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Abstract—In multi-target tracking, correct models of detection
statistics, namely the probability of detection and clutter rate,
are required for effective multi-target state estimation. Within a
multi-target filter, the detection statistics are usually assumed as
known and static. Estimating the detection statistics’ parameters
before the execution of the filtering algorithms is not always
feasible and in some scenarios, these parameters could be time
varying, which would invalidate offline estimation. To overcome
these issues, this paper presents a Random Finite Set (RFS) based
algorithm which is capable of estimating both the probability
of detection and the clutter rate, while jointly estimating the
multi-target state of the system. The proposed algorithm is based
on previous work, the Kronecker Delta Mixture and Poisson
(KDMP) filter, which is a Chapman-Kolmogorov and Bayes
closed solution to the RFS-based filtering problem. Importantly,
the resulting robust filter remains closed under the filtering
procedure. Results show that the algorithm converges to the
correct detection statistics in simulated environments and, as
opposed to other methods, it can even continue to estimate
the probability of detection when no targets are present in the
environment.

I. INTRODUCTION

The multi-target tracking problem is of interest in many
areas of science, from bio-engineering [1] to robotics [2]. A
solution to the multi-target tracking problem has to estimate
both the number of targets and their respective states. To do so,
a model of the detection statistics, namely the probability of
detecting a target and a description of the clutter measurements
of the sensor and/or detection algorithm, is required. Recently,
new RFS-based methods that estimate the full multi-target
posterior have been proposed. These filters are closed under
the filtering procedure, namely the Chapman Kolmogorov
equation and Bayes rule, which results in more accurate esti-
mates than other RFS-based methods. Despite these advances,
these filters still require the parameters describing the detection
statistics. Solutions to the multi-target tracking problem which
are robust to unknown or time varying detection statistics and
which are closed under Bayes rule have yet to be explored.

In this work, a solution based on the Kronecker Delta Mix-
ture with Poisson (KDMP) RFS filter, which in [3] was shown
to be closed under the Chapman Kolmogorov equation and
Bayes rule, is examined. The proposed robust filter jointly esti-
mates the multi-target state, the probability of detection and the
clutter rate (or expected number of clutter measurements). To
provide a joint robust filtering solution which remains closed

under the filtering procedure, the probability of detection and
clutter rate are modelled as random variables with Beta and
Gamma distributions respectively. Simulations show that the
proposed method correctly estimates the detection statistics
and even allows for time variability in these parameters.

This article is structured as follows. In Section II related
work is presented, followed in Section III by a basic in-
troduction to Random Finite Sets required to develop the
proposed robust filter. The proposed model for the joint es-
timation of RFS state and detection statistics is then presented
in Section IV and the implementation details discussed in
Section V. Section VI presents results based on simulations
with both static and time varying detection statistics. Finally,
in Section VII the conclusions to this work are presented.

II. RELATED WORK

Clutter estimation within RFS-based methods, in partic-
ular using the Cardinalized Probability Hypothesis Density
(CPHD) filter, has been theoretically analysed in [4], [5], while
estimating the probability of detection was discussed in [6]. An
analytical implementation of such ideas was presented in [7],
where a CPHD filter that estimated the detection statistics
was presented. This filter used “clutter generators” which are
analogous to targets, but only generate clutter measurements.
The problem then becomes one of estimating the multi-target
state and the multi-target clutter generators.

A similar approach was adopted in [8] where the same
idea was implemented using a multi-Bernoulli (MeMBer)
filter. New developments of these filters were discussed
in [9] and [10], where not only the full clutter RFS is
estimated, but also the process of target creation, or birth.

A solution for tracking unknown and time varying detection
statistics was presented in [1]. Their solution uses the λ-
pD-CPHD filter, which is a CPHD filter that estimates the
clutter rate and probability of detection, and a standard CPHD
filter. The proposed solution first uses the λ-pD-CPHD filter
to estimate the detection statistics, which are then fed into the
standard CPHD filter, which estimates the tracks.

A different approach is taken in this work, where both,
the probability of detection and clutter rate are regarded as
continuous random variables (as opposed to an RFS variable)
and estimated in a joint manner with the multi-target state, as
shown in the next section. In this article it is assumed that
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the probability of detection and clutter rate are properties of
the sensor and/or detection algorithm and it is thus intuitive to
model them as random variables rather than RFSs. This model
has an advantage over previous work proposed in [4], [5], [6],
[7], [8], [9], [10]. Since the value for PD does not depend on
the target’s state, it is theoretically possible to estimate PD

even when no target is present in the environment. This helps
in the (re-)initialisation of targets when there has been a long
period of miss detections or only clutter measurements.

III. BACKGROUND

This section introduces the basic concepts from RFS theory
required to derive the equations of the Robust-KDMP (R-
KDMP) filter. For a complete description, the reader is referred
to [11].

An RFS X is a random finite set, and as such it has two
sources of uncertainty, namely randomness in the number
of elements, and the values of the set elements themselves.
The RFS X can be described by its probability density
function fX(X), or alternatively, by its Probability Generating
Functional (PGFl) GX [h], which is defined as follows:

GX [h] =

∫
hXfX(X)δX,

where the integration is carried out using the set integral1, and
hX =

∏
x∈X h(x), for a function 0 ≤ h(x) ≤ 1.

By using RFSs, it is possible to formulate the recursive
Bayesian estimation problem in terms of PGFls. If at time t
the estimated RFS is Xt, then the predicted RFS Xt+1|t has
the following PGFl:

GXt+1|t [h] = GB [h]

×GXt

[
1− PS + PS

∫
ft+1|t(xt+1|t|xt)h(xt+1|t)dxt+1|t

]
,

(1)

where GB[h] is the PGFl of the birth process, which models
where new targets are predicted to be born, PS the probability
of surviving between time t and t+1 and ft+1|t(xt+1|t|xt) a
single target prediction function.

Similarly, the corrected RFS Xt+1 has the following PGFl:

GXt+1 [h] =

δ
δZF [g, h]

∣∣
g=0

δ
δZF [g, h]

∣∣
g=0,h=1

, (2)

where δ
δZ is the functional derivative2 with respect to the

observations Z (modelled by function g(z)), and

F [g, h] = GΘ[g]

×GXt+1|t

[
h

(
1− PD + PD

∫
fz(z|x)g(z)dz

)]
, (3)

1The set integral is defined as follows:∫
fX(X)δX =

∞∑
n=0

1

n!

∫
· · ·

∫
fX({x1, . . . ,xn})dx1 · · · dxn.

2δZ is understood as ∂δz1 · · · ∂δzn with Z = {z1, . . . , zn} and δzi a
Dirac Delta function at zi.

where GΘ[g] is the PGFl of the clutter process Θ, PD is the
probability of detecting a target and fz(z|x) is a single target
likelihood function.

Depending on the RFS model of fX(X), different solutions
to (1) and (2) can be derived. One such solution, is the KDMP
filter [3], where the RFS X is modelled as a mixture of
Kronecker Delta RFSs in union with a Poisson RFS. The PGFl
of a KDMP distribution is as follows:

GX [h] = e⟨DU ,h−1⟩
∑
j

ωj

∏
k

⟨fj,k, h⟩ , (4)

where ⟨f, g⟩ =
∫
f(u)g(u)du, DU (x) is a density function

(expected position of the elements of a set) representing
unknown, or potential tracks and fj,k(x) are the probability
density functions of the different known tracks. The recursive
estimation of the parameters of this distribution is achieved by
using Algorithm 1.

In the following section, Equation (4) will be extended to
account for unknown clutter rate and probability of detection.
The resulting PGFl will be used in Equations (1) and (2) to
derive the prediction and correction equations for the Robust-
KDMP (R-KDMP) filter.

IV. PROPOSED MODEL FOR JOINT RFS STATE AND
DETECTION STATISTICS ESTIMATION

This section describes the model used to jointly estimate the
multi-target state X , clutter rate and probability of detection.
To account for unknown detection statistics, it will be assumed
that both the clutter rate and the probability of detection are
variables to be estimated rather than parameters of the filter.
To this end, it will be assumed that the probability of detection
is a property of the sensor, and as such, independent of the
state of any target (e.g. PD(x) = PD). This allows PD to be
estimated even if the estimate of the multi target state is the
empty set. The full distribution to be estimated is therefore:

p(Xt, PD, λΘ|Z1:t),

where Xt is the RFS representing the multi-target state, PD

the probability of detection, λΘ the clutter rate and Z1:t all
the observations received up to and including time t. The
clutter rate, or expected number of clutter measurements, will
be modelled by a Gamma distribution, and the probability of
detection with a Beta distribution. These choices are made,
since the number of clutter measurements is assumed Poisson
distributed and a Gamma distribution is the conjugate prior
for the expected number of clutter measurements. Similarly,
the detection or miss-detection of targets can be modelled as
a Bernoulli experiment, and thus, a conjugate prior for the
detection probability is the Beta distribution. The PGFl used
in the R-KDMP filter is therefore of the form:

GXt,PD,λΘ [h] = e
∑T

i (1−PD)i⟨Di,h−1⟩︸ ︷︷ ︸
Poisson RFS
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Algorithm 1 KDMP filtering algorithm proposed in [3]. The parameters are the maximum number of components of the
posterior mixture, N , and a threshold on the smallest weight allowed in the posterior mixture τ . The external function
NEXTBESTASSIGNMENT(Ci) is a call to Murty’s algorithm that finds the next best assignment and its corresponding cost of
the matrix Ci.

1: Parameters: N, τ
2: Input: componentst = {(ω1, {f1,1, . . . , f1,n1}), . . . , (ωℓ, {fℓ,1, . . . , fℓ,nℓ

})},Zt = {z1, . . . , zm}, DUt(x)
3: for i, n ∈ 1 . . . ℓ, 1 . . . nℓ do ▷ Update the distribution of each element.
4: fi,n ←

⟨ft+1|t,pSfi,n⟩
⟨pS ,fi,n⟩

5: end for
6: DUt+1|t = (1− pS)

⟨
ft+1|t, DUt(x)

⟩
+DB(x) ▷ Update the distribution of the unknown space.

7: for i ∈ 1 . . . ℓ do ▷ Create the cost matrix for each component of the mixture
8: Ci = i th KDMP Cost matrix (see text).
9: assignmentsi,costi = NEXTBESTASSIGNMENT(Ci) ▷ Get the initial assignment and cost of the Ci matrix

10: end for
11: componentst+1 ← ∅,totalWeight = 0
12: while |componentst+1| ≤ N do ▷ Generate the new components in decreasing order the posterior weight
13: i⋆ = argmin (costi − log (ωi)) , ψ = ωi⋆e

costi⋆

14: totalWeight← totalWeight+ ψ, F ← ∅
15: for all assignment ∈ assignmentsi⋆ do
16: if assignment corresponds to the detection sub-matrix D(i) then

17: F ← F ∪
{

fz(zj |xt+1)fxi⋆,k

⟨fz(zj |xt+1)fxi⋆,k
,1⟩

}
18: else if assignment corresponds to the miss-detection sub-matrix M(i) then

19: F ← F ∪
{

fxi⋆,k

⟨fxi⋆,k
,1⟩

}
20: else if assignment corresponds to the new components N(i) then

21: F ← F ∪
{

DUt+1|tfz(zj |xt+1)

⟨DUt+1|tfz(zj |xt+1),1⟩

}
22: end if
23: end for
24: componentst+1 ← componentst+1 ∪ {(ψ, F )}
25: if ψ ≤ τ · totalWeight then ▷ Stop if the new component does not contribute significantly to the mixture
26: break
27: end if
28: assignmentsi⋆ ,costi⋆ = NEXTBESTASSIGNMENT(Ci⋆) ▷ Next best assignment for the i⋆ component
29: end while
30: NORMALISEWEIGHTS(totalWeight, {ω ∈ componentst+1})
31: DUt+1 = (1− pD)DUt+1|t(x) ▷ Correction for the unknown space
32: return componentst+1

×
N∑
j

ωjBeta (PD|aj , bj)Gamma (λΘ|αj , βj)

Mj∏
k

⟨fj,k, h⟩︸ ︷︷ ︸
Beta-Gamma Kronecker Delta RFS

,

(5)

where (aj , bj) and (αj , βj) are the parameters of the Beta and
Gamma distribution respectively, ωj and fj,k the parameters
of the KDMP multi-object distribution, and Di(x) are the T
density functions (from i = 1 to T ) modelling the unknown
space of the environment. The Poisson component models
where targets could be born. In particular, D1(x) is the density
where targets could be born in the current time step, while
Di(x) is the density of targets born i steps in the past, which
have not yet been detected. It will be shown (in Equation (7))
that after the prediction stage of the R-KDMP filter, D1(x)

will correspond to the birth density corresponding to GB [h]
in Equation 1.

For clarity, the time sub indices t, t+1|t and t+1 will be
omitted when they are clear from the context.

A. Prediction

In the prediction step, some care must be taken in the deriva-
tion of the equations of the Poisson component. Assuming a
Poisson birth process, the predicted Poisson component PGFl
is:

GXt+1|t [h] = GB [h]GXt

[
1− PS + PS

⟨
ft+1|t, h

⟩]
= e⟨DB ,h−1⟩+

∑T
i (1−PD)i⟨Di,t,−PS+PS⟨ft+1|t,h⟩⟩

= e⟨DB ,h−1⟩+
∑T

i (1−PD)i⟨Di,tPS ,⟨ft+1|t,h⟩−1⟩
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= e⟨DB ,h−1⟩+
∑T

i (1−PD)i⟨⟨Di,tPS ,ft+1|t⟩,h−1⟩

= e
∑T

i (1−PD)i⟨D,h−1⟩, (6)

where:

Di,t+1(x) =
⟨
Di,t(xt)PS(xt), ft+1|t(x|xt)

⟩
+

{
DB(x) , i = 1

0 , i > 1
. (7)

Note that the integration in
⟨
ft+1|t, h

⟩
is with

respect to xt+1|t, while the integration in⟨
Di,t(xt)PS(xt), ft+1|t(x|xt)

⟩
is with respect to xt.

From Equation (7) it can be seen that the birth intensity at
the current time step only adds to the first component of the
Poisson part of the R-KDMP.

In the current formulation, there is no prediction model for
the Beta and Gamma components and thus their parameters
do not change under prediction.

B. Correction

To derive the correction equations, first the joint functional
F [g, h] is derived:

F [g, h] = GΘ[g]GX [h(1− PD + PD ⟨fz, g⟩)|PD,Θ]

= e⟨DΘ,g−1⟩e
∑

i Ui[h,g]
∑
j

ωjBjGj

∏
k

Tj,k[h, g],

where

Ui[h, g] = (1− PD)i⟨Di, h(1− PD + PD ⟨fz, g⟩)− 1⟩
Tj,k[h, g] = ⟨fj,k, h(1− PD + PD ⟨fz, g⟩)⟩

Bj = Beta(PD|aj , bj), Gj = Gamma(λΘ|αj , βj),

and the integration in ⟨fz, g⟩ is with respect to x. To obtain
an expression for the corrected PGFl, it is required to derive
the functional F [g, h] with respect to Z3:

GX [h|PD, λΘ] ∝
δ

δZ
F [g, h]

∣∣∣∣
g=0

=
∑

ZC⊎ZN⊎ZD=Z

δ

δZC

{
e⟨DΘ,g−1⟩

}
(8)

× δ

δZN

{
e
∑

i Ui[h,g]
} δ

δZD

∑
j

BjGj

∏
k

Tj,k[h, g]

 .

This derivative divides the set of observations Z into three
disjoint sets, namely the set of clutter measurements ZC , the
set of measurements from existing targets ZD and the set
of measurements from new targets ZN . The derivative with

3This derivative can be calculated using the product rule for set deriva-
tives [11]:

δ

δX

n∏
i

Fi =
∑

X1⊎···⊎Xn=X

n∏
i

δ

δXi
Fi,

where ⊎ is the disjoint union.

respect to the clutter ZC , results in the clutter component of
the KDMP filter:

δ

δZC

{
e⟨DΘ,g−1⟩

}∣∣∣∣
g=0

= e−⟨DΘ,1⟩
∏

z∈ZC

DΘ(z),

whereas the derivative with respect to the detected measure-
ments ZD, results in the detected components of the KDMP
filter:

δ

δZD

∑
j

BjGj

∏
k

Tj,k[h, g]


∣∣∣∣∣∣
g=0

=

∑
j

1≤k1 ̸=···̸=k|ZD|≤|ZD|

BjGj

∏
zi∈ZD

PD⟨fz(zi|·)fj,ki , h⟩.

The derivative with respect to the new components ZN is
different from that of the standard KDMP filter and is given
by:

δ

δZN

{
e
∑

i Ui[h,g]
}
= e

∑
i Ui[h,g]

×
∏

z∈Zn

T∑
i

(1− PD)
i
PD

⟨
Di,t+1|tfz(z|·), h

⟩
. (9)

Evaluating at g = 0 and expanding the summation results in:

δ

δZN

{
e
∑

i Ui[h,g]
}∣∣∣∣

g=0

= e
∑

i(1−PD)i⟨Di,t+1|t,(1−PD)h−1⟩

×
∑

1≤i1≤···≤i|X|≤T

∏
zk∈ZN

(1− PD)
ik PD

⟨
Dik,t+1|tfz(zk|·), h

⟩
.

(10)

Since the exponential in (10) does not depend of any value
of Z, it can be taken outside of the sum of (8), and when
normalised (which is achieved by dividing by the exponential
term with h = 1), the updated values for the Poisson
component of the R-KDMP filter are:

e
∑

i(1−PD)i⟨Di,t+1|t,(1−PD)h−1⟩

e
∑

i(1−PD)i⟨Di,t+1|t,(1−PD)−1⟩ = e
∑

i(1−PD)i+1⟨Di,t+1|t,h−1⟩

⇒ Di,t+1(x) = Di−1,t+1|t(x). (11)

Note that (11) implies that D1,t+1(x) = 0.
Without loss of generality, the clutter density can be written

as DΘ(x) = λΘfΘ(x), where λΘ is the expected number
of clutter measurements and fΘ(x) is the probability density
function of clutter occurrences. By normalising the probability
densities, the PGFl (8) can be further expanded as:

GX [h|PD, λΘ] ∝ e−⟨fΘ,1⟩+
∑

i(1−PD)i⟨Di,h−1⟩

×
∑

ωj

( ∏
z∈ZC

fΘ(z)

)( ∏
zk∈ZN

⟨Dikfz(z|·), 1⟩

)

×

( ∏
zi∈ZD

⟨fz(zi|·)fj,ki , 1⟩

) ∏
xk′∈XM

�����:1
⟨fj,k′ , 1⟩


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× P |ZD|+|ZN |
D (1− PD)|XM |+

∑
k(ik−1)Beta(PD|at−1, bt−1)

× e−λΘλ
|ZC |
Θ Gamma(λΘ|αt−1, βt−1)

×

( ∏
zi∈ZD

⟨
h,

fz(zi|·)fj,ki

⟨fz(zi|·)fj,ki , 1⟩

⟩) ∏
xk′∈XM

⟨
h,

fj,k′

�����: 1
⟨fj,k′ , 1⟩

⟩
×

( ∏
zk∈ZN

⟨
h,

Dikfz(z|·)
⟨Dikfz(z|·), 1⟩

⟩)
. (12)

From this point, the new parameters for the distributions of
λΘ and PD, and the new weights, can be calculated. The new
parameters and the weight associated with the clutter rate λΘ
can be determined from:

e−λΘλ
|ZC |
Θ Gamma(λΘ|αj,t−1, βj,t−1) =

Γ (αj,t+1)

(βj,t+1)
αj,t+1

β
αj,t−1

j,t−1

Γ (αj,t−1)
Gamma(λΘ|αj,t+1, βj,t+1), (13)

with Γ(z) being the Gamma function. The new Gamma
distribution parameters are:

αj,t+1 = αj,t + |ZC |, βj,t+1 = βj,t + 1 (14)

The parameters and the weight associated with the probability
of detection PD are determined from:

P
|ZD|+|ZN |
D (1− PD)|XM |+

∑
k(ik−1)Beta(PD|aj,t, bt) =

B(aj,t+1, bj,t+1)

B(aj,t−1, bj,t−1)
Beta(PD|aj,t+1, bj,t+1), (15)

where the beta function is defined as B(a, b) = Γ(a)Γ(b)
Γ(a+b) and

the new Beta distribution parameters are:

aj,t+1 = aj,t + |ZD|+ |ZN | (16)

bj,t+1 = bj,t + |XM |+
∑
k

(ik − 1). (17)

Summarising, the weight of a posterior component is:

ωk ∝ ωj

( ∏
z∈ZC

fΘ(z)

)( ∏
zk∈ZN

⟨Dikfz(z|·), 1⟩

)
( ∏

zi∈ZD

⟨fz(zi|·)fj,ki , 1⟩

)

× Γ (αj,t+1)

(βj,t+1)
αj,t+1

β
αj,t

j,t−1

Γ (αj,t)
× B(aj,t+1, bj,t+1)

B(aj,t, bj,t)
, (18)

the new Kronecker Delta components are:( ∏
zi∈ZD

⟨
h,

fz(zi|·)fj,ki

⟨fz(zi|·)fj,ki , 1⟩

⟩) ∏
xk′∈XM

⟨h, fj,k′⟩


×

( ∏
zk∈ZN

⟨
h,

Dikfz(z|·)
⟨Dikfz(z|·), 1⟩

⟩)
, (19)

and the parameters of the corrected Gamma and Beta distri-
butions are shown in Equations 14, 16 and 17 respectively.

V. IMPLEMENTATION

In this section, details of the implementation of the proposed
filter are presented.

A. Robust Prediction

In the derivation of the R-KDMP filter, the predicted pa-
rameters for the distributions of PD and λΘ do not change
in time. Inspecting Equations 14, 16 and 17, the corrected
parameters are increased by a positive amount at each time
step. This results in a decrease in the variance of PD and λΘ
at each time step, which would not adapt to varying values
of the probability of detection or the clutter rate. To avoid
the problem of the distributions of PD and λΘ reducing to
Dirac delta functions, and to allow for time variability in
the prediction step, the parameters of each Beta and Gamma
component distribution are updated in such a way that their
expected values are maintained, but their variances do not fall
below predefined thresholds σ2

B and σ2
G respectively4. This is

achieved by scaling the parameters of each distribution by
constant factors γj and ηj . These values are derived such
that the variances of the estimated values of λΘ and PD

never fall below the thresholds σ2
G and σ2

B respectively, while
maintaining their expected values. This allows for a small
degree of time-variability of these parameters.

For the Gamma distributions, both parameters are scaled by
a factor γj5:

γj =

{
1 if Var (Gj) > σ2

G
αj

σ2
Gβ2

j
otherwise.

(20)

Similarly, both parameters of each Beta distribution are scaled
by a factor ηj calculated as follows6:

ηj =

{
1 if Var (Bj) > σ2

B
ajbj−σ2

B(aj+bj)
2

σ2
B(aj+bj)3

otherwise.
(21)

B. Poisson RFS Maintenance

In the KDMP filter, the measurement set is divided into
three groups, clutter measurements, measurements from exist-
ing targets and measurements from new targets. By analysing
Equation 12, it can be seen that the R-KDMP filter has to
further subdivide the set of measurements of new targets

4It should be noted that, although this is a necessary implementation detail,
strictly speaking the theoretical model assumes no change.

5Deriving a value for γj can be carried out as follows:

Var (Gj) =
γjαj

γ2
j β

2
j

≥ σ2
G ⇒

αj

σ2
Gβ2

j

≥ γj .

6Deriving a value for ηj can be carried out as follows:

Var (Bj) =
η2j ajbj

η2j (aj + bj)
2 (ηjaj + ηjbj + 1)

≥ σ2
B

ajbj

(aj + bj)
2 σ2

B

≥ (ηjaj + ηjbj + 1)

ajbj − (aj + bj)
2 σ2

B

(aj + bj)
3 σ2

B

≥ ηj .

Authorized licensed use limited to: Universidad de chile. Downloaded on August 18,2021 at 01:55:26 UTC from IEEE Xplore.  Restrictions apply. 



into subsets corresponding to how long ago the target was
born, or equivalently from which density Di(x) is the target
initialised. This subdivision makes the number of components
of the posterior mixture further increase combinatorially (as
it requires the identification of all partitions of the set of
measurements of new targets). By inspecting Equation 7, it
can be seen that the influence of the i th component decreases
exponentially with a factor of PS (the expected number of
elements in the ith component is multiplied by a factor less
than one, PS). This suggests that new targets arising from
the density Di(x) for a large index i should be rare, as the
expected number of elements of this density is very low.
Following this idea, the number of components Di is fixed,
and for indices greater than a threshold ℓ are regarded as zero,
Di≥ℓ(x) = 0. In this work, as a proof of concept and to
maintain a low computational cost, the threshold ℓ is set to
one component only.

C. R-KDMP Filtering Algorithm

In a manner similar to the KDMP algorithm [3], the R-
KDMP algorithm determines the components of the R-KDMP
mixture in decreasing order of weights now including their
corresponding Beta and Gamma distribution parameters. To
this end, it has to be noted that by taking the logarithm of the
posterior weights, given in Equation (18), then determining the
components with the highest weights, is a problem of finding
the k-best optimal assignments [12]. The cost matrices from
which the R-KDMP mixture components are extracted is of
the form:

Ci =



Cl(i) D(i) N
(i)
1 · · · N

(i)
T ∞

0F 1D ∞ · · · ∞ 0D

0D ∞ 0D · · · ∞ ∞
...

... · · ·
. . .

... ∞
0D ∞ ∞ · · · 0D ∞
∞ ¬S(i) ∞ · · · ∞ S(i)


, (22)

where i is the index from the prior component used to create
this matrix, 0D is a matrix with zeros in all diagonal entries
and∞ otherwise, 0F is a matrix filled with zeros and 1D is a
matrix with ones in the diagonal and∞ otherwise. Intuitively,
the sub-matrix Cl(i) represents the costs of measurements
being clutter, the sub-matrix D(i) the costs of assigning mea-
surements to existing targets, the sub-matrices ¬S(i) and S(i)

the costs of targets not surviving and surviving respectively,
and finally the sub matrices N

(i)
k the costs of initialising

new targets using the unknown density Dk(x). The individual
entries (row j, column k) of the sub-matrices are calculated
as follows:

[
Cl(i)

]
j,k

=

{
− log (fΘ(zj)) j = k

∞ otherwise
(23)[

D(i)
]
j,k

= − log (⟨fz(zj |xt+1)fk,i, 1⟩) (24)

[
N(i)

m

]
j,k

=

{
− log (⟨Dm(xt+1)fz(zj |xt+1), 1⟩) j = k

∞ otherwise
(25)[

S(i)
]
j,k

=

{
− log (PS) j = k

∞ otherwise
(26)

[
¬S(i)

]
j,k

=

{
− log (1− PS) j = k

∞ otherwise.
(27)

Four differences can be observed between the R-KDMP and
the standard KDMP cost matrices. The main difference is that
there is no PD or λΘ in the R-KDMP cost matrix. This is
expected as these values are now part of the estimation prob-
lem. Given that there are no values for the detection statistics
in the cost matrix, the miss-detection sub-matrix, referred to
as 1D in (22), simplifies to a diagonal matrix with ones in
the diagonal and ∞ otherwise. Similarly, instead of using
the expected density of targets DΘ(z), the clutter sub-matrix
uses the spatial density fΘ(z) to weight clutter measurements.
In contrast to the single new target sub-matrix present in
the KDMP filter, multiple sub-matrices corresponding to the
different Di(x) densities from which targets could be born,
now exist.

The R-KDMP algorithm also has to determine which sub-
matrices are used to create a posterior component. This is to
calculate the values of |ZC |, |ZD|, |XM |, |ZN | and

∑
k(ik−1)

required to update the parameters of the Beta and Gamma
distributions. The number of entries in an optimal assignment
using the clutter sub-matrix Cl(i) corresponds to the value
|ZC |, while the number of entries of an optimal assignment
using the detection sub-matrix D(i) corresponds to the value
|ZD|. The number of miss-detected targets |XM | corresponds
to the number of assignments using the 1D sub-matrix. Finally,
the total number of assignments using any of the sub-matrices
N

(i)
m , corresponds to the total number of new targets |ZN |,

while if measurement k is assigned to a new target using the
sub matrix N (i)

m′ , then ik = m′.
As mentioned earlier, in this work only one component

of the Poisson RFS is used, namely D1(x). This keeps the
dimension of the cost matrices low and maintains a low
computational cost of the R-KDMP algorithm.

Finally, to model the state distribution of each target (func-
tions fj,k(x) in Equation (5)), a Normal distribution is used.
This results in the single-target update equations being equiv-
alent to those in the Kalman filter, or Extended/Unscented
Kalman filter if non-linear transition or observation models
are used.

D. State Extraction

To extract the estimated multi-target state, the first moment,
or density of targets will be used. Since the variable PD affects
the density of the Poisson components of the R-KDMP, it is
not directly clear if the density of targets (modelled by the
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KDMP component) is affected. The density of targets can be
obtained using the following equation [11]:

DX(x) =
∂

∂δx
GX [h]

∣∣∣∣
h=1

. (28)

To obtain a value for GX [h], the full PGFl GX [h|PD, λΘ]
has to be integrated with respect to the variables PD and λΘ:

GX [h] =

∫ ∫
GX [h|PD, λΘ]dλΘdPD (29)

=
N∑
j

ωj

[∫
e
∑T

i (1−PD)i⟨Di,h−1⟩Beta(PD|aj , bj)dPD

]

×
[∫

Gamma(λΘ|αj , βj)dλΘ

] Mj∏
k

⟨fj,k, h⟩

(30)

=
N∑
j

ωj

[∫
e
∑T

i (1−PD)i⟨Di,h−1⟩Beta(PD|aj , bj)dPD

]
︸ ︷︷ ︸

s[h|aj ,bj ,D0,...,DT ]

×
Mj∏
k

⟨fj,k, h⟩ . (31)

The integral involving the probability of detection PD in (31),
does not have a closed-form solution. Using:

q(x, aj , bj , D0, . . . , DT ) =
∂

∂δx
s[h|aj , bj , D0, . . . , DT ]

∣∣∣∣
h=1

,

and observing that s[1|aj , bj , D0, . . . , DT ] = 1, the density of
targets can be computed as follows:

D(x) =
∂

∂δx
GX [h]

∣∣∣∣
h=1

(32)

=
∑
j

ωj

 q(x, D0, . . . , DT ) (33)

+s[1|aj , bjD0, . . . , DT ]
∑
k

fj,k(x)

)
(34)

= q(x, D0, . . . , DT )︸ ︷︷ ︸
Density of the Poisson component

+
∑
j,k

ωjfj,k(x)︸ ︷︷ ︸
Density of the KDMP component

,

(35)

with q(x, D0, . . . , DT ) =
∑

j ωjq(x, aj , bj , D0, . . . , DT )
7. It

can be appreciated that the introduction of the Beta distribution
does not affect the density of the KDMP component. In a
similar manner to the standard KDMP filter, the density related
to the unknown space, q(x, D0, . . . , DT ), is discarded and
the density of the Kronecker Delta, which models the known

7Furthermore, it is possible to show that:

q(x, aj , bj , D0, . . . , Dt) =
T∑
i

B(aj , bj + i)

B(aj , bj)
Di(x),

with B(a, b) being the beta function.

tracks is used to estimate the multi-target state. Since the den-
sity functions fj,k(x) are modelled as Normal distributions,
the resulting density is a mixture of Gaussian distributions.
To extract the multi-target state, Gaussian components with a
weight greater than 0.5 are identified and reported to be part
of the state.

VI. EXPERIMENTAL RESULTS

This section shows the performance of the proposed filter
in estimating the state and detection statistics of a multi-target
tracking problem. To do so, a simulation study is carried out.
Figure 1 shows the x and y coordinates as a function of time
of different tracks using different colours and the simulated
measurements as black crosses.

The state of the targets is composed of their position
and velocities in 2-dimensional space, xt = [xt, yt, ẋt, ẏt].
For proof of concept purposes, linear Gaussian motion and
observation models are used. These models are described by
the following motion (F ) and observation (H) matrices:

F =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 H =

(
1 0 0 0
0 1 0 0

)
,

(36)
where ∆t is the sampling time, and the process covariance
Q and measurement covariance R matrices of the noise
components are as follows:

Q = 0.22I4×4 + q · q⊺ R = 0.12I2×2,

q⊺ =

(
0.5∆t2 0 ∆t 0

0 0.5∆t2 0 ∆t

)
,

with I being the identity matrix.
The expected number of false positive measurements per

time step is 12 over the detection area of 20m×20m, resulting
in a clutter density of 3 × 10−2m−2. The probability of
detection is set to 90%, and the probability of survival to
99%. The ground truth clutter rate and probability of detection
values from which the data was created, are not available to
the filter. The time step used to simulate the evolution of each
target’s state was ∆t = 0.1s. To evaluate the performance
of the R-KDMP filter, 100 Monte Carlo simulations were
executed.

Figure 2 shows the estimated and ground truth clutter rate
and probability of detection as functions of time. It can be
appreciated that, for the clutter rate, the proposed filter con-
verges to the true value, while for the probability of detection,
a small bias, after approximately time step 150, exists. This
effect seems to be due the filter not correctly differentiating
between tracks disappearing and tracks not being detected. A
deeper analysis of this behaviour will be the subject of further
research.

Figure 3 shows the OSPA [13] errors incurred by the KDMP
and the R-KDMP algorithms for the scenario with static
detection statistics. Despite the fact that the parameters of the
detection statistics must be estimated by the R-KDMP filter,
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Fig. 1. Simulated environment. The black crosses represent the
simulated measurements of the sensor, while the coloured lines
represent the different ground truth tracks.

0

5

10

15

20

25

30

35

λ
Θ

λΘ Estimate Ground Truth

0 50 100 150 200

Time step

0.80

0.85

0.90

0.95

1.00

P
D

PD Estimate Ground Truth

Fig. 2. Results for an environment with static detection statistics.
The shaded area represents the standard deviation of the estimate.
The mean and standard deviation were obtained using 100 Monte
Carlo simulations.

its OSPA errors for time steps less than 150 are comparable
to the KDMP filter. For time steps greater that 150, the OSPA
error is worse due to the bias shown in Figure 2.

To analyse how the filter adapts when the detection statistics
vary with time, a scenario similar to the previous one is
simulated except that the detection statistics now vary with
time. The results are shown in Figure 4.

Despite the lack of a prediction model for the evolution
of the detection statistics, it can be appreciated that the R-
KDMP filter manages to adapt to changing detection statistics.
Figure 4 shows that the clutter rate tends towards its ground
truth values and a similar behaviour is observed for the
estimated probability of detection. The main problem seen in
these figures is that the lack of prediction models results in
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Fig. 3. OSPA error between the standard KDMP and the Robust
KDMP algorithm for an environment with static detection statistics.
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Fig. 4. Results for an environment with varying detection statistics.
The shaded area represents the standard deviation of the estimate.
The mean and standard deviation were obtained using 100 Monte
Carlo simulations.

delays for the estimates to converge. An improved study of
the evolution of the detection statistics and the incorporation
of this knowledge into the corresponding prediction models
should greatly improve the performance of the R-KDMP filter.

The OSPA error for the environment with varying detection
statistics is shown in Figure 5. As the KDMP algorithm
does not allow for changing detection statistics, the initial
parameters of the detection statistics were used as parameters
of the KDMP algorithm. As expected, the proposed R-KDMP
filter outperforms the standard KDMP filter, as it adapts to the
changing detection statistics, while the KDMP filter uses the
static parameters provided at initialisation.
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Fig. 5. OSPA error between the standard KDMP and the Robust
KDMP algorithm for an environment with varying detection
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VII. CONCLUSIONS

This paper extended the KDMP filter to estimate both
the probability of detection and the clutter rate of a sen-
sor and/or detection algorithm for multi-object tracking. To
achieve this, the probability of detection is modelled with
a Beta distribution while the clutter rate is modelled as a
Gamma distribution. Both these distributions are the conjugate
prior to the Bernoulli process, which models the detection
or miss-detection of targets, and to the Poisson distribution,
modelling the number of clutter measurements respectively. By
using these models, the filter remains closed under both, the
prediction and correction steps of the filtering process. Since,
contrary to previous methods, the probability of detection
is not included in the state to be estimated, the resulting
filter manages to provide an estimate of the probability of
detection even when no targets are present in the environment.
Results show that the R-KDMP filter manages to correctly
estimate both detection statistics, namely the clutter rate and
the probability of detection, in scenarios where these values
are unknown and even time varying.

As future work, the full cost matrix using multiple ini-
tialisation cost matrices Ni will be implemented. This will
require a more detailed analysis into the performance of the
algorithm, since using the complete cost matrix will increase
the computational requirements. It will also be explored how
to model the evolution of the detection statistics’ parameters
in time and to use these models in the prediction step of the
filtering procedure. This work estimates both the probability
of detection and clutter rate assuming their independence of
the state and measurement space respectively. Two possible
extensions are the estimation of the spatial clutter density, and
a space-dependent probability of detection.
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