Sensor, Gibbs Sampled, Implementation of
the Multi-Bernoulli Poisson Filter

Leonardo Cament∗, Martin Adams†, Javier Correa‡
Department of Electrical Engineering & Advanced Mining Technology Center, Universidad de Chile

Av. Tupper 2007, Santiago, Chile

Email: ∗lcament@ing.uchile.cl, †martin@ing.uchile.cl, ‡javier.correa@amtc.cl

Abstract—This paper introduces and addresses the implemen-
tation of the Multi-Bernoulli Poisson (MBP) filter in multi-target
tracking. A performance evaluation in a real scenario, in which
a 3D lidar, automotive radar and a video camera are used for
tracking people will be provided. For implementation purposes,
a Gaussian Mixture (GM) approximation of the MBP filter is
used. Comparisons with state of the art GM-δ-GLMB and GM-
δ-GMBP filters show similar accuracy, despite the need for less
parameters, and therefore less computational cost, within the
GM-MBP filter. Further performance improvements of the GM-
MBP filter are shown, based on birth intensity and survival
distributions, which take into account the common field of view of
the sensors and the variation of time steps between asynchronous
measurements.

Index Terms—random finite sets, multi-target tracking, multi-
Bernoulli filter, faster R-CNN

I. INTRODUCTION

In the field of multi-target tracking, Random Finite Set

(RFS) based algorithms have recently offered robust solu-

tions [1].

In a manner analogous to which the state of the art

Labeled Multi-Bernoulli (LMB) filter [2] is related to the

δ-Generalized Labeled Multi-Bernoulli (δ-GLMB) filter [3],

the Multi-Bernoulli Poisson (MBP) filter used in this article

is a derivative of the δ-Generalized Multi-Bernoulli Poisson

(δ-GMBP) filter presented in [4], [5]1.

The LMB filter [2] requires the intermediate conversion

and reconversion of LMB to δ-GLMB components for filter

updates. In contrast, due to Gibbs sampling, the MBP and

Gibbs-LMB filters [6], compute the parameters of the posterior

directly from the prior distribution, without the necessity of

such conversions, significantly decreasing their computational

complexity. Also, in a manner similar to the δ-GLMB filter, the

δ-GMBP filter uses a multi-Bernoulli RFS for the detected tar-

gets. However, in contrast to the δ-GLMB filter, the δ-GMBP

filter adopts a Poisson RFS for the birth process. In contrast to

a multi-Bernoulli birth RFS, a Poisson birth RFS imposes no

restriction on the number of birth targets. For these reasons,

the MBP filter is implemented in this article.

The δ-GMBP RFS is a combination of a δ-Generalized

Multi-Bernoulli (δ-GMB) RFS and a Poisson RFS, and is

closed under prediction and update. The δ-GMB RFS models

the known targets, while the Poisson RFS models the potential

1Note that in [4] the δ-GMBP filter was referred to as the Dirac Delta
Mixture with Poisson (DMP) filter, and renamed as δ-GMBP in [5].

targets that have not yet been detected. The MBP filter is

computationally cheaper than the δ-GMBP filter because it

does not maintain the correlation information between the

target to measurement associations.

This article focuses on a Gaussian Mixture (GM)-MBP

filter implementation with asynchronous multi-sensor mea-

surements. Experiments are carried out in an urban scenario

in which people are tracked using a 3D lidar, a 2D radar and

a video camera. The detections of people are corrupted by

vehicles, trees and other artefacts.

For benchmark purposes, performance comparisons are

made between the GM-MBP and the δ-GLMB and δ-GMBP

filters, based on the same detection statistical models and

environment. To further improve the performance of the GM-

MBP filter, the variation of time steps between the asyn-

chronous measurements is used to modify the single-target

motion model and probability of survival and birth intensity.

Section II provides a brief introduction to RFS based

multi-target tracking and the theory behind the MBP filter

and Section III presents its GM implementation. Section IV

describes the sensors, people detectors and motion models and

comparative results are presented in Section V.

II. THEORETICAL BACKGROUND

A. Random Finite Sets Overview

An RFS is a set containing a finite number of random

variables which can also be an empty set. It is random in

the number of elements and in the values of each element,

and it is described by its Probability Density Function (PDF).

Poisson and multi-Bernoulli are common RFS distribution

types. The Poisson RFS models the number of elements in

the set following a Poisson distribution, while the elements

are spatially distributed according to a given density function.

A multi-Bernoulli RFS models the existence or non-existence

of the elements, and when the elements exist they distribute

according to a given PDF.

B. Standard Bayesian Recursive Filtering

Bayesian filtering consists of two parts. The prediction

follows the Chapman-Kolmogorov equation:

p(Xt|Z1:t−1) =

∫
p(Xt|Xt−1)p(Xt−1|Z1:t−1)δXt−1, (1)
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while the update uses Bayes rule:

p(Xt|Z1:t) ∝ p(Zt|Xt)p(Xt|Z1:t−1), (2)

where Xt−1 and Xt represent the multi-target state at time

steps t − 1 and t respectively, Z1:t−1 all observed measure-

ments from time 1 to t − 1, p(Xt|Xt−1) the state transition

model and p(Zt|Xt) the measurement model.

In order to solve Equations (1) and (2) the transition and

measurement models must fulfill various properties [7, p. 313].

C. The Multi-Bernoulli Poisson (MBP) Filter

1) Single Target MBP Prediction: Assume Xt−1 is the

prior state RFS and fx(xt|xt−1) is the standard single target

transition model [7], where xt is the single target state vector.

Assume also that Xt−1 is modeled with a multi-Bernoulli RFS

with parameters
⋃N

n=1{(rnt−1, θ
n
t−1)}, where rnt−1 is the prob-

ability of existence and θnt−1 are the parameters representing

the state distribution f(x; θnt−1), and N is the total number of

MBP components. Then the predicted distribution for Xt is

also a multi-Bernoulli RFS with parameters obtained from:

rnt|t−1 = rnt−1

∫
〈fx(x|·), Ps(·)f(·; θnt−1)〉dx (3)

f(x; θnt|t−1) =
〈fx(x|·), Ps(·)ft−1(·; θnt−1)〉∫ 〈fx(x|·), Ps(·)ft−1(·; θnt−1)〉dx

(4)

where 〈f, g〉 = ∫
f(x)g(x)dx, and Ps(·) represents the target

survival probability distribution [4].

2) Joint MBP Prediction and Update: An efficient imple-

mentation of the δ-GLMB filter was proposed by Vo et al. [8]

using the Gibbs sampler. In a similar way the Gibbs sampler

is used in this work, but instead of using the weights of

the posterior δ-GLMB components [6], a histogram built by

counting each sampled data association is used, as described

below.

In order to implement the Gibbs sampler, the cost function

for the MBP is represented by the weights of the mixture

model presented by Williams in [9]:

ηn(m) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1− rnt|t−1+

rnt|t−1〈1− PD(·), f(·; θnt|t−1)〉 if m = 0

rnt|t−1〈PD(·)f(·; θnt|t−1), fz(zm|·)〉
κ(zm) + 〈PD(·)DB,t(·), fz(zm|·)〉 , if m ≥ 1

.

(5)

where PD(·) is the target detection probability distribution,

κ(zm) is the clutter intensity, and DB,t(·) is the birth intensity.

The Gibbs sampler, with the cost function (5), is processed

multiple times, and a histogram hn,m is built as a proportion of

samples in which target2 n was associated with measurement

m.
∑M

m=0 hn,m = 1 for n > 0 and
∑N

n=0 hn,m = 1 for m >
0, where M is the total number of detections. hn,0 represents

the proportion of samples in which the target does not exist or

is misdetected, and the proportion in which the measurement

2The same variable n is used for target number and multi-Bernoulli
component, since each component represents a target hypothesis.

m was unassociated (equivalent to misdetection) is represented

by h0,m = 1−∑N
n=1 hn,m.

The posterior existence probability and spatial distribution

multi-Bernoulli parameters of the existing targets are given by:

(6)

rnt|t =hn,0

rnt|t−1〈1− PD(·), f(·; θnt|t−1)〉
1− rnt|t−1 + rnt|t−1〈1− PD(·), f(·; θnt|t−1)〉

+
M∑

m=1

hn,m,

f(x; θnt|t) =hn,0f(x; θ
n
t|t−1)+

M∑
m=1

hn,m

PD(x)f(x; θnt|t−1)fz(zm|x)
〈PD(·)f(·; θnt|t−1), fz(zm|·)〉

.

(7)

The posterior existence probability and spatial distribution

of the new targets are given by:

rN+m
t|t = h0,m

〈PD(·)DB,t(·), fz(zm|·)〉
κ(zm) + 〈PD(·)DB,t(·), fz(zm|·)〉 , (8)

f(x; θN+m
t|t ) =

PD(x)DB,t(x)fz(zm|x)
〈PD(·)DB,t(·), fz(zm|·)〉 . (9)

3) Adding labels to the state: The main difference between

the LMB and the MBP RFSs is the birth distribution. Once the

targets exist, both use the same Multi-Bernoulli distribution,

as demonstrated in [10]. When using an LMB birth model,

each LMB component is a possible new target. In contrast,

when the birth is Poisson, each measurement produces a new

possible target. In point target tracking, the target is associated

with only one measurement. Thus, we label the new target

(k,m), where m is the measurement index, and k the time

step, as takes place in the δ-GLMB filter. After the update,

the target becomes a Bernoulli component, maintaining the

label in time as proved in [10]. It is important to emphasize

that this manner of adding labels is possible for a single-

point target because it is certain the target is produced by

only one measurement, but not for an extended target because

for example one measurement can produce two new targets (in

different MB components) because the measurement belongs

to different clusters of points.

III. GAUSSIAN MIXTURE MBP FILTER IMPLEMENTATION

The state distribution is represented by a

GM, in which the parameters of the state are

θnt = {(ωn,1
t ,μn,1

t ,Σn,1
t ), ..., (ω

n,Nn
t

t ,μ
n,Nn

t
t ,Σ

n,Nn
t

t )},
where ωn,i

t is the weight, μn,i
t the mean vector, Σn,i

t the

covariance matrix of the GM, i ∈ N, i ≤ Nn
t , where Nn

t

represents the number of Gaussians in the GM. The state

distribution for the nth component of the multi-Bernoulli

RFS is given by:

f(x, θnt ) =

Nn
t∑

i=1

ωn,i
t N (x;μn,i

t ,Σn,i
t ). (10)

Next, the birth of new hypotheses, state extraction and GM-

MBP recursion approximations are described.

2018 21st International Conference on Information Fusion (FUSION)

2581

Authorized licensed use limited to: Universidad de chile. Downloaded on August 18,2021 at 00:59:57 UTC from IEEE Xplore.  Restrictions apply. 



1) Birth Hypotheses: The mixture weights of new targets

are obtained from the Poisson component of the δ-GMBP

RFS. Because a uniform spatial distribution is used, there is

no closed form solution for computing this component, but a

reasonable assumption is that the components can be obtained

by sampling points from the inverse measurement likelihood

function xt ∼ g−1
z (zt, ·), where zt is the measurement vector

at time t. This concept is used in our experiments.

2) State Extraction: To extract the estimated state from the

filter, the target hypothesis with a probability of existence

greater than a determined threshold λ1 is taken as a track.

Hysteresis is used to maintain the track, when its probability

of existence reduces. Thus, when an existing target reduces

its probability of existence to a value lower than a second

threshold λ2 the track is considered nonexistent, i.e., 0 < λ2 <
λ1 < 1. The target position is then estimated by the weighted

average GM state mean:

x̄n
t =

Nt
n∑

i=1

ωn,i
t μn,i

t . (11)

3) GM-MBP Recursion Approximations: The probabilities

of detection PD(·) and survival Ps(·) are assumed to be vary

slowly, and are thus represented by a constant value in the

vicinity of the states. For a GM state representation PD(·) ≈
PD(μ) and Ps(·) ≈ Ps(μ). Substituting the GM expression

of the state (10) into (3) and (4), the single-state prediction

parameters are given by:

rnt|t−1 = rnt−1

Nn
t−1∑

i=1

ωn,i
t Ps(μ

n,i
t|t−1) (12)

where the predicted Gaussian component is given by:

N (x;μn,i
t|t−1,Σ

n,i
t|t−1) = 〈f(x|·),N (·;μn,i

t−1,Σ
n,i
t−1)〉 (13)

with predicted weights:

ωn,i
t|t−1 =

ωn,i
t Ps(μ

n,i
t|t−1)∑Nn

t−1

j=1 ωn,j
t Ps(μ

n,j
t|t−1)

. (14)

Replacing the PDFs from (5) with Gaussian functions, the

cost matrix is approximated as follows:

ηn(m) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1− rnt|t−1 + rnt|t−1

Nn
t−1∑

i=1

ωn,i
miss if m = 0

rnt|t−1

∑Nn
t−1

i=1 ωn,i,m
dets

κ(zm) + PD(μm)DB,t(μm)
, if m ≥ 1

(15)

where:

ωn,i
miss = ωn,i

t|t−1

(
1− PD(μn,i

t|t )
)
, (16)

ωn,i,m
dets = ωn,i

t|t−1q
n,i
t|t (zm)PD(μn,i

t|t ), (17)

in which μm is the projection of the measurement zm into the

state space, the intensity DB,t(μm) = NB,t(μm)/AB repre-

sents the number of targets NB,t(μm) born in the surveillance

area AB and qn,it|t (zm) is the measurement likelihood, which

Figure 1. Left: The vehicle with the lidar, radar and visual sensors. Right:
The detection of people (red rectangles) using faster R-CNN.

can be computed using a Kalman, EKF or UKF corrector. Lin-

ear expressions for the posterior parameters qn,it|t (zm), μn,i
t|t−1

and Σn,i
t|t−1 can be found in [11]. The posterior Gaussian

component is given by:

N (x;μn,i
t|t ,Σ

n,i
t|t ) =

N (x;μn,i
t|t−1,Σ

n,i
t|t−1)fz(zm|x)

qn,it|t (zm)
. (18)

The posterior probability of existence for the detected targets

is given by:

rnt|t =
hn,0r

n
t|t−1

∑Nn
t−1

i=1 ωn,i
miss

1− rnt|t−1 + rnt|t−1

∑Nn
t−1

i=1 ωn,i
miss

+
M∑

m=1

hn,m, (19)

and for the birth targets is given by:

rN+m
t|t =

h0,mPD(μm)DB,t(μm)

κ(zm) + PD(μm)DB,t(μm)
, (20)

and the corresponding weights are given by:

wn,i
t|t = hn,0ω

n,i
t|t−1, (21)

w
n,Nn

t−1m+i

t|t = hn,m
ωn,i,m

dets∑Nn
t−1

j=1 ωn,j,m
dets

. (22)

The new born hypothesis is composed of a single Gaussian,

thus ωN+m = 1.

As can be seen in (21) and (22) the posterior GM increases

its number of components from Nn to Nn(1+M). Therefore,

pruning of the Gaussian components must be carried out after

each time step in order to maintain the tractability of the filter.

Closely spaced Gaussian functions are merged and those with

low weights removed as in [12].

IV. EXPERIMENT DESCRIPTION

The experiment consisted of people walking in an urban

environment and three sensors recording the scene from a fixed

position. The sensors were a Velodyne VLP-16 lidar, a Delphi

SRR2 radar and a generic USB camera - see Figure 1 (left).

The radar internally processes detections, with an allocated

space for up to 64 detections. It has a field of view of up
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Figure 2. Faster R-CNN network for multi-class object detection.

to 80m in range and ±75◦ in bearing. The detections consist

of position rr (range), θr (angle), ṙr (radial velocity) and the

amplitude of the received signal in dBsm (decibels relative

to one square meter). The frequency of measurements of the

radar is 20 fps. The lidar creates 3D images by using 16
individual lasers (channels), each channel scanning through

360◦ in bearing. Each channel is separated from the next by an

elevation angle of 2◦, in the interval [−15◦, 15◦]. The camera

has a resolution of 640 × 480 pixels, with a frame rate of

30 fps, and the distortion parameters, projection and camera

calibration matrix were obtained using a calibration method-

ology available in the Robotic Operating System (ROS) [13],

[14].

A. Detections

In order to use the GM-MBP algorithm (and the

δ-GMBP [15] and δ-GLMB algorithms for comparison pur-

poses), target detections are needed. Because the mono-pulse

radar already detects targets, no other detector is required.

However, the lidar and camera need detection methods. The

detector used by the lidar was developed in [5], which is

based on clustering using the known average size and shape

of people. For people detection in images from the camera, a

deep convolutional neural network was used [16]. For the radar

and the lidar, background removal was carried out in order to

reduce clutter and false alarms, the procedure for which is

detailed in [5]. The procedure for detecting people in images

from the camera is now explained.

People detection with the camera images: Convolutional

neural networks have shown impressive results in object

detection and classification in images, under variable sensor

and environmental conditions [17], [18]. In order to detect

people, the neural network ”faster R-CNN” [19] was chosen

because of its speed, and reported high quality results. Figure 2

shows the concept behind faster R-CNN, which produces

target detections and their classifications. The images have

distortions produced by the camera lens. In order to project

from the world to image coordinates, it is necessary to

undistort the images. Since faster R-CNN performs equally

well with distorted or corrected images [13], the procedure

can be of two forms. One way is to pass the corrected image

to the detector. The other way is to carry out detections in the

distorted image, and correct the coordinates of the detections.

The faster R-CNN detects 20 different object classes, such

as people, vehicles, bicycles, motorcycles, airplanes, etc. Each

detection performs a classification of all the 20 classes, return-

ing a score that represents the probability of belonging to a

class. This score measures the relation between the object and

the background, i.e., the Signal to Noise Ratio (SNR) of each

class. In this experiment the interest is in detecting people

and for this reason a valid detection corresponds to the case

in which the highest score corresponds to the class ”person”.

An example of the detection of people can be seen in

Figure 1 (right), which shows five detected people (red rect-

angles).

B. Tracking

The lidar, camera and radar are assumed to provide condi-

tionally independent measurements with respect to the target

state, and each measures at its own frame rate. The δ-GMBP

filter obtains its data from each sensor at any time, since the

data is not synchronized. The prediction of the state using the

kinematic model is therefore computed using the increment of

time since the arrival of the previous measurement, no matter

which sensor the data is from. The state is then corrected using

the observation model corresponding to the current sensor.

The use of different sensors with different noise sources

should not affect the target state estimates, because the sensor

observation models take into account the different statistics of

each sensor.

1) Birth Model: The multi-sensor system generates samples

with irregular periods. NB new targets are expected to be born

every ΔT seconds uniformly spaced in an area AB , however,

if the periods are irregular, the number of new targets should

be proportional to the time step between sample t − 1 and t
- i.e., ΔTt. Let DB = NB/AB represent the intensity of the

Poisson RFS, for the expected period ΔT . Thus, the intensity

of the Poisson RFS in t should be given by DB,t = DB
ΔTt

ΔT .

New targets (people) first appear at the borders of the

sensors’ fields of view. For this reason, the birth intensity

should be assigned a high value at the borders, and a lower

value in the interior, as represented in Figure 3a. In this way

the birth model used in the experiments with the MBP filter is

uniform in each region, with a high value at the borders and

a lower value in the interior.

2) Probability of Detection: A unique probability of de-

tection is assigned to each sensor and is assumed to be

independent of time and constant.

3) Probability of Survival: The probability of survival is

modelled as being dependent on the:

• variable sampling rate,

• location of the state,

• time since the target state was born,

all of which will now be explained.

Variable sampling rate: In a manner similar to the target

birth intensity function, the target survival probability must

be adjusted according to the variable time period between

samples. Let the probability of survival for a constant period

ΔT be Ps(ΔT ). Let ν = ΔT/ΔTt be the number of samples

in the period ΔT . Then Ps(ΔT ) = (Ps,t)
ν = (Ps,t)

ΔT/ΔTt .
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Figure 3. (a) Uniform birth intensity regions and (b) survival probability
distribution. The darker shades represent higher values.

Therefore, solving for Ps,t, gives the probability of survival

at the current time step:

Ps,t = exp

(
ΔTt

ΔT
log(Ps(ΔT ))

)
. (23)

Location of the state: In contrast to target births, a target is

expected to persist in the interior section of the common field

of view of the sensors and disappear at the borders when the

target exits. This is shown in Figure 3b.

Time since the target state was born: In [20] Kim and

Vo incorporated the time of persistence of the tracks to

compute the probability of survival in order to delay early

track termination due to occlusions. Since the state’s label l
contains the time of birth of the target, the time persistence is

the difference between the current time and that contained in

the label l. The probability of survival varies in time starting

at value Ps,0 when the target is born, to Ps,τ after τ seconds.

A hyperbolic tangent function is therefore used to model the

survival probability Ps,t(l)

Ps,t(l) = Ps,0 + (Ps,τ − Ps,0) tanh

(
ΔTt,l

τ
exp(1)

)
(24)

where ΔTt,l is the time of existence of the target - i.e., the

difference between the current time and that encoded in label l.
The hyperbolic tangent allows the fast and asymptotic change

from Ps,0 to Ps,τ .

4) Target State Transition Model: The kinematic state of a

person is given by a vector of positions and velocities in the

ground plane x = [x, y, ẋ, ẏ]T . The state transition function

is assumed to be linear with constant velocity and covariance

matrix Q as follows:

⎡
⎢⎢⎣
xt|t−1

yt|t−1

ẋt|t−1

ẏt|t−1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 0 ΔTt 0
0 1 0 ΔTt

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
xt−1

yt−1

ẋt−1

ẏt−1

⎤
⎥⎥⎦

Qt = σ2

⎡
⎢⎢⎣
ΔTt

2/2 0
0 ΔTt

2/2
ΔTt 0
0 ΔTt

⎤
⎥⎥⎦

⎡
⎢⎢⎣
ΔTt

2/2 0
0 ΔTt

2/2
ΔTt 0
0 ΔTt

⎤
⎥⎥⎦
T (25)

where Qt is the covariance matrix associated with the motion

transition process, and σ corresponds to the acceleration

standard deviation.
5) Measurement Model of the Mono-pulse Radar: In order

to use the GM-MBP filter with the radar, a likelihood function

that relates a measurement with the state of a track must be

designed. The measurement vector is zr = [rr, θr, ṙr]
T .

Due to the non-linearity of the measurement in relation to

the state, the Unscented Transform (UT) [21] is used to map

the statistics of the measurement and states. An observation

likelihood function zr = gzr (x) must be determined, in order

to correct the prediction made by the state transition model.
Radar measurements and target states have different coor-

dinate systems. Small errors in the angular rotations between

both coordinate systems produce large errors related to the

measurements of targets located far from the sensor. For this

reason a 3D rotation and translation transformation must be

included, even when the sensor measures in a 2D plane. The

relation between both, radar and state coordinate systems is

given by the typical rotation and translation relation

x3D = R · z3Dr + t3Dr , (26)

in which x3D = [x, y, z]T and z3Dr = [xr, yr, zr]
T represent

the 3D Cartesian positions in the state and radar coordinate

systems respectively, and t3Dr = [txr , tyr , tzr ]
T represents the

translation vector between the radar and state origin, while

R = [rij ], i ∈ {1, 2, 3} and j ∈ {1, 2, 3}, is the 3D rotation

matrix.
The value of z is not known, however, zr = 0 because the

radar is assumed to measure in a plane and does not have a

vertical component. Therefore z can be computed from the

state using the third row of:

z3Dr = RT
(
x3D − t3Dr

)
, (27)

where (27) is the inverse solution of (26) and RT = R−1,

resulting in:

z − tzr = − 1

r33

[
r13 r23

] [x− txr

y − tyr

]
. (28)

Rewriting Equation (27), and substituting (28) in (27):[
xr

yr

]
= RT

2×2

[
x− txr

y − tyr

]
+

[
r31 (z − tzr )
r32 (z − tzr )

]

=

[
RT

2×2 −
1

r33

[
r13r31 r23r31
r13r32 r23r32

]] [
x− txr

y − tyr

]

= R̃−1

[
x− txr

y − tyr

]
(29)
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where R2×2 corresponds to the sub-matrix formed by the first

two rows and columns of R. The radar also measures radial

velocity, thus, we need to include the velocity component in

the single-state likelihood distribution. By differentiating (29)

with respect to time, the velocity components of the state are

obtained. The transformation between state and measurements

in Cartesian coordinates is then given by:⎡
⎢⎢⎣
xr

yr
ẋr

ẏr

⎤
⎥⎥⎦ =

[
R̃−1 02×2

02×2 R̃−1

]
⎡
⎢⎢⎣
x− txr

y − tyr

ẋ
ẏ

⎤
⎥⎥⎦ , (30)

where 02×2 is a matrix of zeros of dimension 2× 2.

As the radar also computes radial velocity, the relation with

the velocity components of the state must be included. The

corresponding position and velocity relations are:

rr =
√
x2
r + y2r

θr = arctan(yr/xr)

ṙr = ẋr cos θr + ẏr sin θr.

(31)

6) Measurement Model of the Velodyne Lidar: The detec-

tions of people obtained from the lidar are similar to the radar,

but do not include a velocity component. The measurement

vector is zl = [rl, θl]
T , which corresponds to the lidar origin

to target detection range and bearing values. The likelihood

function for the lidar is also very similar to the radar. The

relationship between the observation and state vectors is:

rl =
√

x2
l + y2l

θl = arctan(yl/xl)
(32)

where x3D = R · z3Dl + tl, in which x3D = [x, y, z]T , z3Dl =
[xl, yl, zl]

T and tl = [txl
, tyl

, tzl ]
T similarly to the radar in

Section IV-B5.

7) Measurement Model of the Camera: The 4D measure-

ment vector z4Dc is represented by the coordinates of the center

and the width and height of the detection, as seen in the

rectangles in Figure 1 (right). In order to project the state

x into z4Dc , the person is modeled as a cylinder, the surface

points of which are projected into the 2D-image using the

information obtained from the camera calibration.

The projection matrix P relates the pixel and real world

coordinates:

P =
[
C 03×1

]
=

⎡
⎣αu 0 u0 0
0 αv v0 0
0 0 1 0

⎤
⎦ , (33)

where αu and αv are the focal distances (relative to both

image plane axes) in pixels, and u0 and v0 the coordinates

representing the center of the camera, relative to the image

plane origin. The axis rotation transformation matrix

Hv =

[
Rv 03×1

01×3 1

]
=

⎡
⎢⎢⎣

0 0 1 0
−1 0 0 0
0 −1 0 0
0 0 0 1

⎤
⎥⎥⎦ . (34)

rotates the image axes to the camera coordinate axes, in which

Rv is the rotation matrix containing the yaw and roll angles,

which are both equal to −π/2.

The location and rotation of the camera coordinate system

with respect to the state coordinate system, are given in its

homogeneous form:

Hb =

[
Rb tb
01×3 1

]
. (35)

in which Rb is the rotation matrix and tb = [txb
, tyb

, tzb ]
T

is the translation vector between the camera’s origin and the

global state origin. The rotation matrices are computed using

the Euler angles [22].

The relation between the camera coordinates in pixels

z2Dc = [xc, yc]
T and the state coordinates z3D is given by:

s

[
z2Dc
1

]
= PH−1

v H−1
b x3D = CRT

v R
T
b

(
x3D − tb

)
(36)

where s is the scale factor of the 3D to 2D projection. Let

M = CRT
v R

T
b . The scale factor s can be computed solving

the third row of (36), resulting in (37).

s = M(3,:)

(
x3D − tb

)
(37)

where M(3,:) is the third row of M. Then, solving the first

two rows of (36) the camera measurement model is given by:

z2Dc = s−1M(1:2,:)

(
x3D − tb

)
(38)

where M(1:2,:) is the submatrix of M (its first two rows).

The cylinder, centered at the ground level positional com-

ponent of the state x, is quantized and its points are projected

into the image using Equation (38) multiple times, generating

a set of projected points Z2D
c . The rectangle z4Dc representing

the projected target is then obtained from the minimum and

maximum coordinates in Z2D
c .

V. RESULTS

All of the filter results are based on GM implementations,

and therefore the GM abbreviation will be omitted from here

on. Figure 4 shows a sequence of three images of detections

and track estimates using the MBP filter. In the figure, the

common intersection between the fields of view of the sensors

was used for performing the experiments.

A. Performance Comparison of the MBP, δ-GMBP and
δ-GLMB Filters with a Single Sensor

The δ-GLMB filter is one of the most accepted recent RFS

based multi-target tracking algorithms. For this reason, the

δ-GLMB filter is used in this experiment, as a benchmark

comparison for the MBP filter. We also compare results with

the δ-GMBP filter, because it is very similar to the δ-GLMB

filter, except for its birth model. Also, the MBP filter is an

approximation of the δ-GMBP filter, in a manner analogous

to the LMB filter being an approximation of the δ-GLMB

filter. For comparison purposes all filters are implemented

with identical detection statistical parameters. It should be

noted that, in the δ-GLMB and δ-GMBP filter implementations
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Figure 4. A sequence of three images based on the MBP filter. Green circles
represent the lidar detections, red circles the radar detections, blue squares
the MBP filter estimates and black points the raw lidar measurements. In the
upper right side of each image a camera view is seen with the detections
and estimates superimposed. The numbers correspond to the unique labels
assigned to estimated target tracks.

currently available to the authors, the updates are implemented

with Murty’s algorithm. However, the MBP filter adopts the

proposed multi-target prediction and update histogram based,

Gibbs sampling approach.

Initial results of the δ-GLMB, δ-GMBP and MBP filters,

based only on lidar measurements, are shown in Figure 5.

In this figure, the Optimal Sub-Pattern Assignment (OSPA)

metric is used to assess each filters’ performance [23]. In all

experiments, the OSPA cut-off parameter c was set to 1.0m and

the power p to 2. The figure shows similar results for the three

filters. Despite the loss of correlation information between the

targets and measurements, their similar performances can be

explained due to the fact that the MBP filter does not need to

truncate many components, which represent the posterior dis-

Figure 5. The OSPA tracking error metric using only the lidar. The OSPA
metric parameters used throughout this article where cut-off c = 1.0m and
power p = 2.

Figure 6. Comparison between the proposed MBP and δ-GMBP filters in [5].
The green curve shows the OSPA error for the δ-GMBP filter, the blue curve
that for the MBP filter with standard statistics and the red curve the OSPA
error for the MBP filter with improved statistics (with (*) symbol at the
legend).

tribution. This is in contrast to the δ-GLMB and the δ-GMBP

filters, which require more parameters to represent their multi-

target distributions. Since the δ-GLMB and the δ-GMBP filter

updates are implemented with Murty’s algorithm, instead of

Gibbs sampling, in order to run the filters in a reasonable time

the truncation of the multi-Bernoulli mixture components was

necessary. This negatively impacts their estimation accuracy.

B. Performance Comparison of the MBP and δ-GMBP Filters
with the Radar and Lidar

As shown in Figure 6, both the MBP and the δ-GMBP filters

are capable of multi-target tracking, based on measurements

from two sensors (the radar and lidar). Similarly to the results

of the previous section, the MBP filter without the performance

enhancing changes of Section IV-B, performs slightly better

than the δ-GMBP filter. However, the MBP filter, with the

enhancements of Section IV-B, performs consistently better,

displaying lower OSPA errors at most time steps.
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Figure 7. The OSPA metric performance values of the MBP filter, using
different sensor combinations. The blue curve shows the radar only, the green
curve the lidar only, the magenta curve shows the fusion of lidar and radar,
and red curve shows the fusion of lidar, radar and camera.

C. Performance Comparison of the MBP filter with Differing
Sensor Combinations

Figure 7 shows the performance of the MBP filter with

different sensor combinations. As expected, the track estimates

based on the fusion of radar and lidar are superior to those

when only the single sensors (lidar or radar) are used. Im-

portantly, when using both the lidar and radar, the MBP filter

is capable of maintaining the tracks when individual sensors

perform poorly. This is particularly evident from time 0 to

10s, when lidar only based tracking has large OSPA errors

and from time 28s to 38s, when radar based tracking yields

high OSPA errors.

It is important to note that the MBP filter based only on

the camera is unable to track people, due to the lack of

range information. However, when all three sensors are used,

note that the image data contributes with very precise object

detection, and a low false detection rate.

VI. CONCLUSIONS

The GM implementation of the MBP filter was presented

in this article. It was evaluated in a multi-target multi-sensor

scenario, using measurements from a lidar, radar and camera.

In the scenario tested, comparisons with the state of the

art δ-GLMB and δ-GMBP filters, demonstrated similar per-

formance with lower computational times, despite the loss

of target to measurement correlation information. This can

be partly explained by the fewer parameters needed by the

MBP filter to represent its multi-target state, when compared

to the δ-GLMB or δ-GMBP filters and partly due to the

Gibbs sampler used in the MBP filter, as opposed to Murty’s

algorithm adopted in the δ-GLMB and δ-GMBP filters.

For the MBP filter, it was demonstrated that modelling

the dependencies of the target survival probability and birth

intensity on variable sampling times and spatial considerations

within the sensor field of view, enhanced its performance.
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