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El objetivo de esta tesis es el desarrollo de nuevas metodologías de diseño de estrategias de 
control predictivo híbrido para sistemas dinámicos no-lineales que incluyen variables 
discretas y continuas. La metodología se diseña para aplicaciones reales, en particular para 
el estudio de sistemas dinámicos de transporte, incluyendo políticas operacionales y de 
servicio, así como reducción de costos. La formulación del controlador se basa en una 
definición adecuada de las variables esenciales del proceso y su evolución en el futuro, en 
una función objetivo flexible capaz de capturar las predicciones de las variables esenciales, 
y un algoritmo de optimización eficiente, principalmente proveniente de la Inteligencia 
Computacional, para optimizar en tiempo real los índices de desempeño de las aplicaciones. 
 
El marco teórico de la nueva metodología de control predictivo híbrido es genérica, y 
extensible a otros procesos industriales que involucran dinámicas no lineales y variables 
tanto continuas como discretas. Se consideran técnicas de Inteligencia Computacional 
como modelación difusa y algoritmos evolutivos, debido a que la formulación predictiva 
resultante involucra tanto modelación no lineal como optimización no lineal entera mixta 
(problemas del tipo NP-Hard). 
 
Una característica importante de la nueva metodología desarrollada es el uso de dos 
enfoques de optimización. Dadas las propiedades de las aplicaciones, primero se ocupa un 
enfoque clásico mono-objetivo; y luego, de forma novedosa se propone el uso de un 
enfoque basado en optimización multi-objetivo, en el cual se tienen objetivos  
contrapuestos y la decisión de control se selecciona observando el compromiso entre 
soluciones Pareto óptimas (por ejemplo entre costos de usuarios y costos operacionales en 
el caso de la aplicación en sistemas de transporte).  
 
En resumen, los principales aportes de esta tesis son los siguientes. Primero, se presenta 
una nueva clase de modelos híbrido-difuso y una metodología de identificación para el caso 
de modelos tipo Witsenhausen modificados usando clustering difuso y análisis de 
componentes principales. Se diseña un nuevo tipo de controlador predictivo híbrido multi-
objetivo, el cual genera frentes de Pareto dinámicos de los cuales se escogen las acciones de 
control adecuadas (según un criterio). Se presenta una nueva formulación del problema de 
control predictivo mono-objetivo y multi-objetivo para el sistema dial-a-ride considerando 
demanda y condiciones de tráfico incierta. Se propone un nuevo esquema de detección de 
situaciones anormales para el sistema dial-a-ride, el cual detecta condiciones de tráfico 
inesperadas. Finalmente, se formula y diseña un problema de control integrado para un 
sistema dial-a-ride que interactúa con un corredor de transporte público. 
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The core of this thesis is to develop a new methodology for the design of predictive control 
strategies for non-linear dynamic hybrid systems, including discrete and continuous 
variables. The methodology is designed for real applications, particularly the study of 
dynamic transport systems, considering operational and service policies, as well as costs 
reduction. The control structure is based on a proper definition of the key variables and 
their evolution in the future, a flexible objective function able to capture the predictive 
behaviour of the key variables, and efficient algorithms, mainly coming from the 
computational intelligence framework, to optimize performance indices for real-time 
applications.  
 
The framework of the proposed predictive control methodology is generic, and extendible 
to other industrial processes involving non-linear dynamics with both continuous and 
discrete variables. As the resulting predictive formulations involve both non-linear 
modelling and non-linear mixed integer optimization, which is known to be NP-Hard, 
computational intelligence methodologies are considered, among them fuzzy modelling and 
evolutionary algorithms.   
 
One major feature of the proposed developments is the methodology utilized in the 
optimization procedure under the predictive control approach. Given the properties of the 
applications, it was decided to explore first, a classical mono-objective approach, and later 
to propose a new approach based on a multi-objective optimization procedure, in which 
many objectives are opposed and the trade-off between Pareto optimal solution is obtained 
(for instance users versus operational costs in case of transport applications). 
 
In summary, the main contributions of this thesis are as follows. First, a new class of hybrid 
fuzzy models and an identification methodology for Modified Witsenhausen models using 
fuzzy clustering and principal component analysis are derived. A new multi-objective 
hybrid predictive control design is derived generating control actions from a dynamic 
Pareto front. A new formulation of mono-objective and multi-objective predictive control 
of a dial-a-ride system considering uncertain demand and traffic conditions is postulated, 
formalized and tested through simulation experiments. A new fault detection scheme for 
abnormal situations of a dial-a-ride system is designed for detecting unpredictable traffic 
conditions. Finally, the design of an integrated control problem is formulated for a dial-a-
ride problem of a fleet of vehicles together with a fixed-route public transport system. 
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Hybrid Systems represent a large class of systems that contains continuous and discrete/integer 

variables. Systems described by physical laws, logic rules, operating constraints described by 

both differential and algebraic equations are hybrid systems too. Hybrid Systems have received 

much attention from computer science and from the community of control in the recent years. 

Given the high complexity of hybrid systems, development of ad-hoc hardware and 

mathematical tools available to model and treat them are required.  

 

In this thesis, a methodology is developed for the design of predictive control strategies for non-

linear dynamic hybrid systems, including discrete and continuous variables. The methodology is 

designed for real applications, particularly the study of dynamic transport systems, considering 

operational and service policies, as well as costs reduction. The control structure is based on the 

modelling of key variables that describe the system, a flexible objective function able to capture 

predictions of future behaviour associated with key variables, and efficient algorithms to solve 

and optimize performance indices for real-time applications.  

 

Although the methodologies were originally thought for dynamic transport applications, the 

framework turned out to be more generic, and extendable to other industrial processes involving 

non-linear dynamics with both continuous and discrete variables (for instance power plants, 

chemical plants, etc.). As the resulting predictive formulations involve both non-linear modelling 

and non-linear mixed integer optimization, which is known to be NP-Hard, computational 

intelligence methodologies are considered, among them fuzzy modelling and evolutionary 

algorithms.   

 

One major feature of the proposed developments is the methodology utilized in the optimization 

procedure under the predictive control approach. Given the properties of the applications, it was 

decided to explore first, a classical mono-objective approach, and later, a multi-objective 

optimization procedure, in which many objectives are opposed (for instance users versus 

operational costs).  
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The present thesis is structured considering the following chapters.  

 

Chapter 2 presents identification methods of hybrid systems, which are systems in discrete-time 

and that have mixed continuous and discrete input/states. The methods are based on Piece-wise 

Affine (PWA) models and Modified Tanaka Model (MTM), which is a hybrid fuzzy model.  

 

First, a new class of hybrid models is presented. The class, denoted fuzzy hybrid model, is 

introduced and will be used to model hybrid systems with different non-linearities defined in 

different operating regions. Then, an identification methodology for the PWA model is 

presented. The method determines first a partition for the data set by using fuzzy clustering, and 

then in each region a local linear model is determined. An illustrative experiment on a Batch 

Reactor system is conducted to compare PWA with fuzzy identification method. 

 

Later, an identification methodology for the hybrid fuzzy model called Modified Tanaka Model 

(MTM) by using fuzzy clustering and principal component analysis is described. The method is 

inspired in the "inverse" form of the merge method for clusters, which makes it possible to 

identify the consecutive clusters that are more different and, therefore, to use this idea to identify 

the unknown switching points of a process based on just input-output data and then to obtain the 

number of sub-models to be identified. An illustrative experiment on a hybrid tank system is 

conducted to show the benefits of the proposed approach, compared with the classical Takagi-

Sugeno identification. 

 

Chapter 3 presents Hybrid Predictive Control (HPC) methods of hybrid systems. The fuzzy 

hybrid models using the identification techniques proposed in chapter 2, are used for the HPC 

design, where the optimization problem is solved efficiently by Genetic Algorithms (GA). 

Illustrative experiments on a hybrid tank system and in a Batch Reactor were conducted to 

demonstrate the benefits of the proposed approaches. 

 

Additionally in Chapter 3, a multi-objective hybrid predictive control (MO-HPC) based on fuzzy 

hybrid modelling is presented. At every instant, a proper optimization algorithm is used to find 

the dynamic Pareto optimal front. Provided that only one input can be applied to the system, the 

controller must use a criterion to choose a proper solution from the Pareto set (among those 

solutions typical hybrid predictive controller solution). Then, the controller can change the 

importance of the objectives without tuning or solving a new optimization problem, by just 
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exploring in different ways the Pareto optimal front, using optimal solutions at every instant. 

Illustrative experiments on a hybrid tank system were conducted to show the advantages of the 

proposed MO-HPC. As an additional application, the behaviour of a MO-HPC was emulated 

using a Hybrid Predictive Controller. Using the emulator, the operator/dispatcher does not have 

to supervise the MO-HPC as his (her) decisions were modelled in a HPC with time-varying 

weighting factors.  

 

Chapter 4 presents a hybrid predictive controller, as described in Chapter 3, applied for dial-a-

ride problem to incorporate future information regarding unknown demand and expected traffic 

conditions, in the context of a dial-a-ride problem with fixed fleet size. As the routing problem is 

dynamic, several stochastic effects have to be considered within the analytical expression of the 

dispatcher assignment decision objective function. This approach is focused on two issues: one is 

the extra cost associated with potential rerouting arising from unknown requests in the future, 

and the other is the potential uncertainty in travel time coming from non-recurrent traffic 

congestion from unexpected incidents. These effects are incorporated explicitly in the objective 

function of the hybrid predictive controller. In fact, the proposed predictive control strategy is 

based on a multivariable model that includes both discrete/integer and continuous variables. The 

vehicle load and the sequence of stops correspond to the discrete/integer variable, adding the 

vehicle position as an indicator of the traffic congestion conditions.  

 

In addition, Chapter 4 includes an analytical formulation of the proposed prediction models that 

allow us to search over a reduced feasible space (no-swapping). Demand prediction is based on a 

systematic fuzzy clustering methodology, resulting in appropriate call probabilities for uncertain 

future. As the dynamic multi-vehicle routing problem considered is NP-hard, the use of Genetic 

Algorithms (GA) is proposed that provide near-optimal solutions for the three, two and one-step 

ahead problems. Promising results in terms of computation time and accuracy are presented 

through a simulated numerical example that includes the analysis of the proposed fuzzy 

clustering, and the comparison of myopic and new predictive approaches solved with GA. The 

HPC based on GA is later analyzed under two new scenarios. The first one considers a 

predictable congestion obtained using historical data (off-line method) requiring a predictive 

model of velocities distributed over zones. The second scenario that accepts unpredictable 

congestion events generates a more complex problem that is managed by using both fault 

detection and isolation and fuzzy fault tolerant control approaches for abnormal situations. 

Results validating these approaches are presented through a simulated numerical example. 
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In Chapter 5, a framework of multi-objective Hybrid Predictive Control approach (MO-HPC), 

described in Chapter 3, is applied for solving the dial-a-ride problem based on a dynamic 

objective function that considers two dimensions: user and operator costs. As these two 

components aim at opposite goals, the problem is formulated and solved through multi-objective 

optimization. At every instant, the algorithm finds the optimal Pareto front associated with the 

solutions of the problem by means the dynamic routes of those vehicles in service. Since only a 

single solution has to be applied to the system every time a new request appears, several criteria 

are proposed in order to properly use the information provided by the dynamic optimal Pareto 

front. Thus, by using MO, the trade-off between the two conflicting objectives will become clear 

for the dispatcher when making dynamic routing decisions. Illustrative experiments through 

simulation of the process are presented to show the potential benefits of the new approach.  

 

Chapter 6 presents the formulation of a hybrid predictive control (HPC) approach for the 

integrated dial-a-ride system and public transport system. Based on the prediction of state space 

variables, traffic conditions and demands, the dispatcher routes the fleet of the dial-a-ride system 

considering both user and operational costs, assuming a regular operation of the public transport 

system. As the optimization variables are mixed-integer, two hybrid predictive controllers (one 

for controlling the dial-a-ride system and one for the public transport system) are formulated. As 

the resulting optimization problem is NP Hard, some recommendations are included in the 

analysis for a real-time implementation of this strategy. 

 

Finally in Chapter 7, main contributions of this thesis and further research are presented. 



Chapter 2. Fuzzy Model Identification and Control of Non-linear Hybrid Systems      

5 
 

��� )X]]\�0RGHO�,GHQWLILFDWLRQ�RI�1RQ�OLQHDU�+\EULG�6\VWHPV��
 

����� /LWHUDWXUH�5HYLHZ��
 

Hybrid systems represent a large class of systems that contains continuous and discrete/integer 

variables. Those systems given by physical laws, logic rules, operating constraints that are 

described by both differential and algebraic equations are hybrid systems too. Hybrid systems 

have received much attention from both the computer science and control communities. The 

reasons are, among others, the high complexity of hybrid systems and the inadequate hardware 

and available mathematical tools to model and treat them. Therefore new tools have to be 

developed for hybrid-system identification and control design in the context of industrial 

processes.  

 

Yang and Blanke (2007) summary the most important contributions related to the controllability 

of hybrid control systems. They propose a unified approach comprising global reachability 

analysis at the discrete event system level, local reachability analysis at the continuous time 

dynamical system level and a discrete path-searching algorithm. The method was derived from 

Discrete Event Systems theory.  

 

Margaliot (2006) recognizes that the difficulty in the stability analysis of hybrid systems arises 

from two principal factors. First, unlike ordinary differential equations, a hybrid system admits 

an infinite set of trajectories for any initial conditions and second, their trajectories can be much 

more complex. In this work, a specific approach for stability analysis based on variational 

principles for switched system is proposed and a link between the variational approach and the 

stability analysis of switched systems using Lie-algebraic considerations is presented.  Mao HW�DO. 
(2007) determine whether or not a stochastic feedback control can stabilize or un-stabilize a 

given non-linear hybrid system. However, the results are limited to models where the functions 

grow linearly, so it is not a general result.  

 

In the present thesis, specifically, the integrated dynamic pickup and delivery problem of a fleet 

of vehicles (dial-a-ride system) together with a public transport system will be formulated, 

analyzed and solved using the predictive control approach. As the integrated system contains 

both continuous and discrete variables in the state and inputs, a hybrid predictive control will be 

used in order to include the hybrid characteristics of the system in the control actions. Some of 
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the continuous variables are the positions of vehicles and buses, arrival times to stops, headways, 

etc. Regarding the discrete variables it can be mentioned the number of passengers of buses and 

vehicles, the sequences of task to be followed by vehicles for the study of dial-a-ride systems, 

station skipping strategy applied to a fixed-route bus system, etc. In this chapter, new 

identification methods of hybrid systems will be presented. These methods could be used, for 

example, in the demand pattern modelling, which in real-systems depends on some specific 

conditions of the system, for example conditions during rush hours, weekends, holidays, and 

other characteristics. With hybrid modelling it is possible to determine first the set of conditions 

that best represent a partition of the input space and then, to set a good model for each partition.  

 

Next, a review of hybrid identification methods is presented, where hybrid systems identification 

and fuzzy modelling are highlighted.  

 

Hybrid systems can be represented by different types of models; for example, Bemporad and 

Morari (1999) proposed the Mixed Logical Dynamic (MLD) models, where continuous/discrete 

inputs, states or outputs are considered. Heemels HW�DO. (2001) established equivalencies among 

five classes of hybrid dynamical models: MLD, linear complementarity systems, extended linear 

complementarity systems, Piece-Wise Affine (PWA) systems, and max-min plus scaling 

systems. Each sub-class has its own advantages over the others. For example, the control 

techniques for MLD hybrid models, the stability criteria for PWA systems and the conditions of 

existence and uniqueness of the solution trajectories for linear complementarity systems. 

 

Ferrari-Trecate HW� DO. (2003) proposed a methodology for the identification of discrete-time 

hybrid systems in the PWA form, formulated as a discontinuous PWA map. The algorithm, 

based on clustering, linear-identification, and pattern-recognition techniques, identifies both the 

affine sub-models and the polyhedral partition of the domain on which each sub-model is valid, 

avoiding gridding procedures. The clustering step, used for classifying the data points, allows the 

identification of different sub-models that share the same coefficients but are defined on different 

regions. The measures of confidence on the samples are introduced and exploited in order to 

improve the performance of both, the clustering and the final linear regression procedure. 

However, if non-linear functions are considered in the regression vector, the method would tend 

to approximate the non-linearities with multiple linear sub-models, overestimating the real 

number of sub-models. 
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Nakada HW� DO. (2005) addressed the problem of identifying a Piece-Wise AutoRegressive 

eXogenous (PWARX) systems by using statistical clustering. The method consists first, in the 

clustering of the measured data, then an estimation of the boundary hyper-planes and finally 

parameters estimation. Clustering, based on statistical approach, is applied by assuming the 

probability density of data as a mixture of Gaussian multivariate distributions. The parameters of 

the Gaussian densities are tuned in order to obtain the maximum for a suitable log-likelihood 

function so that the mixture model fits the data as accurate as possible. In this approach the 

number of sub-models must be given beforehand, the implementation has the numerical problem 

of the covariance matrix inversion, and in the algorithm the regression vector is also composed 

of only past inputs and outputs, so the non-linear functions of past data are not considered. 

 

An algebraic identification procedure to cope with the identification problem of Switched 

AutoRegressive eXogenous (SARX) systems was proposed by Ma and Vidal (2005). Multiple 

ARX models are encoded in a single polynomial expression, which decouples the calculus of the 

parameters from the switching mechanism. The procedure allows estimating all the unknown 

variables that define the structure of the model, the number of discrete states and the model 

orders. 

 

The Bayesian procedure proposed by Juloski HW�DO. (2005) exploits some prior knowledge about 

the discrete states and the parameters of sub-models. The parameters of the models are treated as 

random variables, and described through their probability density functions. The algorithm 

associates each data point to a discrete mode which maximizes the probability of generating the 

point. In addition, the algorithm provides the misclassification weights to be used in standard 

multi-category robust linear programming. The Bayesian procedure requires knowing the 

number of discrete states and model orders, and provides a sub-optimal solution to the 

identification problem. 

 

The bounded-error procedure was proposed by Bemporad HW� DO. (2005) in order to identify 

PWARX systems. The first step simultaneously classifies the data, computes the sub-model 

parameters and estimates the number of discrete modes by solving the partition into a minimum 

number of feasible subsystems. The main feature of the method is to ensure that the module of 

the identification error is bounded by a fixed number, for all the data points. The bound is used 

as a tuning knob between complexity and accuracy. 
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On the other hand, many advances in fuzzy identification systems have arisen in recent years. In 

Celikyilmaz and Turksen (2008) a new fuzzy identification technique, which uses a combination 

of the function estimation method and an improved fuzzy clustering, is proposed. The new 

clustering algorithm considers the classical fuzzy c-means distance and the fuzzy regression 

residual, where membership values are used as additional inputs. This approach can better 

approximate the system compared with other classical fuzzy rule models.  

 

Nefti HW� DO. (2008) presented a new method for merging fuzzy sets based on clustering in the 

parameter space. The degree of inclusion associated with each data point is evaluated with 

respect to a prototype in the parameter space. The fuzzy sets are replaced by the most compatible 

prototypical fuzzy set, which is determined from the inclusion-based clustering algorithm.  

 

Hadjili and Wertz (2002) proposed an identification method for Takagi-Sugeno (T&S) models 

(Takagi and Sugeno, 1985), incorporating the selection of optimal rules and input variables. The 

subtractive clustering algorithm, based on compactness and the separation of clusters, is 

performed in order to determine the number of rules. Then, an input variable is discarded if the 

fuzzy partition does not change significantly when this variable is eliminated. On the other hand, 

Roubos and Setnes (2001) proposed a complexity-reduction algorithm based on genetic-

algorithm optimization procedures to find redundancy among the rules with a criterion based on 

the maximum accuracy and the maximum set similarity.  

 

In addition, Kim HW�DO. (1997) presented a combined identification method, based on the Takagi-

Sugeno (T&S) and the Sugeno-Yasukawa models, in order to preserve the advantages of both 

algorithms. The approach implements fuzzy regression clustering as an initial tuning of the 

parameters and the gradient descent method to adjust them accurately.  

 

In Abonyi HW�DO. (2002), a modified Gath-Geva fuzzy clustering algorithm for the identification 

of T&S models is proposed to directly obtain the parameters of membership functions by using 

the parameters of the clusters. A linear transformation of the input variables permits to accurately 

recover the fuzzy partition of the antecedents. However, linear combinations of the input 

variables cannot be easily interpreted by the user. Then, a new cluster prototype is introduced in 

order to avoid the use of transformed input domains.  
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Zeng HW� DO. (2008) proposed a new representation theorem for hierarchical systems when the 

discrete input space is considered. The theorem shows that one-to-one mapping for low-level 

functions is required to obtain a flexible hierarchical representation. Moreover, they 

demonstrated that flexible hierarchical fuzzy systems satisfy the universal approximation 

property, which allows us estimating any hierarchical function to any degree of accuracy. A 

hierarchical fuzzy identification method that combines expert human knowledge and limited 

numerical data is presented. 

 

Although most of the developments have been made in conventional fuzzy systems, a few hybrid 

fuzzy identification methods are found in the literature. Palm and Driankov (1998) presented a 

hierarchical identification for fuzzy switched systems. The proposed method considers a black-

box fuzzy identification by using fuzzy clustering and measurable discrete states in order to 

obtain a model for continuous state and discrete transitions. Although good performance is 

observed with the estimation, prior knowledge about the discrete modes is required.  

 

Next, Girimonte and Babuska (2004) described two structure-selecting methods for non-linear 

models with mixed discrete and continuous inputs. The first method, based on fuzzy clustering, 

uses fuzzy sets to obtain the relevant inputs. The second approach is an induction algorithm 

included in a searching method. The results show that fuzzy clustering is faster in terms of 

computation time. However, the drawback of the methods is the high computation time 

associated with the increment of the search horizon. In the present thesis, a new identification 

method is proposed for non-linear hybrid systems that identify first the discrete transitions 

(switching points) and then all other kind of non-linearities only by means of input-output data of 

the process, where prior knowledge of the discrete modes is not required.  

 

The next sections of this chapter are structured as follows. Section 2.2 presents the most 

important classes of hybrid systems models; among them the hybrid fuzzy models that will be 

used in the identification methods are highlighted. In section 2.3 a fast identification method 

based on fuzzy clustering for PWA models is presented. Results of the proposed method for a 

batch reactor process is presented and compared with alternative hybrid fuzzy modelling. Then, 

in section 2.4, a hybrid fuzzy identification method for MTM based on fuzzy clustering and the 

principal components is presented. Results of the proposed hybrid fuzzy modelling are reported 

for a hybrid tank system. Finally the conclusions and further research are discussed. 
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A general discrete-time model of the following form is considered (Bemporad HW�DO., 2002). 

 

( ) ( ) ( ) ( )( )1 , ,W I W W W+ =[ [ X Z     (2.1.a) 

( ) ( ) ( ) ( )( ), ,W K W W W=\ [ X Z      (2.1.b) 

( ) ( ) ( )( ), ,J W W W≤� [ X Z      (2.1.c) 

( ) �W 5∈[  is the state vector, ( ) �W 5∈X  is the input vector, ( ) �W 5∈\  is the output vector and 

( )
�W 5∈Z  is a vector of auxiliary variables. Functions :

� � � �I 5 5 5 5× × → ,  

:
� � 	 
K 5 5 5 5× × →  and :

� � 
 �J 5 5 5 5× × →  are defined.  

 

The evolution of this model is determined in the following way. First, given ( )W[  and ( )WX , the 

inequalities (2.1.c) are solved for ( )WZ . Then ( )WZ  is substituted in (2.1.a) and (2.1.b), from 

where the state ( )1W +[  is updated and the current output ( )W\  is obtained.  

 

In this Chapter, the hybrid system given in (2.1) will be assumed to be well-posed in the space of 

the input-state pairs. This property means that for all the pairs ( ) ( )( ),W W[ X  in the input-state 

space, equations (2.1) have a solution ( ) ( ) ( )( )1 , ,W W W+[ \ Z , and moreover, ( ) ( )( )1 ,W W+[ \  are 

uniquely determined. Then, even though inequalities (2.1.c) do not uniquely determine ( )WZ , the 

state and the output are unique functions of ( ) ( )( ),W W[ X , as it happen in real systems.  

 

The hybrid system (2.1) allows attaining discrete values for some input, state or output, by 

setting inequalities (2.1.c) in a proper way. Some examples of how to deal with discrete values, 

logic operators (namely if, then, else, and, or, and so on), etc., can be obtained in the hybrid 

systems literature (see for example Bemporad HW� DO., 2002 or Bemporad and Morari, 1999). 

Different classes of hybrid systems are determined by choosing specific forms for the functions 

( )I < , ( )K <  and ( )J < . Next, the classes of hybrid systems Wittsenhausen, PWA and MLD 

systems are presented. Also a new class of hybrid systems called “hybrid fuzzy” is presented, 

and the aim of this chapter regards the identification procedure for such a class. 
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Witsenhausen systems are switched hybrid systems where the continuous states remain 

continuous even when the discrete/quantized states changed. The transition of a system state 

occurs when one or more continuous states satisfy the conditions defined for each transition. 

This type of hybrid system can be generically described as (Witsenhausen, 1966): 

 

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

1 ,

, 1

���W I W W
T W J W T W

+ =

= −

[ [ X
[

     (2.2) 

where ( ) �W 5∈[  is the state vector, ( ) �W 5∈X  is the input vector, and ( ) { }1, 2,...,T W V∈  is the 

discrete/quantized state variable. The hybrid-system state is described at any instant by 

( ) ( )( ) 1,
�W T W 5 +∈[ . The local behavior of the system is described by the vectorial function 

( ) ( )���I <  and the discrete/quantized state variable is determined by the function ( )J < . 

 

In this chapter a modified version of the Witsenhausen hybrid system is considered, where the 

discrete/quantized state variable depends only on the state vector ( )W[  and does not depend on 

the previous discrete/quantized state ( )1T W − . So, (2.2) can be written as: 

 

( ) ( ) ( )( ) ( )( )

( )( ) ( )( ) ( )

( ) ( ) ( )( )

1

1 ,

1,

0,

,

�
� �

�

�
�

W I W W W

J W L WW
RWKHUZLVH

W K W W

δ

χ
δ

=

+ =

 = ⇔ ∈= 


=

∑[ [ X [

[ [[

\ [ X

    (2.3) 

where ( )W[ , ( )WX , ( )�I <  and ( )J <  are defined in (2.2), ( ) �W 5∈\  is the output vector determined 

by the function ( )K <  and ( )( )� Wδ [  is a binary variable that equals � if ( )( )J W[  equals L  and � 

otherwise. The equation ( )( )J W L=[  indicates that the state vector ( )W[  belongs to the region of 

�� 5χ ∈ . This kind of systems is a sub-class of the hybrid system given by (2.1). 

 

The aim in this thesis chapter is to present a systematic method for determining the regions �χ  

and the functions ( )�I <  given only the input-output data of the process. The state-space partition 
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�χ  will be assumed to be hyper-cubic, and ( ) I <  could be a non-linear function that will be 

identified by the T&S models. 
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PWA systems have been studied by several authors (for example, Sontag, 1981, Bemporad HW�DO., 
2000 and their references). As it is stated in Bemporad HW�DO. (2000), PWA systems represent the 

simplest extension of linear systems that still can model non-linear processes and capable of 

handling with the hybrid behavior. 

  

PWA systems are represented by the following piece-wise linear affine models, whose dynamics 

are affine and can be different in different regions of the state-input space. They are defined by 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

1

if

! ! !
! ! !

" # $ %
! ! ! !

W $ W % W I
W & W ' W J

W W * W * W *χ

 + = + + = + +


∈ ⇔ + ≤   

[ [ X
\ [ X

[ X [ X
       (2.4) 

where W , ( )W[ , ( )WX  and ( )W\  are defined as in (2.1), the sub-index L� takes values 1,..., &('*)1 , 

where +(,*-1  is the number of PWA dynamics defined over a polyhedral partition 6. Every 

partition χ  defines the state-input space over which the different dynamics are active. The 

dynamics are defined by the matrixes .$ , /% , /& , 0'  and vectors 0J  and 0I . The partitions are 

defined by hyper-planes given by matrixes
12* ,

32*  and 
4
5* . The model (2.4) is supposed to be 

well-posed, and then the partition should satisfy: 

 

1

, ,
687:9
; <

=
;

;

L Mχ χ

χ χ
=

∩ = ∅ ∀ ≠

=*
     (2.5)  

 

PWA systems (2.4) belong to the general class (2.1) by choosing functions ( )I <  and ( )K <  to be 

PWA functions (the auxiliary variable ( )WZ  is not used, as the inequalities defined by the 

function ( )J < ).  
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Equations (2.5) imply that the PWA system is well-posed. Then the set of inequalities 

( ) ( )> ? @A A A* W * W *+ ≤[ X  should be split in strict inequalities (<) and non-strict inequalities (≤ ). 

For simplicity in the notation this issue will be neglected. Also, because it is not important from 

the numerical point of view, as continuous systems are considered. 
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Hybrid systems can be modeled using the Mixed Logical and Dynamics (MLD) framework, as a 

linear system of differential equations and a set of linear inequalities. From the general case in 

(2.1), when ( )I < �and ( )K <  are linear functions and ( )J <  is an affine linear function, then the 

linear MLD is obtained as shown in Bemporad and Morari (1999): 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3

1 2 3

5 1 2 3 4

1W $ W % W % W % W
W & W ' W ' W ' W
( ( W ( W ( W ( W

+ = + + +


= + + +
− ≤ − − +

[ [ X ]
\ [ X ]

X ] [
     (2.6) 

where W∈' , ( ) ( ) ( ) { }, R 0,1
BC DDE E

F GW [ W [ W = ∈ × [  is the state of the system, whose component 

are distinguished between continuous and binary states, ( ) ( ) ( ) { }, R 0,1
HI JJK K

L MW X W X W = ∈ × X  are 

the continuous and binary inputs, ( ) ( ) ( ) { }, R 0,1
NO PPQ Q

R SW \ W \ W = ∈ × \  are the continuous and 

binary outputs, and ( ) { } ( )0,1 , R T
UW Wη∈ ∈]  represent auxiliary logical and continuous variables. 

$, % V ,�% W , % X , &, ' V , ' W , ' X , ( V , ( W , ( X ,�( Y  and ( Z  are matrices that define the model equation and 

constraints.  ( ) ( ) ( ): ,W W W=   Z ]  is the auxiliary variables vector.  

 

Clearly (2.6) forms a subclass of (2.1). MLD systems have been used for the modeling of much 

kind of systems through linear equations and discrete variables and propositional logic 

statements modeled as mixed-integer linear inequalities (see Bemporad and Morari, 1999).  

MLD also can model those systems than can be modeled through the hybrid system description 

language HYSDEL (see Torrisi and Bemporad, 2002). 
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As it was stated in the literature review, PWA and MLD systems are equivalent (Heemels HW�DO., 
2001). There are also more equivalent classes of hybrid dynamical models like Linear 

Complementarity (LC), Extended Linear Complementary (ELC) and Max-Min Plus Scaling 

(MMPS) systems. Next, fuzzy modeling is incorporated for the hybrid modeling above described 

in order to represent also the continuous non-linearities of the most hybrid systems.  
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Hybrid fuzzy systems are a sub-class of models belonging to (2.1) where the functions ( )I < ,  

( )K <  and ( )J <  correspond to fuzzy models. This new class of models permits to include 

explicitly in the same model the hybrid characteristic of a system (hard transitions) and the fuzzy 

models features to represent other non-linearities. In this thesis, based on the hybrid model (2.1) 

a fuzzy model was incorporated locally. As a further research is the analysis of let say fuzzy-

hybrid models, were from a fuzzy model, a local hybrid model is incorporated in each fuzzy rule. 

A hybrid fuzzy system could be written as: 

( ) ( ) ( ) ( )( )1 , ,[W I W W W+ =[ [ X Z      (2.7.a) 

( ) ( ) ( ) ( )( ), ,\W K W W W=\ [ X Z       (2.7.b) 

( ) ( ) ( )( ), ,]J W W W≤� [ X Z       (2.7.c) 

( ) ^W 5∈[  is the state vector, ( ) _W 5∈X  is the input vector, ( ) `W 5∈\  is the output vector and 

( )
aW 5∈Z  is a vector of auxiliary variables, :

b c d beI 5 5 5 5× × → ,  :
f g h ijK 5 5 5 5× × →  and 

:
k l m noJ 5 5 5 5× × →  are considered as fuzzy models. 

 

Next, two equivalent sub-classes of hybrid fuzzy systems are presented. The first one, called 

Piece-Wise Fuzzy (PWF) model, is based on the PWA model with the difference of considering 

a Takagi & Sugeno (T&S) model instead of a linear function in each sub-region. The second one 

is called fuzzy MLD (FMLD), and is based on MLD systems, considering T&S models instead 

of linear dynamic models. Both sub-classes are useful to model systems where different non-

linear behaviours occur within different sub-regions, by explicitly including the hybrid feature of 

the system. 
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The following sub-classes (PWF and FMLD) assume that the sub-regions generate a well-posed 

partition of the subspace. Then, for all pairs ( ) ( )( ),W W[ X  in the input-state space, the equations 

(2.7) have a solution ( ) ( ) ( )( )1 , ,W W W+[ \ Z , and moreover, ( ) ( )( )1 ,W W+[ \  are uniquely 

determined.  

 

In addition, it is assumed that the partition is linear-polyhedral (given by the piece-wise functions 

in PWF or the inequalities in FMLD). The linear assumption could be relaxed for dealing with 

systems in which non-linear behaviour is determined by non-linear partitions; however the 

identification procedure for these kinds of systems is out of the scope of this chapter.  
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PWF systems are a new class of hybrid systems defined by the following piece-wise fuzzy 

function, whose non-linear dynamics can be different in different regions of the state-input space.  

 

They are defined by 

 

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( ) ( )

1 ,

,

if

p
qsr

p
qsr

q t u v
p p p p

W I W W
W K W W

W W * W * W *χ

 + =
 =


∈ ⇔ + ≤   

[ [ X
\ [ X

[ X [ X
       (2.8) 

where W , ( )W[ , ( )WX  and ( )W\  are defined in (2.7), the sub-index L� takes values 1,..., w(x*y1 , 

where z({*|1  is the number of PWF dynamics defined over a polyhedral partition χ .  

 

Every partition }χ  defines the state-input space over which the different dynamics are active. 

The dynamics are defined by the T&S fuzzy models in the state. The partitions are defined by 

hyper-planes given by matrices 
~�* ,

��*  and 
�
�* .  

 

The model (2.8) is supposed to be well-posed, and then the partition should satisfy the same 

conditions that apply for PWA systems, explained before in (2.5). 
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PWF systems (2.8) belong to the general class of hybrid fuzzy systems (2.7). In these systems, 

functions ( )�I <  and ( )�K <  are chosen as T&S models (the auxiliary variable ( )WZ  is not used, 

neither the inequalities defined by the function ( )�J < ).  
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Hybrid fuzzy systems can be modeled using the FMLD framework. From the general case of 

hybrid fuzzy systems in (2.7), the FMLD considers a T&S for modeling the dynamic transitions 

and for the output, and linear affine functions for the set of inequalities. The FMLD is defined as 

follows: 

 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )5 1 2 3 4

1 , , ,

, , ,

���

���
W I W W W W
W K W W W W
( ( W ( W ( W ( W

 + =
 =
− ≤ − − +

[ [ X ]
\ [ X ]

X ] [
     (2.9) 

where W∈' , ( ) ( ) ( ) { }, R 0,1
�� ��� �

� �W [ W [ W = ∈ × [  is the state of the system, whose component 

are distinguished between continuous and binary states, ( ) ( ) ( ) { }, R 0,1
�� ��� �

� �W X W X W = ∈ × X  are 

the continuous and binary inputs, ( ) ( ) ( ) { }, R 0,1
�� ��� �

� �W \ W \ W = ∈ × \  are the continuous and 

binary outputs, and ( ) { } ( )0,1 , R �
�W Wη∈ ∈]  represent auxiliary logical and continuous variables. 

 

 ( )���I <  is the T&S fuzzy model that determines the state equation, ( )�� K <  is the T&S fuzzy 

model for the output, ( ¡ , ( ¢ , ( £ ,� ( ¤  and ( ¥  define the output equation and inequalities.  

( ) ( ) ( ): ,W W W=   Z ]  is the auxiliary variables vector.  

�
�
������� (TXLYDOHQFH�EHWZHHQ�3:)�DQG�)0/'�6\VWHPV��
 

Assuming that FMLD is well-posed, as defined before, then for a given ( )W[  and ( )WX , ( )W , 

( )W] , ( )W\  and  ( )1W +[  are uniquely defined. Next, we prove a PWF system is equivalent to a 

FMLD system. 
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First the transformation from a PWF system to a FMLD system is analyzed. Given a PWF 

system in the form of (2.8), one transformation to a FMLD in the form of (2.9) could be 

performed by including a crisp membership function in the fuzzy rules in the following way: 

 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

1

1

1 , , ,

1
,

0

, , ,

¦¨§:©

¦¨§:©

ª «
¬�­ « ¬�­

«
® ¯ °« « ««

ª «
¬�­ « ¬�­

«

W I W W W W I W W

LI * W * W *W W RWKHUZLVH

W K W W W W K W W

δ

δ

δ

=

=

+ = =

 + ≤
= 



= =

∑

∑

[ [ X [ X [ X

[ X[ X

\ [ X [ X [ X

  (2.10) 

where ( ) ( )( ),± W Wδ [ X  represents an extra membership function of the fuzzy model, which 

activates the rules associated with the T&S model of the region, namely ( ) ( )² ³ ´µ µ µ* W * W *+ ≤[ X . 

When a PWF model is written in the form of (2.10), PWF is called Modified Tanaka Model 

(MTM), corresponding to a version of the Tanaka Model described in Tanaka HW�DO. (2001). 

 

The transformation from FMLD to PWF is more complicated. It requires first that the system is 

well-posed; thus, given ( )W[  and ( )WX , then ( )W  and ( )W]  are uniquely defined.  From 

inequality (2.9) ( ) ( ) ( ) ( )5 1 2 3 4( ( W ( W ( W ( W− ≤ − − +X ] [  it is possible to obtain a unique value 

for ( )W  and ( )W]  (Bemporad and Morari, 1999). So, as the inequality (from where ( )W  and 

( )W]  are obtained) is linear, it is possible to state:    

 

( ) ( ) ( )
( ) ( ) ( )

1 1 1

2 2 2

W $ W % W F
W $ W % W F

= + +

= + +

[ X
] [ X      (2.11)  

 

Then, considering ( )W  and ( )W]  as premises of the ( )¶�·I < , it corresponds to a PWF system 

with one region χ   ( ¸(¹*º1 =1). 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( )

1
1 1 1 2 2 2

1
1 1 1 2 2 2

1 , , , ,

, , , ,

if

»s¼ »s¼

»s¼ »�¼
»

W I W W $ W % W F $ W % W F I W W
W K W W $ W % W F $ W % W F K W W

W W χ

 + = + + + + =
 = + + + + =


∈   

[ [ X [ X [ X [ X
\ [ X [ X [ X [ X

[ X
  (2.12)�
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In the following sections, the focus will be on the problem of identification of hybrid fuzzy 

systems using PWF models. In the approach, based on fuzzy clustering and principal component 

analysis, it is assumed that the sub-regions are cubic, so they are defined in the following way:  

( ) ( ) ( ) ( )
½ ½

¾ ¾ ¾W W + W W Kχ∈ ⇔ ≤      [ X [ X , where ¿+  is a diagonal matrix. This 

assumption could be relaxed for the analysis of more complex hybrid models as mentioned in the 

discussion section 2.5. 

�
�
����� 3LHFH�:LVH�$IILQH�0RGHO�,GHQWLILFDWLRQ��
 

Many works in the literature have proposed sophisticated PWA model identification method (see 

for example Ferrari-Trecate HW�DO�, 2003; Nakada HW�DO�� 2005, among others). However, when the 

proper identification of a system requires a big amount of data (like in many real-processes), 

those methods are inefficient. In this thesis, for the identification of PWA models (2.4), a fast 

algorithm based on fuzzy clustering is proposed. 

 

The fuzzy C-means (FCM) method proposed by Bezdek (1973) is a data clustering technique 

where each data point belongs to a cluster with a unique degree of membership. In other words, 

the FCM shows how to split the space into a specific number of representative clusters. The 

FCM considers fuzzy partitioning, such that a data point on the space can belong to more than 

one cluster, but with different degree of membership (which varies from 0 to 1). FCM is an 

iterative algorithm that allows the modeler finding cluster centres (centroids) that minimize the 

following objective function 

 

( )( )
ÀÂÁ Ã

Ä Å Å Ä
ÅÆÄ

6 F [ Yµ
= =

= −∑∑ 2

1 1
                          (2.13) 

 

where Q is the number of data-samples, F is the number of clusters, Ç ÈX  is the fuzzy partition 

between 0 and 1, ÉY  represents the center of cluster L and P � >���@� LV�D�ZHLJKWLQJ� IDFWRU��The 

details of the fuzzy C-means algorithm are found in Babuska (1999). 
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For the identification of PWA models (2.4), the following fast algorithm based on FCM is 

proposed: 

 

6WHS��� Choose the number of partitions Ê(Ë*Ì1  of the state-output space 6. This number equals 

the number of linear models that the PWA model will have. The optimal number of linear 

models could be obtained by a sensitivity analysis. 

 

6WHS��� Estimate all the state measurement required, using the input-output data available. If the 

state is unknown, to choose proper regressors for the output and input signals, and to propose a 

state space model. 

 

6WHS����In the state-output space, perform a Fuzzy C-Means (FCM), with the number of clusters 

equals to Ê(Ë*Ì1 . In this step, it is important to normalize the data before FCM. 

 
6WHS��� Build the partition based on the membership function value of each cluster. A datum will 

belong to the cluster with a higher membership function value. Data in the border of the clusters 

are used to obtain the hyper-planes that better separate the clusters. The data on the borders 

usually have membership function values around 0.4 to 0.6; however, this will depend in the 

geometry of the clusters.  

 
6WHS��� For every cluster, using the data with a membership function equal or higher than 0.7 

(tuning parameter), identify the linear model parameters by LMS. It is important not to consider 

the data in the borders in the LMS. Computational experiments showed that data on the borders 

could lead to locally unstable models, even for stable plants. 

�
Next, a batch reactor is presented and used to show the proposed method. A scheme of the batch 

reactor is shown in Figure 2.1. The reactor’s core (temperature 7 ) is heated or cooled through 

the reactor’s water jacket (temperature Í7 ). The heating medium in the water jacket is a mixture 

of fresh input water, which enters the reactor through on/off valves, and reflux water. The water 

is pumped into the water jacket with a constant flow Φ . The dynamics of the system depend on 

the physical properties of the batch reactor, i.e., the mass P and the specific heat capacity F of 

the ingredients in the reactor’s core and in the reactor’s water jacket (here, the index Z denotes 

the water jacket). λ  is the thermal conductivity, 6 is the contact area and 07  is the temperature 

of the surroundings. 
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�
The temperature of the fresh input water Î Ï7  depends on two inputs: the positions of the on/off 

valves ÐN  and ÑN . However, there are two possible operating modes of the on/off valves. When 

1ÒN =  and 0ÓN = , the input water is cool ( 12ºÔ Õ Ö7 7 &= = ), whereas if 0×N =  and 1ØN = , the 

input water is hot ( 75ºÙ Ú Û7 7 &= = ). 

�
The ratio of fresh input water to reflux water is controlled by the third input, i.e., by the position 

of the mixing valve ÜN . There are six possible ratios that can be set by the mixing valve. The 

share of fresh input water can be either 0, 0.01, 0.02, 0.05, 0.1 or 1. 

 
)LJXUH�����6FKHPH�RI�WKH�EDWFK�UHDFWRU��

 

Therefore the batch reactor is a multivariable system with three discrete inputs ( ÜN , N  and N ) 

and two measurable outputs (7  and 7 ).  Due to the nature of the system, the time constant of 

the temperature in the water jacket is obviously much shorter than the time constant of the 

temperature in the reactor’s core. Therefore, the batch reactor is considered as a stiff system.  

 

Based on input-output data of the batch reactor, a Piece-Wise Affine model is identified and 

compared with a fuzzy model in terms of 1-step-ahead prediction error. The obtained PWA 

model will be used for the Hybrid Predictive Control of the batch reactor in chapter 3.  

 

A good model for the Temperature in the core (7 ) is given by: 

 

( ) ( ) ( )1 0.9967 0.0033 Ý7 W 7 W 7 W+ = +     (2.13) 
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Then, the aim is to obtain a good model for the Temperature in the water jacket ( )1Þ7 W + . The 

identification data including the temperature in the core, the temperature in the water jacket, the 

cold/hot water valve and the mixing valve, is shown in Figure 2.2. 

 

The data is clustered considering first the 2 possible inputs for cold/hot water valve if ( ) 1ßáàX W =  

or ( ) 0âáãX W =  , and then for both data-set, a fuzzy clustering method (FCM) is used to obtain 6 

sub-cluster, where the regressors are ( )ä7 W , ( )7 W  and ( )å æX W . Then 12 linear models are 

obtained. 

 

 
)LJXUH�����,GHQWLILFDWLRQ�'DWD��

 

Figures 2.3 and 2.4 show the clustered data. Borders determine the partition. For the partition 

generation, based on the Figures 2.3 and 2.4, the state-input space is divided with planes in six 

regions (Polyhedral partition). The planes are chosen in a way that the most representative data 

of each cluster (in different colors) belongs to one of the six polyhedral regions 
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)LJXUH�����&OXVWHUV��)&0��ZKHQ� ( ) 0ç èX W = ��

 

)LJXUH�����&OXVWHUV��)&0��ZKHQ� ( ) 1é êX W = ��
 

The regions are defined in a way that every data belongs just to one of the twelve regions. The 

polyhedral partition, generated according Figures 2.3 and 2.4) is the following:  

 

( ) ( ) ( ) ( )( )
( )
( )

( ) ( )
01

0
, , , 1

1.8750 7.3447

ëíì
î ëíì ëðï ëñï

î

X W
7 W 7 W X W X W 6 X W

7 W 7 W

 =
∈ ⇔ =
 ≤ +

  (2.14a) 
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( ) ( ) ( ) ( )( )
( )
( )

( ) ( )
02

0
, , , 1

1.8750 7.3447

òíó
ô òíó òñõ òðõ

ô

X W
7 W 7 W X W X W 6 X W

7 W 7 W

 =
∈ ⇔ =
 > +

  (2.14b) 

( ) ( ) ( ) ( )( )
( )
( )

( ) ( )
03

0
, , , 1

-1.3617 48.5957

öí÷
ø öí÷ öðù öðù

ø

X W
7 W 7 W X W X W 6 X W

7 W 7 W

 =
∈ ⇔ <
 ≤ +

  (2.14c) 

( ) ( ) ( ) ( )( )
( )
( )

( ) ( )
( ) ( )

04

0
1

, , ,
-1.3617 48.5957
-1.3514 64.7027

úíû
úñü

ý úíû úñü
ý
ý

X W
X W7 W 7 W X W X W 6 7 W 7 W

7 W 7 W

 =
 <∈ ⇔  > +
 ≤ +

  (2.14d) 

( ) ( ) ( ) ( )( )
( )
( )

( ) ( )
( ) ( )

05

0
1

, , ,
-1.3514 64.7027

-1.5217 90.5

þðÿ
þ��

� þíÿ þ��
�

�

X W
X W7 W 7 W X W X W 6 7 W 7 W

7 W 7 W

 =
 <∈ ⇔  > +
 ≤ +

  (2.14e) 

( ) ( ) ( ) ( )( )
( )
( )

( ) ( )
06

0
, , , 1

-1.5217 90.5

���

� ��� ��� ���

�

X W
7 W 7 W X W X W 6 X W

7 W 7 W

 =
∈ ⇔ <
 > +

   (2.14f) 

( ) ( ) ( ) ( )( )
( )
( )

( ) ( )
11

1
, , , 1

-4.6800 265.6240

	�


� 	�
 	�� 	��

�

X W
7 W 7 W X W X W 6 X W

7 W 7 W

 =
∈ ⇔ =
 ≤ +

  (2.14g) 

( ) ( ) ( ) ( )( )
( )
( )

( ) ( )
12

1
, , , 1

-4.6800 265.6240


��

� 
�� 
�� 
��

�

X W
7 W 7 W X W X W 6 X W

7 W 7 W

 =
∈ ⇔ =
 > +

  (2.14h) 

( ) ( ) ( ) ( )( )
( )
( )

( ) ( )
13

1
, , , 1

-0.9146 47.3232

���

� ��� ��� ���

�

X W
7 W 7 W X W X W 6 X W

7 W 7 W

 =
∈ ⇔ <
 ≤ +

  (2.14i) 

( ) ( ) ( ) ( )( )
( )
( )

( ) ( )
( ) ( )

14

1
1

, , ,
-0.9146 47.3232
-1.049 73.8382

���

���
� ��� ���

�

�

X W
X W7 W 7 W X W X W 6 7 W 7 W

7 W 7 W

 =
 <∈ ⇔  > +
 ≤ +

  (2.14j) 
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( ) ( ) ( ) ( )( )
( )
( )

( ) ( )
( ) ( )

15

1
1

, , ,
-1.049 73.8382
-1.049 103.5972

���

���
� ��� ���

�

�

X W
X W7 W 7 W X W X W 6 7 W 7 W

7 W 7 W

 =
 <∈ ⇔  > +
 ≤ +

  (2.14k) 

( ) ( ) ( ) ( )( )
( )
( )

( ) ( )
16

0
, , , 1

-1.049 103.5972

���

� ��� �� �� 

�

X W
7 W 7 W X W X W 6 X W

7 W 7 W

 =
∈ ⇔ <
 > +

  (2.14l) 

 

Then, in every partition, 12 linear model is obtained for the temperature in the water jacket. As 

the data in the border of the region is not representative, only the data with a membership 

function greater than 0.8 is considered for obtaining the linear models. Let ( ) ( ) ( ),
!

"[ W 7 W 7 W =    

be the state vector of the batch reactor, ( ) ( ) ( ),
#

$\ W 7 W 7 W =    the output and 

( ) ( ) ( ),
%

&�' &�(X W X W X W =    the input vector at instant N. Then, the PWA model obtained has the 

following form: 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )
{ }

1

, 0,1 , 1,...,6.

if

) * ) * ) *

) * ) * ) *
+

) *

[ W $ [ W % X W I
\ W & [ W ' X W J L M

[ W X W 6

 + = + + = + + ∈ =


∈   

  (2.15) 

where , -6 , { }0,1 , 1,...,6L M∈ = , are the polyhedral partition defined in (2.14), 
1 0
0 1

. /&  
=  

 
, 

0 0
0 0

0 1'  
=  

 
 and 

0
0

2 3J  
=  

 
 { }0,1 , 1,...,6L M∀ ∈ = ,  and  01

0.9967 0.0033
0.0333 0.6278

$  
=  

 
, 

02

0.9967 0.0033
 

0.0373 0.6492
$  

=  
 

, 03

0.9967 0.0033
 

0.0413 0.9349
$  

=  
 

, 04

0.9967 0.0033
 

0.0395 0.9386
$  

=  
 

 , 

05

0.9967 0.0033
 

0.0439 0.9253
$  

=  
 

, 06

0.9967 0.0033
 

0.0279 0.9364
$  

=  
 

 , 

11

0.9967 0.0033
0.0306 0.6236

$  
=  

 
, 12

0.9967 0.0033
0.0352 0.6601

$  
=  

 
, 13

0.9967 0.0033
0.0625 0.9104

$  
=  

 
,

14

0.9967 0.0033
0.0276 0.9512

$  
=  

 
, 15

0.9967 0.0033
0.0420 0.9323

$  
=  

 
, 16

0.9967 0.0033
0.0416 0.9304

$  
=  

 
,    
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01

0 0
0 2.1600

%  
=  

 
, 02

0 0
0 1.9091

%  
=  

 
, 03

0 0
0 -1.0636

%  
=  

 
, 04

0 0
0 -3.4927

%  
=  

 
, 

05

0 0
0 -6.1274

%  
=  

 
, 06

0 0
0 -6.2327

%  
=  

 
, 11

0 0
0 12.4974

%  
=  

 
, 12

0 0
0 11.1938

%  
=  

 
, 

13

0 0
0 15.8199

%  
=  

 
, 14

0 0
0 9.5677

%  
=  

 
, 15

0 0
0 11.0815

%  
=  

 
, 16

0 0
0 6.6972

%  
=  

 
,   

01

0
2.1600

I  
=  

 
, 02

0
1.9091

I  
=  

 
, 03

0
0.3846

I  
=  

 
, 04

0
0.4712

I  
=  

 
, 05

0
0.8079

I  
=  

 
, 

06

0
1.2346

I  
=  

 
, 11

0
12.4974

I  
=  

 
, 12

0
11.1938

I  
=  

 
, 13

0
0.4924

I  
=  

 
, 14

0
0.5796

I  
=  

 
, 

15

0
0.8629

I  
=  

 
, 16

0
1.2052

I  
=  

 
. 

 

Now, the PWA model is compared with the Fuzzy Model reported in Karer HW�DO. (2007). Models 

are compared using the following data for validation shown in Figure 2.5. 

 
)LJXUH�����9DOLGDWLRQ�'DWD��

 

Figure 2.6 shows the 1-step-ahead (for the controller, i.e, 15 times 1 predictions) versus the 

prediction error of each model. The 1-Step-ahead prediction error is higher for the PWA model 

than for the fuzzy model. In table 2.1 are the values for some prediction error. 
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)LJXUH�����1�6WHS�DKHDG�SUHGLFWLRQ�HUURU��

�
7DEOH�����1�VWHS�DKHDG�SUHGLFWLRQ�HUURU�

Prediction horizon PWA model Fuzzy Model 

N=1 916.6983 867.2423 

N=5 953.6297 883.2466 

N=10 964.3984 890.8699 

N=15 970.2901 893.8734 

N=20 975.9365 897.0687 

 

As further research, in the identification procedure of the PWA model, it could be possible to 

generalize the partition method using the membership degree of membership given by FCM. In 

terms of computational time; this method is faster than the Hybrid Identification Toolbox (HIT) 

when it processes similar amount of data. Moreover, the HIT Toolbox cannot handle data like 

the provided by the batch reactor as it is not well distributed and it generate problems with the 

covariance matrices. 

 

 

����� +\EULG�)X]]\�0RGHO�,GHQWLILFDWLRQ�
 

The Witsenhausen system given by (2.2) can be represented by a two-level fuzzy model, which 

was described by Tanaka HW�DO. (2001). Then, the expression (2.3) can be written as a Modified 

Tanaka Model (MTM), where the corresponding two levels are the local fuzzy level and the 



 Chapter 2. Fuzzy Model Identification and Control of Non-linear Hybrid Systems      
 

27 
 

discrete/quantized level. The local fuzzy level is a set of T&S fuzzy models with local validity in 

one region of an estimated hyper-cubic partition 4χ , 1,...,L V= . The discrete/quantized level is 

given by a set of crisp weighting functions ( )( )15 Wδ −[ , which activates the L-th local T&S 

model if the state ( )1W −[  is within 4χ . 

 

Let us assume that the input-output data is available, and that from the output it is possible to 

estimate the state vector ( )W[ . The structure of the two-level fuzzy model (MTM) to be 

identified for the variable ( )\ W  is described in the following way: 

 

( ) ( )( ) ( )( ) ( ) ( )( )

( )( ) ( )

( )( )
( )( )

( )( )

1 1

,
1

,
1 1

1 1 1 1

1 1
1

0

1
1

1

6

6

78 9 9
: ; : : ; : ; : ;

:<;

:
:

=
: ;?>@>

>
: ; 7 =

: ;A>B>
; >

\ W W W W W U

WW RWKHUZLVH
$ ] W

W
$ ] W

β δ

χ
δ

β

= =

=

= =

= − − − + − +

 − ∈
− = 



−
− =

−

∑∑

∏

∑∏

] [ D [ E X

[[

]

      (2.16) 

where ( )1
CW 5− ∈[  is the state vector, ( )1

DW 5− ∈X  is the input vector,  

( ) ( ) ( )11 1 ,..., 1
EE

FW ] W ] W − = − − ]  is the vector of the premises,�S is the number of inputs at the 

premises.  

 

The index L represents the L-th region, 
G
H ID , 

J
K LE , M NU  are the fuzzy model parameters for the region L 

on the rule M, V  is the estimated number of regions, O5  is the number of rules of the fuzzy model 

at the L-th region, ( )( )1P Wδ −[  is a binary variable that selects the current fuzzy model at the L-th 

region, ( )( ), 1Q R?S@S$ ] W −  is the degree of membership for the input ( )1T] W −  at the L-th region and 

rule M, and ( )( )1U V Wβ −]  is the degree of activation the M-th rule that belongs to the fuzzy model of 

the L-th region.   

 

Note that MTM has the same structure as equation (2.10); thus MTM is equivalent to a PWF 

model. 
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For example, in a SISO system, in order to obtain the model for the output ( )\ W , 

( ) ( ) ( )1 1 ,..., WW \ W \ W Q − = − − [  should be chosen as the state-space vector and 

( ) ( ) ( )1 1 ,..., XW X W X W Q − = − − X  as the input vector as well. 

 

Note also that the MTM given by (2.16) is a fuzzy model with the following rules:  

 

( ) ( ) ( )
( ) ( ) ( )

1 ,1 ,: 1 1 ... 1

1 1 , 1,... , 1,..., .

Y Z Y Y Z [ Y Z\[
] ]

Y Z Y Z Y Z Y Z Y

5 W ] W $ ] W $
\ W W W U L V M 5

χ− ∈ − ∈ − ∈

= − + − + = =

LI [ DQG DQG DQG WKHQ
D [ E X   (2.17) 

 

������� ,GHQWLILFDWLRQ�3URFHGXUH��
 
When the transition of a discrete/quantized state is triggered, a sudden change in the data 

distribution occurs. Thus, an analysis of the cluster slopes using the main components is 

proposed to identify the switching region where the spatial orientation of the clusters varies 

abruptly (Torres, 2009).  

 

This method is presented as an inverse form of the merge method of clusters presented in 

Babuska (1998) and Kaymak and Babuska (1995), where instead of merging similar clusters, the 

clusters that are very different will be used to define a hard partition of the state space. With the 

cluster slope and the center of different consecutive clusters the switching points will be detected 

and the hyper-cubic partition ^χ , 1,...,L V= , over the regressor space will be defined. 

 

Only based on the information of the input-output data of the process, the identification problem 

consists of estimating the parameters of the MTM. Therefore, the number of regions V should be 

estimated, the partition ^χ , 1,...,L V= , each T&S model, the number of rules _5 , the membership 

functions ( ),
` a?b$ <  and the parameters 

c
d eD , 

f
g hE , i jU  should be estimated.  

 

It is assumed that 1 input/output data associated with the vector ( ) ( ),
k

W W  [ X , have been 

collected: 
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( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )1

1 0 0
2 1 1

1 1 lnmpo

\
\

\ 1 1 1
× + +

 
 
 Φ =  
 

− −  

[ X
[ X

[ X
# # #

 

 

1 denotes the number of data samples, \�W� is the output variable to estimate with the MTM, 

( ) qW 5∈[  is the state vector and ( ) rW 5∈X  is the input vector. 

 

The identification procedure is as follows: 

 

6WHS� �� Determine the fuzzy clusters over the data Φ , using the Gustafon-Kessel (GK) 

algorithm (Gustafson and Kessel, 1979). It is well known that the GK algorithm does not give an 

indication of the required correct number of clusters.  

 

A large number of clusters will result in a complicated rule-based model, while a small number 

of clusters results in a poor model. Then, to obtain the optimum number of clusters, the use of 

the compatible cluster merging method is proposed, as suggested for the identification of the 

T&S models in Babuska (1998). It is important to preserve the small clusters in the interesting 

regions, which may have been found when clustering with an initially large number of clusters.  

 

The GK algorithm provides the centers of the clusters 1 2 1, ,...,
stvu

w wxw wY Y Y + + =  Y , the F covariance 

matrices for each fuzzy cluster O, with Q�P�� eigenvectors { }1, 2, 1,, ,...,y y zv{|yϕ ϕ ϕ + + and with the 

corresponding Q�P�� eigenvalues { }1, 2, 1,, ,...,} } ~v�|}λ λ λ + + . 

 

6WHS��� Select the eigenvector *�ϕ  associated with the maximum eigenvalue *�λ  for each cluster 

1,...,O F= .  { }*
1, 2, 1,max , ,...,� � � �v�|�λ λ λ λ + +=  

 

For the detection of the switching points it is proposed to analyze the most important 

eigenvectors (the main vectors or the principal components), towards which directions the 

maximum amount of information is obtained.  
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6WHS� ��� For every cluster 1,...,O F=  and every component of the state-space vector ( )�[ W , 

1,...,N Q= , calculate the vector ˆ � �π , which represents the projection of the eigenvector *�ϕ  on the 

subspace given by the inputs and the state-space variable ( )�[ W . ˆ � �π  is given by: 

 
*

*
ˆ

���
� �

���
ϕπ
ϕ

Φ=
Φ

,   1,..., , 1,..., .O F N Q= =     (2.18) 

where *�ϕ  is the eigenvector chosen in step 2 and �Φ  is the matrix of dimension 

( ) ( )1 1Q P Q P+ + × + + , whose elements are defined as: 

 

( ) ,

1 1
1 1
0

�
LI N
LI DQG Q
LI RWKHUZLVH

℘

=℘= +
Φ = =℘ > +


�

A

A A .    (2.19) 

 

Note that the vector is normalized, so ˆ 1� �π = .  

 

6WHS��� For every vector ˆ � �π , determine ˆ
�
� �π  which represent the projection of ˆ � �π  in the subspace 

generated by the inputs. ˆ
�
� �π  is obtained in the following way: 

 

ˆ
ˆ

ˆ
� ��� �
� �

��� �

ππ
π

Φ=
Φ

,   1,..., , 1,..., ,O F N Q= =     (2.20) 

where �̂ �π  is the vector obtained in step 3, and �Φ  is the matrix of dimension 

( ) ( )1 1Q P Q P+ + × + + , whose elements are defined as: 

 

( ) ,

1 1
0

�
LI DQG Q
LI RWKHUZLVH℘

=℘ > +
Φ = 


�

A A
.    (2.21) 

 

Note that the vector is normalized, so ˆ 1
�
� �π = .  
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Let �̂  γ  be the estimation of the angle between ¡̂ ¢π  and ˆ
£
¡ ¢π . It is possible to obtain this angle by 

calculating the ( )ˆ ˆarccos
¤ ¥
¦ §¨¦ §π π⋅ . Finally, for each cluster O and every state-space variable ( )©[ W , 

compute the cluster slope ( )ˆtanª « ª «γΓ =  given by: 

 

( )2

1
1

ˆ ˆ
¬ ­ ® ¯

¬ ­°¬ ­π π
Γ = −

⋅
,    1,..., , 1,..., ,O F N Q= =    (2.22) 

 

As an example, in Figure 2.2 ( ) ( )1 1W \ W− = −[ , ( ) ( )1 1W X W− = −X and 

( ) ( ) ( )1 1 , 1W \ W X W − = − − ±[ .  

 

Figure 2.7a) shows the data with the corresponding clusters, and the lines inside the cluster 

represent the vectors *²ϕ  associated with the maximum variance for each cluster. Figure 2.7b) 

shows the projections of the vectors *²ϕ  over ³[  and the angles ˆ́µγ . 

 

 
)LJXUH�����D��3ULQFLSDO�FRPSRQHQWV��E��3URMHFWLRQV�RI�SULQFLSDO�FRPSRQHQWV��
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6WHS� ��� In this step the idea is to determine the switching point for every state-space variable 

( )¶[ W  by obtaining the slope rates among the consecutive clusters given by:  

 

1 1 2
·¹¸ ·¹¸ ·º¸∆Γ = Γ − Γ      (2.23) 

 

For obtaining the »V  switching point, if 1O  and 2O  are consecutive clusters (in descending order 

regarding variable ( )¼[ W ), to evaluate the slope rate 
1
½¿¾∆Γ . 

 

Then, from the cluster centre obtained in step 1, choose the coordinates N�� (
1

1
À
ÁY +  and 

2

1
À
ÁY + ) of 

the consecutive clusters 
1
ÂY  and 

2
ÃY  where the slope rate 

1
Ä¿Å∆Γ  has a variation greater than the 

threshold. As this threshold considers the mean value of Æ Ç∆Γ   ( È∆Γ ) plus twice its standard 

deviation ( É∆ΓΣ ). Then, if all slope rates are similar, it means that there is not a switching point 

in the variable ( )[ W . Otherwise, just the clusters with a larger variation will be considered. 

 

If the possible number of switching points is known ( ÊV ), then just choose the ÊV  consecutive 

clusters with the largest slope rate. The switching points are in between the coordinates 

1 2

1 1
Ë Ë
Ì ÌY Y+ +<  of the consecutive clusters. The location of the switching point 1

Í
Î9  is estimated in the 

following way: 

 

1 1 1 2 2 2

1 21

1 2

1 * 1 1 * 1

* *

* *

1 1

Ï Ï Ï Ï
Ð ÐÑÐ Ð ÐÒÐ

Ð ÐÐ
Ï

Ð Ð

Y Y

9

λ ϕ λ ϕ
λ λ

λ λ

+ + + ++ +
+

=
+

    (2.24) 

where 
1

*Óλ  and 
2

*Ôλ  are the eigenvalues obtained in step 2 corresponding to the clusters 1O  and 2O  

respectively and 
1

1
Õ
Öϕ +  and 

2

1
Õ
Öϕ +  are the coordinates k+1 of the corresponding eigenvectors. The 

set ×9  contains the coordinates of the ØV  switching points 
Ù
Ú9 .  
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{ }

( )

1

1

1 2

1

/ 2

1
1

1
.

1

Û

Û

Ü
Ý Ý Ü Ý Ý

Þ
Ý Ü Ý

Ü
Þ

Ü Ý Ý
Ü

9 9

F

F

∆Γ

−

=

−

∆Γ
=

= ∆Γ ≥ ∆Γ + Σ

 ∆Γ = ∆Γ − 

 ∑ = ∆Γ − ∆Γ − 

∑

∑

,     (2.25) 

 

Let ßνG  be a vector with the following components: first, the minimum value ( Õ[ ) for the variable 

( )à[ W , then (if there are switching points) the elements of ß9 , and, finally, the maximum ( à[ ) 

associated with the variable ( )á[ W , 1,...,N Q= . The elements of ßνG  are, in ascending order, thus 

1â âã ãα αν ν +< , 1,..., 1ä äVα∀ = + , where äV  is the number of elements of ä9 . 

 

6WHS��� Generate the partition { } 1

å
æ æχ

=
, of the space ( ) ( ),

ç
W W  [ X . Each sub-region èχ  is defined 

as follows:  

 

( ) ( ) ( ) ( ){ }1 , 1 / 1 , 1 .
é é

ê ê êW W + W W Kχ    = − − − −   [ X [ X E    (2.26) 

 

The symbol E  is used to generate a complete partition of the regressor space. ë+  and ìK  are: 

  

( ) ( )

( ) ( )

[ ]

1

1

max min

1 11
1

max 1 2

1

min 1 2

ˆ

,..., ,...,

, ,...,

ˆ ,..., ,...,

, ,...

í î

í î

ïvðñïvð
ò

ïpð|ïvð
ó

ò ò ò
ó

ò ô ï
ó

ð
ó

ò ô ï
ó

ð

,
+ ,
K X X

X X X X

X X X X

α αα

α αα

ν ν

ν ν ν ν

ν ν ν ν

+ × +

+ × +

+ ++

 
=  

−  

 = − 

 =  
=

 = − − − 

 =  

    (2.27) 

where , is the identity matrix; maxX  and minX  are vectors with the maximum and minimum values 

of the inputs.  
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The index L is a function of the indexes 1,..., ,...,õ öα α α  obtained in the Step 5, ( 1,..., 1õ õVα = + ); 

it is used to enumerate the combinations of the elements of the vectors ÷νG  to generate the 

partition.  

 

6WHS��� For each sub-region øχ , a local T&S model is identified. Each T&S model is optimized 

for the number of fuzzy clusters and their regressor structure is obtained by a sensitivity analysis, 

as in Hadjili and Wertz (2002), Nefti HW�DO. (2008) and Sáez and Cipriano (2001). 

 

For the identification of the T&S models, it is recommended to use the approach described in 

Karer HW�DO. (2007), which turns out to be suitable because in the previous steps a partition of the 

state-space variable was obtained, necessary for applying this identification procedure. Then, for 

every partition øχ , just considering the data that belongs to the sub-region, the number of rules 

ù5  and the membership functions ( ),
ú û?ü$ <  are obtained with a clustering method (GK). The idea 

of the approach is to identify directly the consequent parameters of each rule of the T&S model 

by weighting the data for the corresponding activation degree of each rule. It is reported in Karer 

HW� DO. (2007) that due to better conditioning the matrices obtained when separating the data 

belonging to different regions, compared to the conditioning of the whole data matrix, this 

approach leads to a better estimate of the hybrid fuzzy parameters. In other words, the variances 

of the estimated parameters are smaller compared to the classic approach. Let us write all the 

consequent parameters for the fuzzy rule M in the region L as follows:  

 

( )1 1

ý þ

ý þ ý þ

ý þ ÿ �U
+ + ×

 
 Θ =  
  

D
E      (2.28) 

 

The model parameters for the rule M of region L can be obtained using the least-squares 

identification method as follows:  

 

( ) 1� �
� � � ���� � ����−

Θ = Ψ Ψ Ψ <      (2.29) 

 

where the matrices � �Ψ  and 	 
<  are the following: 
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( )( ) ( ) ( )
( )( ) ( ) ( )

( )( ) ( ) ( )
( )

( )( ) ( )
( )( ) ( )

( )( ) ( )

1

1

0 0 0 1

1 1 1 1

1 1 1 1

0 1

1 2

1

� �

� �


 

� �


 

� �

� �


 

� � � � � � � � �����

� �
� �

� �

� � � � � ���

1 1 1

\
\

1 \ 1

β

β

β

β
β

β

× + +

×

    
    Ψ =
 
 

 − − −   

 
 
 

=  
 
 −  

] [ X
] [ X

] [ X

]
]

<

]

#

#

  (2.30) 

    

( )1W −[ , ( )1W −X , ( )1W −] , ( )� �β <  and ( )\ W  are defined in (2.16), and � �1  is the number of 

input-output data pairs corresponding to the rule M of the region , considering only the data that 

belongs to the region , and that ( )( )1� � Wβ δ− ≤] , with δ  a small positive number essential for 

obtaining suitable conditioned matrices, (Hathaway and Bezdek, 1993). 

 

Finally, the identified MTM could be use for the prediction and analysis of dynamic systems 

such as demand arrival rate to a stop, or any process with different non-linear behaviour in 

different regions. 

�
�
������� ,GHQWLILFDWLRQ�UHVXOWV�RI�D�WDQN�V\VWHP��
�
Let us consider the hybrid tank system shown in Figure 2.8, similar to that utilized in Gegundez 

HW�DO. (2008). In the figure, $ is the cross-section of the tank, 6 is the cross-section of the outlet 

hole, J is the acceleration due to gravity, 4 is the input flow and K is the level of the tank. The 

hybrid tank system is divided into two regions because the cross-section of the tank is larger 

when the level is higher than 0.3[m]. 

 

In this example, for a fixed input flow, more time will be needed for increasing the level when it 

is higher than 0.3[m] than when it is lower, because the cross-section is larger. This means that 

the level value 0.3[m] is the switching point in the sense that this level is the border of the two 

different operating regions, both showing different dynamics. This effect could be detected by 
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looking at the signals ( )K W  and ( )4 W , as shown in Figure 2.9; however, in more complex 

systems this could be very difficult to do.  

 

 
)LJXUH�����7DQN�6\VWHP��

�
Next, the detection of the switching point is proposed by analyzing the principal component of 

the clusters’ variance matrices, provided by the GK algorithm. As shown in Figure 2.10, the 

effect of the switching point in the example is that the directions of the main components are 

different when comparing consecutive clusters belonging to the two different regions ( ( ) 0.3K W >  

and ( ) 0.3K W ≤ ). 

 
)LJXUH�����,QSXW�2XWSXW�VLJQDOV�DQG�VZLWFKLQJ�SRLQW��

 



 Chapter 2. Fuzzy Model Identification and Control of Non-linear Hybrid Systems      
 

37 
 

 

 
)LJXUH������'HILQLWLRQ�RI�VZLWFKLQJ�UHJLRQV��

 

The following non-linear equations describe the dynamics of the tank system: 

 

( ) ( )( ) ( )

( ) ( )( ) ( )

1
2 0.3

1
2 0.3

3

4 W 6 JK W LI K WGK $
GW 4 W 6 JK W LI K W$

 − <= 
 − ≥

,   (2.31) 

where ( )K W  is the level of the tank, ( )X W 4=  is the input flow, $=0.0154 is the cross-section of 

the tank, 6=0.0005 is the cross-section of the outlet hole and J=9.81 is the acceleration due to 

gravity.  

 

The hybrid tank system is divided into two regions because the cross-section of the tank is three 

times longer when the level is higher than 0.3. Assume that just the input-output data shown in 

Figure 2.11 are available for the training, test and validation. 

 

The identification problem is to find the relation between ( )K W  and ( )4 W  considering the 

input/output data. The main goal is to find the number of switching regions and the switching 

point (in this case ( ) 0.3K W = ), which defines the partition. The input/output data considered are 

( ) ( )1 1[ W K W− = −  as the output and ( ) ( )1 1X W 4 W− = −  as the input.  
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�
)LJXUH������,QSXW�RXWSXW�GDWD��

�
In order to evaluate the performance of both the MTM and the T&S models, the Root Mean 

Squared (RMS) error is used. The signals were sampled with �7 =10[s]. A total of 100,000 

samples were used as the training set, 100,000 as the test set and 50,000 as the validation set.  

 

Next, T&S and MTM modelling results are described and compared. 

 

 

������� 7	6�0RGHO�5HVXOWV��
�
The GK algorithm was used to obtain the clusters. The T&S model is obtained for a different, 

increasing number of clusters (sensitivity analysis). The number of clusters obtained from the 

sensitivity analysis was ten. The T&S model is given by: 

 

( ) ( )
( ) ( ) ( )

,1 ,2

1 1

: 1 1

1 1 , 1,...,10.

� � �

� � �
5 [ W $ X W $
[ W D W E X W U M

− ∈ − ∈

= − + − + =

LI DQG WKHQ
[  

where ( )( ) ( )( )( )2
1, , 2 , ,0.5 1

, 1
� ��� � �!#"%$&!

')(*($ ] W H− − −− = .  
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The premises were obtained from the GK algorithm with the normalized data. The consequent 

parameters were obtained using the method proposed in Karer HW�DO. (2007), explained in Step 7, 

just to be fair in the comparison with the MTM identification.  

 

The parameters of the premises and the consequences of the T&S model are summarized in 

Table 2.2. Note that rules 1 and 9 are unstable as 1 1+D > .  

 

7DEOH������3DUDPHWHUV�RI�7	6�PRGHO�
Rules 
M� 1, ,1

,F  2, ,1
-F  1, ,2

.F  2, ,2
/F  1

0D  1
1E  1U  

1 6.7676 0.3864 127.4043 0.0010 1.0024 0.3347 -0.0014 

2 0.8687 0.1039 992.5746 0.0003 0.9912 3.5180 -0.0012 

3 5.3484 0.3730 161.2102 0.0010 1.0000 0.5347 -0.0008 

4 1.5217 0.3169 566.6053 0.0008 0.9936 1.7366 -0.0002 

5 1.9047 0.3368 452.6675 0.0009 0.9942 1.6730 -0.0003 

6 2.7924 0.3219 308.7721 0.0008 0.9952 1.4675 -0.0004 

7 1.6739 0.3220 515.1062 0.0008 0.9939 1.4369 0.0001 

8 2.8313 0.0459 304.527 0.0001 0.9884 3.5940 -0.0009 

9 5.7361 0.4207 150.3129 0.0011 1.0017 0.3440 -0.0012 

10 0.9107 0.1965 946.7726 0.0005 0.9917 2.7907 -0.0006 

 

 

Figure 2.12 presents the T&S output for the one-step-ahead prediction and the measured output 

using the validation set. Figure 2.13 shows the T&S output for the infinite-step-ahead prediction 

and the measured output, using the validation-data set.  
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)LJXUH������0HDVXUHG�RXWSXW�DQG�7	6�RXWSXW��RQH�VWHS�DKHDG��

�
)LJXUH������0HDVXUHG�RXWSXW�DQG�7	6�RXWSXW��LQILQLWH�VWHS�DKHDG��

�
�
������� 0RGLILHG�7DQDND�0RGHO��070��5HVXOWV��
�
6WHS���  The same procedure, based on the GK algorithm used for the T&S model in order to get 

the optimum number of clusters, is performed. Ten clusters were obtained. 
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6WHS��� From step 1. using the covariance matrixes, given by the GK algorithm, the eigenvalues 

and the eigenvectors associated with each cluster were determined. Each cluster has 3 

eigenvalues, and 3 eigenvectors. 

 

Then, the eigenvector ( *2ϕ ) associated with the largest eigenvalue for each cluster is considered. 

So, ten eigenvectors associated with each one of the ten clusters were chosen. Figure 2.14, shows 

the data and the resulting principal eigenvectors for each cluster.  

 

6WHS� ��  The projection of the eigenvectors obtained from step 2 are determined. The 

eigenvectors are projected in the space: ( ) ( )1 , 1[ W X W = − − 3[ , and Figure 2.10 shows the 

vectors. 

 

 
)LJXUH������'DWD�DQG�SULQFLSDO�HLJHQYHFWRUV�IRU�HDFK�FOXVWHU��

 

6WHS� ��  The slopes of the projected eigenvectors with respect to the coordinate ( )1X W −  were 

computed using (2.22). Figure 2.15 shows the slopes associated with the centre of each cluster in 

the coordinate ( )1[ W − . 
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)LJXUH������6ORSHV�RI�SURMHFWHG�HLJHQYHFWRUV��

 

6WHS��� Figure 2.16 shows the slope rates. Each slope rate is associated with the centre of each 

cluster in the coordinate ( )1[ W − . The threshold level was set to 0.0133, which equals the 

average of the slope rate 4 5∆Γ  ( 0.00346∆Γ = ) plus two times the standard deviation 

( 0.00407∆ΓΣ = ). 

 

�
)LJXUH������6ORSHV�UDWHV��
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Based on Figure 2.16, a switching point is detected between the centre of clusters 

( )1 0.2214[ W − =  and ( )1 0.3108[ W − = . Then, using (2.24), the switching point is estimated to 

be in ( )1 0.2959[ W − =  (the real value is 0.3). 

 

6WHS��� The partition in the space, considering the estimated switching point ( )1 0.2959[ W − =  is 

generated. There are two subregions ( 2V = ): the first one when ( )1 0.2959[ W − >  and the second 

when ( )1 0.2959[ W − < . Let us set 0[ = , 1[ = , 0X =  and 1X = . Then the sub-regions of the 

partition 1χ  and 2χ  are defined as:  

 

( )
( )

( )
( )1

1 0 1
1 10 1 1

/ .
1 11 0 0.2959

0 1 0

[ W [ W
X W X Wχ

    
       − −    =        − −− −        −    

E    (2.32) 

 

 

 

 

( )
( )

( )
( )2

1 0 0.2959
1 10 1 1

/ .
1 11 0 0

0 1 0

[ W [ W
X W X Wχ

    
       − −    =        − −−        −    

E     (2.33) 

�
6WHS��� Using the proposed identification method, two local T&S models for the corresponding 

two switching regions are computed, optimizing the number of clusters per region.  

 

Three rules for region 1 and seven rules for region 2 are used, so the results will be comparable 

with the 10 rules T&S model obtained. Finally, the structure of the MTM is given by:  

 

( ) ( ) ( ) ( )
( ) ( ) ( )
1 1 1 ,1 1 ,2

1 1 1 1 1

: 1 , 1 1 1

1 1 , 1,...,3.

8
9 9 9

9 9 9
5 [ W X W [ W $ X W $
\ W D [ W E X W U M

χ − − ∈ − ∈ − ∈ 
= − + − + =

LI DQG DQG WKHQ
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( ) ( ) ( ) ( )
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E FHG#G$ ] W H− − −− = .  

 

The parameters for the MTM are given in Table 2.3. The partitions 1χ  and 2χ  are given by 

(2.32) and (2.33).  Note that the models for 1χ  are very similar, meaning that the data is almost 

lineal in that zone. 

 

Figure 2.17 shows the MTM outputs obtained, for the one-step-ahead prediction and compared 

with the measured output. Figure 2.18 shows the MTM outputs for the infinite-step-ahead 

prediction. 

 
)LJXUH������0HDVXUHG�RXWSXW�DQG�070�RXWSXW��RQH�VWHS�DKHDG�SUHGLFWLRQ��

�
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)LJXUH������0HDVXUHG�RXWSXW�DQG�070�RXWSXW��LQILQLWH�VWHS�DKHDG�SUHGLFWLRQ��

 

 

7DEOH������3DUDPHWHUV�RI�070��

1χ � 1,1 ,1
IF  2,1 ,1

JF  1,1 ,2
JF  2,1 ,2

KF  1 1
LD  1 1

LE  1MU  

M �� 4.5949 0.4047 713.0957 0.0013 0.9999 0.0528 0.0298e-03 

M �� 4.3666 0.3212 750.3884 0.0011 0.9999 0.0527 0.0305e-03 

M �� 6.5704 0.3576 498.7000 0.0012 0.9999 0.0527 0.0311e-03 

2χ � 1,2 ,1
NF  2,2 ,1

OF  1,2 ,2
PF  2,2 ,2

QF  2 1
RD  2 1

SE  2 TU  

M �� 10.6975 0.2259 159.7337 0.0005 0.3731 171.0725 -0.0534 

M �� 5.6316 0.0351 303.4206 0.0001 0.4726 145.0107 -0.0445 

M �� 10.7204 0.0689 159.3931 0.0001 0.3397 205.2806 -0.074 

M �� 9.9211 0.1090 172.2351 0.0002 0.3875 173.0473 -0.0558 

M �� 9.5639 0.1681 178.6678 0.0003 0.2957 244.0445 -0.0997 

M �� 8.5983 0.1090 198.7310 0.0002 0.3560 206.6365 -0.0766 

M �� 8.3488 0.1681 204.6696 0.0003 0.4240 154.9728 -0.0470 
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������� $QDO\VLV�RI�5HVXOWV��
�
From Figure 2.16, the switching point was detected in ( )1 0.2959K W − = . These results 

demonstrate that the proposed method can detect this kind of non-linearity. In the case of 

( )1K W − , the real switching point was set to 0.3[m], which is a fairly good estimation.  

 

From Figure 2.13, the T&S model becomes useless for an infinite-step-ahead prediction as the 

local models of T&S do not consider the switching point. On the other hand, for an infinite-step-

ahead prediction, the performance of the MTM is much better than T&S (from Figure 2.18).  

 

Table 2.4 contains the RMS errors divided by the number of data, for the MTM and T&S 

models, considering the validation data set for one, 100, 200, 300, 400, 500 and 600 step-ahead 

predictions. Figure 2.19 shows the RMS errors divided by the number of data, for the MTM and 

T&S models, considering the test data set, in the function of 1-step-ahead. 

 

7DEOH������506�HUURU��7	6�DQG�070�9DOLGDWLRQ�GDWD��

6WHSV� T&S MTM 

1 �� 0.00001864 0.00002442 

1 ���� 0.00373161 0.00008595 

1 ���� 0.00961309 0.00016285 

1 ���� 0.01359353 0.00024115 

1 ���� 0.01556864 0.00032666 

1 ���� 0.01636838 0.00041540 

1 ���� 0.01663034 0.00049908 

 

 

As shown in Table 2.4 and Figure 2.19, the MTM provides better estimations than T&S when 

comparing the 1�step-ahead predictions. 
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)LJXUH������506�GLYLGHG�E\�WKH�QXPEHU�RI�GDWD�IRU�1�VWHS�DKHDG�SUHGLFWLRQ��

 

 

����� &RQFOXVLRQV��
 

This chapter presents new approaches for the identification of non-linear systems with mixed 

integer and continuous states and inputs. The key element of the hybrid system identification 

methods is the detection and estimation of the switching regions. In the case of the PWA-model, 

the identification is conducted based on an ad-hoc fuzzy clustering method and in the case of the 

hybrid fuzzy-model identification; it is performed by a combination of fuzzy clustering and 

principal eigenvector analysis. 

 

In identification of MTM, a two-level fuzzy model is identified, which consist on a local fuzzy 

level and the discrete/quantized level. Thus, MTM incorporates explicitly the hybrid behaviour. 

Moreover, the method was implemented and applied to a tank-system benchmark problem. The 

detection of the switching points (discrete transitions) was successfully demonstrated for this 

system. The use of the main component was not only demonstrated to be very useful in the 

detection of switching points but also efficient in terms of the computation time as no expensive 

optimization process was included. The comparisons demonstrated the better performance of the 

fuzzy hybrid model MTMs with respect to the conventional T&S model when comparing the 1-

step-ahead prediction performance. 
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In summary, the main contribution of this chapter is the new class of hybrid systems, called 

fuzzy hybrid system, a fast identification method for PWA systems and the identification method 

for a class of fuzzy hybrid systems using principal component analysis and fuzzy clustering in 

fuzzy modelling.  

 

Future work will be focused on generalizing the methodology of fuzzy identification for hybrid 

non-linear systems. In further research, new approaches of fuzzy hybrid modelling will be 

analyzed such as a fuzzy clustering that generates both the fuzzy and hard partitions. The 

stability issues of the proposed fuzzy hybrid modelling will be also studied. Also many transport 

systems applications could be solved with this method, from demand predictions, traffic, user 

behaviour, etc. 

 

Also, a new class of model could be analized by including hybrid models (PWA, MLD, etc) into 

the rules of a fuzzy model. 
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��� +\EULG�3UHGLFWLYH�&RQWURO��0RQR�REMHFWLYH�DQG�0XOWL�REMHFWLYH�GHVLJQ��
�
����� /LWHUDWXUH�UHYLHZ��
�
Different methods for the analysis and design of hybrid systems controllers have emerged over 

the last few years. Among them, the design of optimal controllers and associated algorithms are 

the most studied.  Next reviews of Hybrid Predictive Control (HPC), considering a mono-

objective optimization along with a multi-objective HPC extension are presented. 

�
�
������� +\EULG�3UHGLFWLYH�&RQWURO��+3&���
�
Borrelli HW�DO. (2005) provides basic theoretical results on the structure of the optimal solution 

and on the value function in the optimal control problem of discrete-time linear hybrid systems. 

The authors describe how the optimal control law can be constructed by combining multi-

parametric and dynamic programming. They solve the Hamilton Jabobi Bellman equation by 

using a simple multi-parametric solver, using their algorithm applied to a wide range of 

problems. However, the algorithm is limited to linear models and requires a hard computational 

off-line procedure to synthesize optimal control laws based on the minimization of quadratic and 

linear performance indexes. Baric HW� DO. (2007) present an algorithm for the computation of 

explicit optimal control laws for Piece-Wise Affine (PWA) systems with polyhedral performance 

indices, which is an extension of the Borrelli algorithm. Based on dynamic programming, the 

algorithm improves the efficiency of the off-line procedure by exploiting the geometric structure 

of the optimization problem. 

 

Many authors have focused on hybrid predictive control and a wide range of applications. For 

instance, Slupphaug and Foss (1997) and Slupphaug HW�DO. (1997) describe a predictive controller 

with continuous and integer input variables that is solved using non-linear mixed integer 

programming. It was shown that it performs better than a predictive control strategy with 

separation of continuous and integer variables. In this case, the proposed algorithms were applied 

to simulate the control of the level and temperature in a tank system. Bemporad and Morari 

(2000) and Bemporad HW� DO. (2002a) present a predictive control scheme for hybrid systems 

including operational constraints and is solved using mixed-integer quadratic programming 



Chapter 3.- Hybrid Predictive Control: Mono-objective and  Multi-objective design 

53 
 

(MIQP). The proposed algorithm is applied by simulation of a gas system, which incorporates 

integer-manipulated variables.  

 

The main problem of the MIQP is the computational complexity that increases the time to find 

the solution. To overcome this problem, Thomas HW� DO. (2004) propose a partition of the state 

space domain. In every partition some variables change while the others remain constant. This 

DSSURDFK� UHGXFHV� WKH� FRPSXWDWLRQ� WLPH�� 3RWRþQLN� HW� DO. (2004) propose a hybrid predictive 

control algorithm with discrete input based on reachability analysis. The computation time is 

reduced by building and pruning an evolution tree. The algorithms were applied for the optimal 

control of a multi-product batch plant. All the previous works related to HPC are based on linear 

models. However, the majority of industrial processes are non-linear in nature. Karer HW� DO. 
(2007) present a suitable optimization algorithm for systems with discrete inputs under a hybrid 

fuzzy modelling approach. The benefits of the MPC algorithm employing the proposed hybrid 

fuzzy model were verified on a batch-reactor simulation example and they established that the 

approach clearly outperforms the approach when a linear model is used. 

 

The application of evolutionary computation techniques for optimization problems with high 

evaluation cost, like hybrid predictive control problems, is an increasingly important area of 

research. Although it has been established that evolutionary computation techniques are 

powerful optimization tools, researchers are facing the challenge of reducing computational cost 

in problems where the size, complexity and fidelity of the model together with the large number 

of function evaluations involved in the optimization process produce a very high computational 

cost. Furthermore, the causes of high computational cost that can be afforded differ widely from 

one problem to another.  

 

Van der Lee HW� DO. (2008) presented a generalized automated tuning algorithm for Model 

Predictive Controllers (MPCs) combining Genetic Algorithm (GA) with multi-objective fuzzy 

decision-making. Na and Upadhyaya (2006) applied a combination of MPC, GA optimization 

and fuzzy identification to the design of the thermoelectric power control. Sarimveis and Bafas 

(2003) used the GA in fuzzy predictive control without discrete state variables to provide 

reasonable solutions in a reduced computation time. One of the strong points of the approach is 

that the feasibility of the optimization solution in each time sample is guaranteed, in contrast to 

the conventional optimization techniques, which can potentially fail due to the complexity of the 

optimization problem.  
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In this chapter the problems of non-linearity and the hybrid nature of a system are tackled by the 

inherent use of a PWA and a hybrid fuzzy model in HPC. As the optimization of the objective 

function in the case of the hybrid fuzzy predictive control (HPC) is a highly non-linear problem, 

the genetic optimization algorithm was employed, similar to the application by Man HW� DO. 
(1998). The problems solved in this chapter are even more complex that the mentioned before 

because of the discrete states, so that the use of a GA is fully justified as it reduces the 

computational load substantially. 

 

Regarding the hybrid predictive control strategies, not just a good model is important, also a 

proper objective function together with an ad-hoc optimization algorithm. In this chapter, a 

quadratic objective function is used for minimizing the tracking reference error and control 

effort; however, the objective function could be changed into another more suitable, for example 

to user costs and operational costs in the context of a dial-a-ride system. Regarding the 

optimization algorithm, in systems like the dial-a-ride and the integrated transport system, the 

decisions should be made in a short time, due to any delay in the response could affect 

dramatically the system costs. Then, the Branch and Bound (BB) and Genetic Algorithms (GA) 

properties are discussed and the algorithms are compared; then, depending on the computational 

capacity for controlling a dynamic transport system, the most appropriate algorithm is proposed. 

 

�
������� 0XOWL�REMHFWLYH�2SWLPL]DWLRQ�IRU�&RQWURO��
 

Regarding the application of multi-objective techniques in the context of control, most processes 

contains multiple and opposite objectives. In the solution of predictive control schemes, classical 

approaches reduce the multiple objectives into a single objective that minimizes a weighted sum 

of objectives. However, the determination of these weights is difficult, mainly when the 

importance of each objective varies with time. Besides, the control law of conventional 

predictive control is not transparent for the operator in the sense that the trade-off between 

optimal solutions is not given by the conventional predictive controller. Then, multi-objective 

seems to be a suitable approach for dealing with predictive control problems.  

 

In the literature, predictive control based on multi-objective optimization was reported under 

different approaches. Alvarez and Cruz (1998) propose a multi-objective dynamic optimization 
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method for discrete time systems. First, a multi-objective sub-problem is solved with general 

constraints at each time step. Then, policies that satisfy the necessary optimality conditions for 

this problem are derived. The priorized policies are used as criteria for choosing the optimal 

control action. The modelling of discrete time systems is based on state space variables. 

Numerical results for a continuous binary distillation column are presented. Kerrigan HW� DO. 
(2000) present several methods for handling a large class of multi-objective formulations and 

priorizations for model predictive control of hybrid systems, using a MLD framework. The 

methods are flexible and systematic, and use propositional logic and the MLD modelling 

formalism for prioritizing soft constraints in MPC and guaranteeing the satisfaction of the 

maximum number of hard constraints.  

 

Next, Kerrigan and Maciejowski (2002) solve the multi-objective predictive control problem 

based on priorized constraints and objectives. In this case, the most important optimization 

problem is solved first and the solution to this problem is then used to impose additional 

constraints on the second optimization. The control action of the predictive controller proposed 

is obtained using convex programming techniques by considering certain convexity assumptions. 

Thus, the priorized multi-objective predictive controller can be solved on-line without re-

designing off-line the controller; however, this increase in flexibility also demands an increase in 

the amount of on-line computational power. Núñez-Reyes HW�DO. (2002) present a comparison of 

different multi-objective predictive controllers applied to an olive oil mill. A typical MPC 

approach based on mono-objective function, a priorized multi-objective predictive controller and 

structure MPC controller are compared. The last structured MPC, uses a decision list to select the 

current objective function which must be supplied to the MPC control action. Based on 

simulation tests, the priorized multi-objective predictive controller gives the best results without 

the need of tuning weights as the mono-objective MPC. Complex software is required and 

therefore, a big computational cost is needed. An intermediate solution is the structured MPC. 

However, abrupt behaviour in the switching between different objectives is observed.  

 

Zambrano and Camacho (2002) describe a multi-objective model predictive control algorithm 

based on a goal attainment method, which considers the different objective functions as 

constraints for the minimization of the relaxation variable. This multi-objective predictive 

controller allows the specification of different goals, such as the economic factor, at different 

operation points and was applied to a solar refrigeration plant.  The results show benefits of 

including the multi-objective approach. Labidi and Bouani (2004) present a multi-objective 
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control strategy for non linear uncertain dynamic systems modelled by means of a neural 

network. Non-dominated sorting genetic algorithm (NSGA) is used for solving the multi-

objective optimization problem. Each objective function corresponds to the conventional MPC 

objective function (minimizing the tracking error and the control effort) obtaining predictions 

with different neural networks models of the system. The criterion for choosing the optimal 

control action considers taking only the solution that gives the minimum sum of the objective 

functions.  

 

Flores� HW�DO� (2005), present the application of fuzzy predictive control to a solar power plant. 

The proposed predictive controller uses fuzzy characterization of goals and constraints, based on 

the fuzzy optimization framework for multi-objective satisfaction problems. Subbu HW�DO� (2006) 

present a multi-predictive multi-objective optimization approach for thermal power plants and 

Hu HW� DO� (2007) discuss the development of a dynamic simulation-model-based, considering 

multi-objective predictive control system for generating cost-effective control strategies for a 

bioremediation site. Yano and Sakawa (2009) proposed a hierarchical multi-objective 

programming problem where multiple decision makers in a hierarchical organization have their 

own multiple objective functions. They proposed an interactive algorithm based on a dual 

decomposition method to obtain the satisfactory solution, which reflects not only the hierarchical 

relationships among multiple decision makers but also their own preferences for their objective 

functions. The proposed algorithm was successfully applied to the industrial pollution control 

problem in Osaka City in Japan.  

 

Thus, although multi-objective predictive controllers reported are interesting; the systematic 

tuning methodology design is not complete. Then, in the next section a new approach for 

dynamic multi-objective hybrid predictive controller that provides generic solutions is proposed.  

 

In section 3.2, Hybrid Predictive Control is presented and the piece-wise-affine models as well 

as the fuzzy models are highlighted. Optimization algorithms for Hybrid Predictive Control 

(HPC) are reported and the cases of HPC design based on Branch and Bound (BB) and Genetic 

Algorithm (GA) are discussed. Simulation results of the control for the two hybrid systems are 

presented. First a comparison of hybrid fuzzy versus PWA modelling is presented for a Batch 

Reactor with discrete input. Then a comparison among three optimization algorithms (B&B, EE 

and GA) is presented and applied for a hybrid tank system. In Section 3.4, Hybrid Predictive 
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Control based on multi-objective (MO-HPC) optimization is stated. Simulation results of a 

hybrid tank system are shown. Finally, section 3.5 the MO-HPC is emulated with a HPC.  

 

 

����� +\EULG�3UHGLFWLYH�&RQWURO�GHVLJQ��
 

The PWA and hybrid fuzzy models, both described in chapter 2, are considered for the Hybrid 

Predictive Control design, where a proper objective function is required. This objective function 

should represent all the control aims; for example in a regulation problem the tracking error and 

the control effort should be included, while in the context of a dynamic pick-up and delivery 

problem for passengers, user and operational costs are opposite goals that must be incorporated 

as chapters 4 and 5 show. Thus, the controller will obtain future control actions that minimize the 

objective function.  

 

Next, the cases HPC based on a PWA model and HPC based on a fuzzy hybrid model are 

highlighted. 

 

 

������� +\EULG�3UHGLFWLYH�&RQWURO�EDVHG�RQ�D�3:$�PRGHO��+3&�3:$���
 

A Hybrid Predictive Controller (HPC) can be designed for minimizing any objective function 

based on the requirements of a process. For example, the aim of the HPC in the simulation 

results of this chapter are tracking a reference and minimizing the control effort. For those 

purposes, a quadratic objective function is usually used as shown in (3.1). Analytically,  
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∑ ∑
 (3.1) 

 

Equation (3.1) depends on the vector variables of the inputs ( )X W M+ , the auxiliary variables 

( )W Mδ +  and ( )] W M+ , the estimated state ( )ˆ 1[ W M+ +  and the estimated output ( )\̂ W M+  

considering a hybrid model, 1  is the prediction horizon, 1 �   is the control horizon and ( )X W M+  
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is assumed constant for �M 1≥ . Based on the rolling horizon procedure, the control action ( )X W  

is applied to the system and in the following sampling time the whole optimization procedure is 

repeated. , , ,�	�
���X ] [δ  and �\  are vectors whose values are an equilibrium point or the 

references. The operator 2


�⋅  satisfies for any vector KG  the following: ( )2

�

�
��K K 4 K= ⋅ ⋅

G G G
. Then, 

4 � , 4� , 4 � , 4 �  and�4 �  are weighing matrices. 

 

Once the optimization problem is solved, the optimal control sequence (3.2) is obtained.  

 

( ) ( ) ( )* * ** , 1 ,..., 1
�

�X X W X W X W 1 = + + − 
G

    (3.2) 

 

According to the rolling horizon procedure, from (3.2) just the first component ( )*X W  is used and 

applied to the system. Once the control action is applied, the system is conducted to a new state 

( )1[ W +  and then, the whole optimization procedure is repeated. As a result, the control action 

moves the systems variables close to the equilibrium point while considering all the constraints.  

 

The Hybrid Predictive Control based on PWA affine model (HPC-PWA) strategy use the PWA 

linear affine model to predict the behaviour of the hybrid system by including both 

discrete/integer and continuous variables. In general, the HPC minimizes the following objective 

function: 

 

( ) ( ) ( ){ }

( ) ( )( ) ( )
1 1

1 2, 1 ,..., 1

2 2
1 2

min

ˆ , 1

�
� �

����� � ��� !
! !

" ! " !

- - -

- \ W M U W M - X W M

λ
+ + −

= =

= +

= + − + = ∆ + −∑ ∑
   (3.3) 

 

where -  is the objective function, ( )\̂ W M+  corresponds to the M-step-ahead prediction for the 

controlled variable with a PWA model, ( )U W M+  is the reference, ( )1X W M∆ + −  is the increment 

of the control action, and λ  is the weighting factor. 11 , #1  and $1  are the prediction horizons 

and the control horizon, respectively. The model predictions are given by the PWA linear affine 

model of the process, i.e., 
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( ) ( ) ( )( )ˆ 1 ,...., 1 ,....%'&)(\ W M I \ W M X W M+ = + − + −     (3.4) 

 

 

where ( )*'+-,I <  is the non-linear function defined by a PWA model (2.4), defined in chapter 2. 

The optimization results in a control sequence ( ) ( ){ },..., 1.X N X N 1+ −  that minimizes the 

objective function (3.3). As the HPC problems solved in this chapter includes discrete variables, 

the optimization could be solved by any Mixed Integer Non-Linear Optimization algorithm 

(Floudas, 1995). 

 

 

������� +\EULG�3UHGLFWLYH�&RQWURO�EDVHG�RQ�+\EULG�)X]]\�0RGHOV��
 
In this section, the control of hybrid systems based on hybrid fuzzy models is presented. The 

Hybrid Predictive Control (HPC) based on a hybrid fuzzy model strategy is a generalization of 

model-predictive control (MPC), where the prediction model includes both discrete/integer and 

continuous variables. In general, the HPC minimizes the following objective function: 

 

( ) ( ) ( ){ }

( ) ( )( ) ( )
1 1

1 2, 1 ,..., 1

2 2
1 2

min

ˆ , 1

/
0 /

1�2�1 2 1�2 3
3 3

4 3 4 3

- - -

- \ W M U W M - X W M

λ
+ + −

= =

= +

= + − + = ∆ + −∑ ∑
   (3.5) 

where -  is the objective function, ( )\̂ W M+  corresponds to the M-step-ahead prediction for the 

controlled variable, ( )U W M+  is the reference, ( )1X W M∆ + −  is the increment of the control action, 

and λ  is the weighting factor. 11 , 51  and 61  are the prediction horizons and the control 

horizon, respectively. The model predictions are given by the hybrid fuzzy model of the process, 

i.e., 

 

( ) ( ) ( )( )ˆ 1 ,...., 1 ,....798 : : ;\ W M I \ W M X W M+ = + − + −     (3.6) 

 

where ( )<9=?> > @I <  is the non-linear function defined by the fuzzy model in (2.16). The optimization 

results in a control sequence ( ) ( ){ },..., 1AX W X W 1+ − . 

 



Chapter 3.- Hybrid Predictive Control: Mono-objective and  Multi-objective design 

60 
 

As it is assumed that the HPC problem includes discrete variables, the optimization could be 

solved by explicitly evaluating all the possible feasible solutions (EE), Branch & Bound (BB) 

and other algorithms shown in Floudas (1995). Next, in section 3.2.3, an efficient optimizer 

based on GA is presented in detail. Experimental results of the hybrid fuzzy identification and 

control of a Hybrid Tank System are shown in section 3.2.4. 

 

 

������� 2SWLPL]DWLRQ�DOJRULWKPV�IRU�+\EULG�3UHGLFWLYH�&RQWURO��
�
In general, as a Hybrid Predictive Control problem incorporates discrete/integer variables in the 

model, at every instant, a constrained mixed integer programming problem has to be solved. As 

stated in Bemporad and Morari (1999), mixed integer programming problems are usually NP-

complete, which means that in the worst case, the solution time grows exponentially with the 

problem size. As a consequence, the application of HPC for solving large scale systems is an 

interesting research topic. Several algorithms have been proposed an applied for large size 

application; however they usually do not reach the global optimum. For a detailed description of 

this fact and also mixed integer programming algorithms see Raman and Grossmann (1991) or 

Floudas (1995).  

 

Floudas (1995) classified the mixed integer optimization algorithms into four major classes. The 

first one is cutting plane methods, where the feasible domain in reduced adding new constraints 

(or “cuts”) to the optimization problem, until an optimal solution is found. The decomposition 

methods exploit the mathematical structure of the optimization problems by analysing 

partitioning, duality, and applying relaxation methods. The logic-based methods utilize symbolic 

inference techniques, which can be expressed in terms of binary variables. In the branch and 

bound (BB) methods, the possible solutions are explored through a tree of decisions by 

partitioning the feasible region and generating upper and lower bounds used to avoid (branch) 

the enumeration of all the possible solutions.  

 

As HPC have to solve a NP-Hard optimization problem at every instant, within the sampling 

time; it could happen in medium and large scale problem that the application of traditional 

optimization techniques cannot guarantee even the calculation of a feasible solution. This could 

happen due to the complexity of the optimization problem, as reported in Sarimveis and Bafas 

(2003). Then, heuristic methods have emerged for solving NP-Hard problems, which could 
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incorporate previous knowledge of the problems and fast methods for finding good solutions 

close to optimality within the sampling time.  

 

Among the heuristic methods, which are typically developed for solving particular problems, the 

evolutionary algorithms based optimization methods (Man HW� DO. 1998) are quite utilized. 

Specifically, Genetic Algorithms (GA) for solving HPC problems are analyzed, as GA is general 

enough for including HPC features in the algorithm and due to their capability of solving 

complex non-linear constrained optimization problems.  

 

There are many publications that use GA and consider constraints in optimization problems. 

Back HW�DO. (2000), Coello (2002); Michalewicz (1995) report excellent reviews and methods, but 

a general methodology has not been proposed so far. One of the most important methods is 

GENOCOP proposed by Michalewicz (1995b), who developed this genetic algorithm-based 

program for constrained and unconstrained optimization. Recent work has shown promise results 

for a Feasible-Infeasible Two-Population (FI-2Pop) genetic algorithm for constrained 

optimization (Kimbrough HW�DO., 2008). The FI-2Pop GA has proved to be better than standard 

methods for handling constraints in GAs; inclusive it has regularly produced better decisions for 

comparable computational effort than GENOCOP. Moreover FI-2Pop GA is a high-quality GA 

solver engine for constrained optimization problems generating excellent decisions for problems 

that cannot be handled by GENOCOP. 

 

Next, the branch and bound method and genetic algorithms are presented and adapted for solving 

HPC problems.  

 

 

��������� %UDQFK�DQG�%RXQG��%%���
 

According to the HPC literature, branch and bound is the most frequently utilized solver for 

mixed integer programs. Fletcher and Leyer (1995) report that branch and bound is superior by 

an order of magnitude compared with other algorithms like outer approximation and generalized 

bender decomposition.  

 

The BB algorithm consists of solving and generating new relaxed problems in accordance with a 

tree search, where the nodes of the tree correspond to relaxed optimization sub-problems. 
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Branching is obtained by generating child-nodes from parent-nodes according to branching rules, 

which can be based, for instance, on a priori specified priorities on integer variables, or on the 

amount by which the integer constraints are violated. The algorithm stops when all nodes have 

been fathomed. The success of the branch and bound algorithm relies on the fact that whole sub-

trees can be excluded from further exploration by fathoming the corresponding root nodes. This 

happens if the corresponding sub-problem is either infeasible or an integer solution is obtained. 

The corresponding value of the cost function serves as an upper bound on the optimal solution of 

the optimization problem, and is used to further fathoming other nodes having larger optimal 

value or lower bound (Bemporad and Morari, 1999; Floudas, 1995).  

 

The control algorithm used in this chapter is thoroughly described in Karer HW� DO. (2007) and 

Potocnik HW�DO. (2004). Even it is limited to systems with discrete inputs only, its extension to 

continuous and discrete inputs is straightforward, by solving at each node the corresponding 

relaxed non-linear optimization problem for the continuous variables. The possible evolution of 

the system up to a maximum prediction horizon 61  can be illustrated by a tree of evolution, as 

shown in Figure 3.1 for 4B1 =  and 3 possible input vectors. The nodes of the tree represent 

reachable states, and branches connect two nodes if a transition exists between the corresponding 

states. 

 
)LJXUH�����7UHH�RI�HYROXWLRQ��%UDQFK�DQG�%RXQG��

 

For a given root-node 19 , representing the initial states ( ( )[ W , ( )T W  ), the reachable states are 

computed and inserted in the tree as nodes C9 , where L indexes the nodes as they were 

successively computed. A cost value D-  is associated with each new node, and based on the cost 

value the most promising node is selected. After labelling the node as explored, new reachable 
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states emerging from the selected node are computed. The construction of the tree of evolution 

continues upwards first, until one of the following conditions occurs: 

 

- The value of the cost function at the current node is larger than the current optimal one 

( E F GIH- -> ).  

- The maximum step horizon is reached. 

 

If the first condition occurs, the node is labelled as non-promising (a “X” shown in Figure 3.1) 

and thus eliminated from further exploration. On the other hand, if the node satisfies the second 

condition only, it becomes the new current optimal node ( J K LIM- -= ), whereas the sequence of 

input vectors leading to it becomes the current optimal one. 

 

The exploration continues from the topmost step horizon, where unexplored nodes can be found, 

and so on, until all the nodes are explored and the optimal input vector can be derived and then 

applied to the system and the whole procedure is repeated at the next time step.  

 

For an insight into the computational complexity issues and the approaches and properties used 

for dealing with them, see Karer HW�DO. (2007). 

 

 

��������� 2SWLPL]DWLRQ�EDVHG�RQ�JHQHWLF�DOJRULWKP��
�
The genetic algorithm is used to solve the optimization of an objective function because it can 

efficiently cope with mixed-integer non-linear problems. Another advantage is that the objective-

function gradient does not need to be calculated, which substantially reduces the computational 

effort. 

 

A potential solution of the genetic algorithm is called an individual. The individual can be 

represented by a set of parameters related to the genes of a chromosome and can be described in 

binary or integer form. The individual 
N8  represents a possible control-action sequence 

( ) ( ) ( ){ },, 1 ..., 1
O P P P

Q8 X W X W X W 1= + + −  where an element ( )
RX W M+ , 1,..., 1,SM 1= −  is a gene, 

L denotes the L-th individual from the population of possible individuals, and the individual length 

corresponds to the control horizon. 
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Using genetic evolution, the fittest chromosome is selected to ensure the best offspring. The best 

parent genes are selected, mixed and recombined for the production of an offspring in the next 

generation. For the recombination of the genetic population, two fundamental operators are used: 

crossover and mutation. For the crossover mechanism, the portions of two chromosomes are 

exchanged with a certain probability in order to produce the offspring. The mutation operator 

alters each portion randomly with a certain probability (for more details see Man HW�DO., 1998). 

 

In this chapter the control-law derivation will be based on the simple genetic algorithm (SGA) as 

in Man HW�DO. (1998). Assume that the range of the manipulated variable is [ ]min max,X X , quantized 

by steps of size T, so that there are T possible inputs at each time instant. Therefore, the set of 

feasible control actions is max min
min\ , 1,2,...,

X X8 X X Q X Q TT
 −= = ⋅ + = 
 

. Furthermore, assume 

that the probability of two selected parent individuals 
T8  and 

U8  undergo a crossover is VS , and 

for mutation the probability is WS . The control strategy can be represented by the following 

steps: 

 

6WHS��� Set the iteration counter to 1, and initialize a random population of 3 individuals, i.e., 

create 3 random integer feasible solutions of the manipulated variables for the HPC problem. As 

the control horizon is X1 , there are Y
ZT  possible individuals. 

 

6WHS��� Evaluate the objective function (3.1) for all the initial individuals of the population. 

 

6WHS� �� Select random parents from the population 3 (different vectors of the future control 

actions). 

 

6WHS��� Generate a random number between 0 and 1. If the number is lower than the probability 

[S , choose an integer 0 1\ ]F 1< < −  ( F̂  denotes the crossover point) and apply the crossover 

to the selected individuals in order to generate an offspring. Figure 3.2 describes the crossover 

operation for two individuals, 
_8  and 8 , resulting in 

`
a b ced d8  and 

f
g h ikj j8 . 
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( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

, 1 ,..., 1 , ,..., 1

, 1 ,..., 1 , ,..., 1

, 1 ,..., 1 , ,..., 1

, 1 ,..., 1 , ,..., 1

l l l l l l
m m n

o o o o o o
m m n

l o o o l l
p q rks s m m n

o l l l o o
p q res s m m n

8 X W X W X W F X W F X W 1

8 X W X W X W F X W F X W 1

8 X N X N X N F X N F X N 1

8 X N X N X N F X N F X N 1

= + + − + + −

= + + − + + −

⇓

= + + − + + −

= + + − + + −

 

)LJXUH�����&URVVRYHU�RI�WZR�LQGLYLGXDOV��
 

6WHS��� Generate a random number between 0 and 1. If the number is lower than the probability 

tS , choose an integer 0 1u vF 1< < −  ( wF  denotes the mutation point) and apply the mutation to 

the selected parent in order to generate an offspring. Select a value 
x
y{z}|X 8∈  and replace the 

value in the wF -th position in the chromosome. Figure 3.3 describes the mutation operation for 

an individual 
_8  resulting in 

~
���}�8 . 

 

( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( ){ }

, 1 ,..., 1 , , 1 ,..., 1

, 1 ,..., 1 , , 1 ,..., 1

� � � � � � �
� � � �

� � � � � � �
���}� � �{�}� � �

8 X N X N X N F X N F X N F X N 1

8 X N X N X N F X X N F X N 1

= + + − + + + + −

⇓

= + + − + + + −

 

)LJXUH�����0XWDWLRQ�RI�DQ�LQGLYLGXDO��
 

6WHS� �� Evaluate the fitness given by the objective function (3.1) of all the individuals of the 

offspring population. 

 

6WHS� �� Select the best individuals according to the objective function. Replace the weakest 

individuals from the previous generation with the strongest individuals of the new generation. 

 

6WHS��� If the objective-function value reaches the defined tolerance or the maximum generation 

number is reached (stopping criteria), then stop. In other cases, go to step 3. 

 

The tuning parameters of the GA method are the number of individuals, the number of 

generations, the crossover probability �S , the mutation probability S  and the stopping criteria. 
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The genetic-algorithm approach in HPC provides a sub-optimal discrete control law close to the 

optimal one. When the best solution is maintained in the population, it was shown in Rudolph 

(1994) and Sarimveis (2003) that the GA converges to the optimal solution. However, due to the 

limited time between the sampling instances reaching the global optimum is not guaranteed. 

Nevertheless, the probabilistic nature of the algorithm ensures that it finds an approximately 

optimal solution. In contrast to that, following the Remark 5.3 in Sarimveis (2003), the 

application of traditional optimization techniques to solve the same problem cannot guarantee 

even the calculation of a feasible solution because of the complexity of the optimization 

problem. Since in this case the problem is a complex mixed integer and non-linear programming, 

using the GA optimization is justified. 

 

Using the GA optimization makes it easy to include the input and output constraints in the 

computation of the control variable. The procedure is described in Sarimveis (2003); in general, 

it means a narrowing of the space for feasible solutions in each optimization step. However, this 

case is beyond the scope of this work. 

 

Solving constrained optimization problems using GA is a very complex issue due to the genetic 

operators (mutation and crossover) do not guarantee solution feasibility. Although much 

attention has been given to solve these issues, no general and systematic solution has been 

proposed. For a review of these algorithm, Back HW� DO. (2000), Coello (2002); Michalewicz 

(1995) proposed excellent reports.  

 

 

������� �+\EULG�3UHGLFWLYH�&RQWURO�IRU�D�%DWFK�5HDFWRU���
 

The HPC using Branch and Bound approach to the optimization problem arising from the 

optimal control problem was tested on a simulation example of a real batch reactor that is located 

in a pharmaceutical company and is used in the production of medicines. The batch reactor was 

described before in section 2.3. The scheme could be seen in Figure 2.1. The goal is to control 

the temperature of the ingredients stirred in the reactor core so that they synthesize into the final 

product. In order to achieve this, the temperature has to follow the trajectory reference, given in 

the recipe, as accurately as possible. 
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A comparison between HPC based on Fuzzy Model and PWA model is presented. The PWA 

model obtained is described in chapter 2 by (2.13), (2.14), (2.15) and the hybrid fuzzy model is 

the one reported in Karer HW� DO. (2007). For each HPC method, the Branch and Bound (BB) 

optimization algorithm is used. The objective function is the following. 

 

( ) ( )( ) ( ) ( )

( ) ( )

2

1 2
1 1

3
1

1 1

1 1

� �

�

� �
� � � � �� �

�
� ��

- Z 7 W K 7 W K Z N W K N W K

Z N W K N W K
= =

=

= + − + + + − + − +

∆ + − + −

∑ ∑

∑
  (3.7) 

with 03.0,15,15/1 321 === ZZZ . 

 

Table 3.1 shows the Objective Functions values (tracking error and control effort) and  the 

computation time for the different strategies. Figures 3.4 and 3.5 show the results of HPC based 

on hybrid fuzzy model with BB (HPC-BB). Figures 3.6 and 3.7 show the results of HPC based 

on PWA model with BB (HPC-PWA-BB). As the figures and tables show HPC based on Hybrid 

fuzzy model is better in terms of objective function than HPC based on PWA model, but in terms 

of computational time, HPC-PWA becomes faster. This difference in time could be explained by 

the longer evaluation time required for fuzzy models, as its structure is more complex than PWA 

model.  

 

�
7DEOH�����1�6WHS�DKHDG�SUHGLFWLRQ�HUURU�

Strategy Jy Ju Time [s] 

HPC-BB 11371.256 15.1926 197.5640 

HPC-PWA-BB 11386.274 15.1932 118.8750 

 

 

 

 

 

 

 



Chapter 3.- Hybrid Predictive Control: Mono-objective and  Multi-objective design 

68 
 

 
)LJXUH�����7HPSHUDWXUH�LQ�WKH�FRUH�DQG�UHIHUHQFH�+3&�%%��

 

 

 
)LJXUH�����2XWSXWV�+3&�%%��

�
�
�
�
�



Chapter 3.- Hybrid Predictive Control: Mono-objective and  Multi-objective design 

69 
 

�

 
)LJXUH�����7HPSHUDWXUH�LQ�WKH�FRUH�DQG�UHIHUHQFH�+3&�3:$�%%��

 

 

 
)LJXUH�����2XWSXWV�+3&�3:$�%%�

�
 

 

 



Chapter 3.- Hybrid Predictive Control: Mono-objective and  Multi-objective design 

70 
 

������� +\EULG�)X]]\�3UHGLFWLYH�&RQWURO�IRU�D�7DQN�6\VWHP��
 

The behaviour of the tank system, shown in Figure 3.8, is defined by the following non-linear 

differential and algebraic equations, which define the switching regions: 

P

P P

( ) ( )
( ) ( )

1

1 2

2
21 1

1 2 1 1 12
1

22
2 1 1 1 2 2 2

2 2min 1 1max 2 2

1 1max 2 2max 1 1

If  and then

If  and then

�

� �

�{� �'������� �'� �����

�'������� ���������

�'������� ���������

��������� ���������

GK 5 K . X 9 KGW +
GK 5 9 K 9 KGW

K + K + .
K + K + .

φ

φ φ

π φ φ

π φ φ

φ

φ

⋅ ⋅ = ⋅ + − −

⋅ ⋅ = + − −

≥ < =

≥ < =

  (3.8) 

    

where 1K  and 2K  stand for the level of the liquid in the first and the second tank, and 1min+ , 

2min+ , 1max+  and 2max+  stand for the switching levels. 

 

 
)LJXUH�����+\EULG�7DQN�6\VWHP�

 

The controlled variable in this case is the level in the first tank 1K , and the manipulated variable 

is the voltage of the pump at the inlet X , which has discrete levels. It is also assumed that both 

levels, 1K  and 2K , are measured, and the measurements are corrupted with white noise that has a 

variance equal to 1. The excitation and the output signals of the plant are shown in Figures 3.9 

and 3.10. The signals were sampled with [ ]10�7 V= .  
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)LJXUH�����,GHQWLILFDWLRQ�GDWD��LQSXW�VLJQDO��

 

 
)LJXUH������,GHQWLILFDWLRQ�GDWD��RXWSXW�VLJQDO��

 

Note that the rules in (3.8) represent the switching or hybrid behaviour of the system. The 

parameters used in the model are [ ]1 255 FP= ,  2
1 0.5 /9 FP V =   , [ ]2 155 FP= , 

2
2 0.65 /9 FP V =   , [ ]1 100+ FP= , [ ]1min 5+ FP= , 31 /���N FP V =   , 3

1 4 /�e ¡� ¢ ¢N FP V =   , 

[ ]1max 50+ FP= , [ ]2max 90+ FP= , 3
2 4 /£9¤}£ ¥ ¥N FP V =   . 
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The behaviour of the hybrid system will be modelled by the fuzzy-model structure from (2.16). 

The design of the membership-function distribution is the key element of the modelling 

procedure. In our case, it is obtained by analyzing the principal eigenvectors of the covariance 

matrices of the clusters. The clusters are obtained from the data matrix, which is composed of 

measurements (the variables ( )1K W  and ( )X W ). 

 

The analysis of the main eigenvectors for all the clusters is presented in Figure 3.11, where the 

eigenvector--element ratio corresponds to its own cluster. It is clear that around the level of 

( )2 50K W FP=  there is an abrupt change of the eigenvector ratio. This change implies a change in 

the system’s behaviour and potentially indicates the switching region of the system. The idea is 

to put two membership functions around each local extreme (the minimum and maximum of the 

eigenvector ratios). This is done because the switching region cannot be exactly defined (mainly 

in the case of noisy data). This idea involves a tolerance band around the switching regions. In 

Figure 3.11 the corresponding membership functions are shown as well. 

 

 
)LJXUH������3ULQFLSDO�FRPSRQHQW�DQG�PHPEHUVKLS�IXQFWLRQV��

 

The structure of the fuzzy model follows the definition in (2.16), where the variable in the 

premise is ( )1K W  and the consequent vector is equal to ( ) ( )1 , ,1
¦

K W X W   . The parameters of the 
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fuzzy model [ ], ,
§

¨ ¨©¨ª¨D E Uθ = , obtained by a linear least-squares estimation, are reported in Table 

3.2. 

 

 7DEOH�����3DUDPHWHUV�IX]]\�0RGHO�

L  «D  ¬E  ­U  

1 0.8376 0.3403 0.0386 

2 0.9764 0.0522 0.0511 

3 0.9873 0.0290 0.0305 

4 0.9747 0.0196 0.7656 

5 0.9933 0.0125 -0.0136 

6 0.9946 0.0091 0.0265 

7 0.9987 0.0066 -0.2163 

8 1.0015 0.0045 -0.4334 

 

The validation of the designed fuzzy model is shown in Figure 3.12. The proposed model results 

in a very good estimation of the process output, and inherently incorporates the hybrid 

(switching) nature of the system. 

 

 
)LJXUH������9DOLGDWLRQ�RI�K\EULG�IX]]\�PRGHO��RXWSXW�VLJQDO��

 



Chapter 3.- Hybrid Predictive Control: Mono-objective and  Multi-objective design 

74 
 

The tuning parameters of the objective function in (3.5) are 1 11 = , 3® ¯1 1 1= = = , and 

0.001λ = . The total computation time required for the HPC will be evaluated using a Intel 

Core(TM) 2 CPU, 2.40 GHz processor and 3.25 GB of RAM.  

 

The sampling time is 10[V] and the total simulation time is 6000 [V]. The results of the proposed 

method based on GA (HPC-GA) are compared with the results obtained by using Branch-and-

bound method (HPC-BB) and explicit enumeration (HPC-EE). The latter evaluates all the 

feasible control actions at every instant, while the HPC-GA and HPC-BB consider only a 

reduced space search. The parameters for HPC-GA are as follows: mutation probability 

°S = 0.001, crossover probability ±S = 0.7 and for the stopping criterion the maximum number 

of generations is used, obtained by further analyses. 50 replications were conducted for each 

statistic obtained with GA. 

 

Figure 3.13 shows the objective function as a function of the generation number for different 

numbers of individuals. Based on this figure, 30 generations with 14 individuals are selected in 

this example. Figure 3.14 shows how this selection brings a trade-off between the computation 

time and the value of the objective function. 

 

 
)LJXUH������2EMHFWLYH�IXQFWLRQV�Y�V�JHQHUDWLRQ�QXPEHU��
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)LJXUH������3DUHWR�IURQW��2EMHFWLYH�IXQFWLRQV�DQG�&RPSXWDWLRQ�WLPH��

 

Figure 3.15 presents the computation time as a function of the number of generations for 

different numbers of individuals. The computation time linearly depends on the generation 

number, and its slope slightly increases with the number of individuals. It is clear that the time 

required to calculate the solution in each sampling time is shorter than the sampling time for all 

cases. This means that all the proposed control strategies are suitable for real-time control in the 

sense of time consumption. For 30 generations with 14 individuals, the computation time was 

approximately 84.3 [V] (1.41% of the total simulation time), and the computation time during 

each iteration was smaller than the sampling time. 

 

 
)LJXUH������*HQHUDWLRQ�QXPEHU�Y�V�&RPSXWDWLRQ�WLPH��
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With optimal values of 30 generation with 14 individuals, the results of the HPC-GA were 

obtained. Figures 3.16 and Figure 3.18 show the controlled variable (conic tank level ( )1K W ) and 

the manipulated variable (discrete voltage of pump u), respectively, for the HPC-GA, HPC-EE 

and HPC-BB. Figure 3.17 and Figure 3.19 show the response detail for 3500 to 5000 [V]. 
 

 
)LJXUH������&RQWUROOHG�YDULDEOH��

 

 
)LJXUH������&RQWUROOHG�YDULDEOH��GHWDLOV���
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)LJXUH������3XPS�6WDWHV��

�

 
)LJXUH������3XPS�6WDWHV��]RRP��

 

In Table 3.3 the mean values of the objective function, the total computation times and the mean 

computation times for the same simulation test are presented. Table 3.4 presents the statistical 

values of the controlled and manipulated variables. 

�
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�
7DEOH�����3HUIRUPDQFH�LQGH[HV��

N2=Nu=3, λ=0.001 J1 J2 J Total computing 
time 

Mean computing 
time by sampling 

time 

HPC-EE 96.69 432.4 97.12 1741.7 [s] 2.898 [s] 

HPC-GA (30,14) 98.93 488.6 99.48 84.3 [s] 0.140 [s] 

HPC-BB  97.03 427.9 97.46 208.9 [s] 0.348 [s] 

 

 

7DEOH�����3HUIRUPDQFH�LQGH[HV��

N2=Nu=3, λ=0.001 Mean(|y-r|) Mean(| u|) Std(|y-r|) Std(| u|) 

HPC-EE 2.0910 7.1500 4.8468 9.7999 

HPC-GA (30,14) 2.2161 8.5502 4.8619 9.7494 

HPC-BB 2.1113 7.1833 4.8539 9.6983 

 

 

As the HPC-GA is a heuristic search algorithm, some differences compared with the HPC-EE 

and HPC-BB for the controlled and manipulated variables can be seen in Figures 3.16, 3.17, 3.18 

and 3.19. However, the HPC-GA response is near to the optimal solution given by the HPC-EE, 

(benchmark) as shown in figures 3.16 and 3.18, as well as in Table 3.3. 

 

As shown in Table 3.3 and Table 3.4, the manipulated-variable indices (Mean(| u|) and 

Std(| u|)) are slightly in favour of the HPC-GA case. However, this brings only a 0.4% better 

tracking response for the optimal HPC-EE method (Mean(|y-r|) and Std(|y-r|)). This proves that 

the HPC-GA method is nearly optimal, and it brings a considerable reduction in the 

computational load. 

 

Figure 3.20 shows a comparison of mean computation times for all three cases, In comparison 

with the HPC-EE, a 95.2% reduction in the computation time on account of a 2.37% increase in 

the cost function is obtained with the HPC-GA. Comparing the results with the HPC-BB, a 

59.6% reduction in the computation time brings only a 2.03% increase in the cost function. By 

limiting the number of computations via the selection of the numbers of individuals and 
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generations, it is still possible to achieve near optimal tracking results on account of a 

considerable reduction in the computational load.    

 

 
)LJXUH������&RPSXWDWLRQ�WLPH��

 

 

����� +\EULG�3UHGLFWLYH�&RQWURO�EDVHG�RQ�0XOWL�REMHFWLYH�2SWLPL]DWLRQ�
 

������� +\EULG�3UHGLFWLYH�&RQWURO��+3&��
 

As mentioned in section 3.2, the HPC strategy is a generalization of model predictive control 

(MPC), where the prediction model includes both discrete/integer and continuous variables. 

Consider the following HPC optimization problem with a variable weighting function:  

   

   

( ) ( ) ( ){ }

( ) ( ) ( )( )

( )( ) ( )
1

1

1 2, 1 ,..., 1

2

1

2
2
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1 1
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´ µ¶´ µ ´ µ¸·
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¹ ·
·

¹ ·

- - -

- N M \ N M U N M
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λ

λ

+ + −

=

=

= +

= + + − +

= − + ∆ + −

∑

∑

              (3.9)  
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where -  is the objective function, ( )\̂ N M+  corresponds to the M-step-ahead prediction of the 

controlled variable based on a hybrid model, ( )U N M+  is the reference, ( )1X N M∆ + −   is the 

increment of the control action, and ( )N Mλ + �is the weighting factor sequence. 11 , º1  and »1  

are the prediction horizons and the control horizon, respectively. The optimization results in a 

control sequence namely ( ) ( ){ },..., 1¼X N X N 1+ − .   

 

1-  and 2-  are the objective functions which are weighted by ( ) [ ]0,1N Mλ + ∈  giving more 

importance to the tracking the reference ( 1- ) or in minimizing the control effort ( 2- ). In this 

case both objectives are opposites because when 1-  is minimized, 2-  increase its value.  It is 

important to say that the stability of the controller depends also in the weighting factor. However, 

finding a proper weighting function sequences is not an easy task. Therefore, a fixed weighting 

factor is commonly used (Nunez-Reyes HW�DO., 2002). 

 

In a more general expression, consider the following HPC which two opposite objectives. 

 

     

( ) ( ) ( ){ }
( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 2, 1 ,..., 1

1 1

2 2

min 1

ˆ ˆ1 ,..., , ,..., 1

ˆ ˆ1 ,..., , ,..., 1

½¾¿¾ ¾¸À

Á Â

Á Â

- - -

- I N N 1 N N 1
- I N N 1 N N 1

λ λ
+ + −

= + −

= + + + −

= + + + −

Ã¿Ã Ã

\ \ X X
\ \ X X

             (3.10)  

where ( )ˆ N M+\  is the M-step-ahead of the vector of controlled variables based on a hybrid fuzzy 

model, ( )1N M+ −X  is the input vector in instant 1N M+ − ,  1-  and 2-  are the opposite objectives 

and [ ]0,1λ ∈  is a fixed weighting factor.  

 

When (3.10) is solved, usually one optimal solution will be obtained, and based on the rolling 

horizon procedure, the optimal input is applied. If the importance between the objectives 

functions changed, a new HPC should be solved with a different weighting factor. However, the 

trade-off between optimal solutions will not be clearly obtained, so it is difficult to visualize the 

consequences of changing the importance in the objective function.  For this reason and others, 

next, the multi-objective hybrid predictive control (MO-HPC) approach is explained. 

�
�
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������� 0XOWL�REMHFWLYH�+\EULG�3UHGLFWLYH�&RQWURO��02�+3&���
 

The MO-HPC strategy is a generalization of HPC, where control objectives are similar to HPC 

but the optimal control action must be chosen based on a criterion that selects a solution from the 

Pareto Optimal region of the following problem: 

 

( ) ( ) ( ){ }
{ }

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 2, 1 ,..., 1

1 1

2 2

min ,

ˆ ˆ1 ,..., , ,..., 1

ˆ ˆ1 ,..., , ,..., 1

ÄÅ¿Å Å¸Æ

Ç È

Ç È

- -

- I N N 1 N N 1
- I N N 1 N N 1

+ + −

= + + + −

= + + + −

É¿É É

\ \ X X
\ \ X X

   (3.11) 

where 1- , 2-  are the objective functions to minimize depending on the process. The 

optimization solution is a control sequence region called the Pareto Optimal set. To formalize the 

notion, the following concepts are important to define.  

 

Let us consider ( ) ( ){ },..., 1
Ê Ê Ê

Ë8 N N 1= + −X X  a control action sequence, where ( )
Ì NX  belongs 

to the set of feasible control action. A solution 
Í8  Pareto-dominates to a solution 

Î8  if and only 

if,  ( ) ( )( ) ( ) ( )( )1 1 2 2

Ï Ð Ï Ð- 8 - 8 - 8 - 8≤ ∧ <  or ( ) ( )( ) ( ) ( )( )2 2 1 1

Ñ Ò Ñ Ò- 8 - 8 - 8 - 8≤ ∧ <  .     

 

A solution 
Ó8  is said to be Pareto optimal if and only if there is not 8  that Pareto-dominates 

Ó8 . Pareto optimal set Ô3  contains all Pareto optimal solutions. The set of all objective function 

values corresponding to the solutions in Õ3  is ( ) ( )( ){ }1 2, :
Ö Ö Ö

× Ø3 - 8 - 8 8 3= ∈ . Ù3  is known as 

Pareto optimal front. If the discrete manipulated variable case is considered, where the feasible 

input set is finite, the size of 3  is also finite.  

 

Then, the multi-objective hybrid predictive control solves a multi-objective problem, obtaining a 

set of Pareto optimal solutions (control actions). The difference between HPC and MO-HPC is 

shown in Figure 3.21. As Figure 3.21 shows, MO-HPC provides a set of solutions, but just one 

input ( )X N  has to be applied to the system. In this case, at every instant, the controller (operator) 

has to make a decision on how using the information provided by the Pareto set. Then, together 

with the MO-HPC, a criterion is used in order to find the control sequence that better suits the 

objectives. The chosen control sequence belongs to the Pareto front 
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( ) ( ){ },..., 1
Ú Ú Ú

Û8 X N X N 1= + −  and then is optimal.  Note that the solution provided by HPC 

belongs to the solutions set of MO-HPC.  

 

 
)LJXUH�������D��+3&�VROXWLRQ��E��02�+3&�VROXWLRQ�VHW��DPRQJ�LWV�HOHPHQWV�LV�WKH�+3&�VROXWLRQ��

 

Regarding the criterion for MO-HPC, it could be related to tracking error 1-  as well as control 

effort 2- . Some examples of possible trade-offs in different applications are defined later. In 

problems where there is a flexibility to decide which criterion is better, MO-HPC suits very well, 

as it is a tool that support the controller (operator) as its helps choose a solution, considering 

graphically the trade-off between Pareto optimal solutions.  

 

The multi-objective optimization could be solved by evaluating all solutions (Explicit 

Enumeration), through Branch & Bound or other algorithms. However MO-HPC strategies 

generate NP-hard problems that have to be solved by efficient solvers. Next based on the genetic 

algorithm proposed in section 3.2.3.2 , an efficient optimizer based on Genetic Algorithms (GA) 

is described for this problem, reaching pseudo-Pareto front but keeping the same computational 

effort than the HPC strategy.  

 

 

������� 02�+3&�VROYHG�XVLQJ�*HQHWLF�$OJRULWKPV�
 

Evolutionary multi-objective optimization (EMO) has been applied for a large number of static 

problems. Some works have been developed for dynamic multi-objective problems, although 

there are not general methodologies to be applied so far (Farina HW�DO., 2004). The dynamic multi-

objective problems are associated with real-time applications where the parameters of the 
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objective functions and/or the constraints changes on-line and many objectives are involved. 

Farina HW�DO. (2004) propose a base algorithm to solve this kind of problems and strongly suggest 

the necessity of using state of the art EMO methods such as NSGA-II (non-dominated sorting 

GA II), SPEA2 (strength Pareto evolutionary algorithm) or PESA (Pareto envelope-based 

selection algorithm), etc. 

 

Within the last years, different efficient EMO algorithms have been developed based on genetic 

algorithms. NSGA-II is the most used and it was introduced by Deb HW� DO. (2000). NSGA-II 

consists of a non-dominated sorting approach with a lower computational complexity than 

previous algorithms. A selection operator is considered which creates a mating pool by 

combining the parent and child populations and selecting the best solutions (elitist approach). It 

also considers less sharing parameters, reducing the difficult of tuning such parameters. 

Simulation results show that NSGA-II is able to find a much better spread of solutions. Tan HW�DO. 
(2003) propose a distributed cooperative evolutionary algorithm which involves multiple 

solutions in the form of cooperative subpopulations and exploits the inherent parallelism by 

sharing the computational workload among computers over the network. The method provides 

solutions to not only be pushed to the true Pareto front but also well distributed and with a very 

competitive performance and computation time.   

 

Hu & Eberhart (2002) and Zhang HW� DO. (2003) present particle swarm optimization (PSO) 

algorithms for multi-objective problems. The main advantage of the PSO is given by the 

accuracy and speed solution provided. Hu & Eberhart (2002) modify PSO by using a dynamic 

neighbourhood strategy, new particle memory updating and one-dimension optimization to deal 

with multiple objectives. Zhang HW�DO. (2003) improve the selection manner for global solution 

and individual solution for the PSO applied to MO problems. 

 

Coello & Becerra (2003) propose a “cultural algorithm” based on evolutionary programming, 

considering Pareto ranking and elitism. The comparison of the proposed algorithm with NSGA-

II validates the method for MO problems. Besides, Coello HW�DO. (2004) present an approach in 

which Pareto dominance is incorporated into PSO in order to allow the heuristic to handle MO 

problems. The new algorithm improves the exploratory capabilities of PSO by introducing a 

mutation operator whose range of action varies over time. The results show that the algorithm is 

a viable alternative since it has an average performance highly competitive with respect to some 

of the best EMO algorithms known at present. In fact, they report that their algorithm was the 
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only algorithm from those adopted in the study that was able to cover the full Pareto front of all 

the functions used.  

 

Knowles (2006) presents a ParEGO algorithm for solving multi-objective optimization in 

scenarios where each solution evaluation is financially and/or temporally expensive. ParEGO is 

an extension of the single objective efficient global optimization (EGO) algorithm, and uses a 

design of experiments inspired in an initialization procedure and learns a Gaussian processes 

model of the search landscape, which is updated after every function evaluation. ParEGO 

exhibits good performance on the tested function offering a more effective search on problems 

like the instrument setup optimization problem where only one function evaluation can be 

performed at each time.   

 

Goh HW�DO� (2010) presents a competitive and cooperative co-evolutionary approach adapted for 

multi-objective particle swarm optimization algorithm design, which have considerable potential 

for solving complex optimization problems by explicitly modeling the co-evolution of competing 

and cooperating species. The modeling helps to produce the reasonable problem decompositions 

by exploiting any correlation and interdependency among components of the problem. 

 

Genetic algorithm is used to solve the multi-objective HPC because it can efficiently cope with 

mixed-integer non-linear problems. The idea is to find the Pareto optimal set and then from the 

Pareto optimal front that will be used to obtain the control action. A potential solution of the GA 

is called individual. The individual can be represented by a set of parameters related to the genes 

of a chromosome and can be described in a binary or integer form. The individual represents a 

possible control-action sequence ( ) ( ){ },..., 1ÜN N 1+ −X X , where each element is a gene, and the 

individual length corresponds to the control horizon 1 Ý .  
 

Using genetic evolution, the fittest chromosomes are selected to assure the best offspring. The 

best parent genes are selected, mixed and recombined for the production of an offspring in the 

next generation. For the recombination of genetic population, two fundamental operators are 

used: crossover and mutation. For the crossover mechanism, the portions of two chromosomes 

are exchanged with a certain probability in order to produce the offspring. The mutation operator 

alters each portion randomly with a certain probability. 
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In order to find the Pareto Optimal set of MO-HPC, the best individuals are the ones that belong 

to the best Pareto Optimal set found until current iteration (due to the fact that there are solutions 

that belong to the Pareto Optimal set but they are not found yet). Solutions that belong to the best 

Pareto Optimal set will have a fitness function equal to a certain threshold (0.9 in this case) and 

the other solution fitness will be equal to a lower threshold (for example 0.1) in order to hold the 

solution diversity.  

 

The complete procedure for the GA applied to this MO-HPC control problem is as follows:  

 

6WHS��� Set the iteration counter to L 1, and initialize a random population of Q individuals, i.e., 

create Q random integer feasible solutions of the manipulated variable sequence. As the control 

horizon is Þ1 , there are ß
à4  possible individuals. Not all individuals are feasible because of the 

constraints explained above. The size of the population is Q individuals per generation. 

 

Individual 1
Individual 2

Population   
        

Individual 

L
Q

 
 
 ⇔
 
 
 

#
    

 

In general, individual M means that the vector of the future control action is: 

 

( ) ( ) ( )
1

  =  , 1  , ,  1 á
âã ã ã

ä å,QGLYLGXDO M X N X N X N 1
×

 + + − !  

 

6WHS��� For every individual, evaluate - æ  and - ç �corresponding to the defined objective functions 

in (3.11). Then, obtain the fitness function of all individual in the population. In fact, when 

considering individuals belonging to the best pseudo-optimal Pareto set, fitness function equal to 

maxQ  will be set; otherwise minQ  will be used, in order to maintain the solution diversity. If the 

individual is not feasible, penalize it (pro-life strategy). 

 

6WHS� �� Select random parents from the population L (different vectors of the future control 

actions). 
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6WHS��� Generate a random number between 0 and 1. If the number is less than the probability 

èS , choose an integer 0 1é êF 1< < −  ( ëF  denotes the crossover point) and apply the crossover 

to the selected individuals in order to generate an offspring. The next scheme describes the 

crossover operation for two individuals, 
ì8  and 

í8 , resulting in 
î
ï ð ñkò ò8  and 

ó
ô õ öe÷ ÷8 . 

 

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

, 1 ,..., 1 , ,..., 1

, 1 ,..., 1 , ,..., 1

, 1 ,..., 1 , ,..., 1

, 1 ,..., 1 , ,..., 1

ø ø ø ø ø ø
ù ù ú

û û û û û û
ù ù ú

ø û û û ø ø
ü ý þeÿ ÿ ù ù ú

û ø ø ø û û
ü ý þkÿ ÿ ù ù ú

8 X N X N X N F X N F X N 1

8 X N X N X N F X N F X N 1

8 X N X N X N F X N F X N 1

8 X N X N X N F X N F X N 1

= + + − + + −

= + + − + + −

⇓

= + + − + + −

= + + − + + −

 

 

6WHS� �� Generate a random number between 0 and 1. If the number is less than the 

probability �S , choose an integer 0 1� �F 1< < −  ( �F  denotes the mutation point) and apply the 

mutation to the selected parent in order to generate an offspring. Select a value 
�
���	�X 8∈  and 

replace the value in the �F -th position in the chromosome. The next scheme describes the 

mutation operation for an individual 8  resulting in 


����
8 . 

 

( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( ){ }

, 1 ,..., 1 , , 1 ,..., 1

, 1 ,..., 1 , , 1 ,..., 1

� � � � � � �
� � � �

� � � � � � �
����� � ���	� � �

8 X N X N X N F X N F X N F X N 1

8 X N X N X N F X X N F X N 1

= + + − + + + + −

⇓

= + + − + + + −

 

 

6WHS� �� Evaluate the objective functions 1-  and 2-  of all the individuals of the offspring 

population. Then obtain the fitness of each individual by following the fitness definition 

described in step 2. If the individual is unfeasible, penalize its corresponding fitness.  

 

6WHS� �� Select the best individuals according to their fitness. Replace the weakest individuals 

from the previous generation with the strongest individuals of the new generation. 
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6WHS��� If the tolerance given by the maximum generation number is reached (stopping criteria, L 
equals the number of generation), then stop. Otherwise, go to step 3. Note that since the focus is 

on a real-time control strategy, the best stopping algorithm criterion corresponds to the number 

of generations (so, the computational time could be bounded).  

 

The tuning parameters of the MO-HPC method based on GA are the number of individuals, the 

number of generations, the crossover probability �S , the mutation probability �S  and the 

stopping criteria. At each stage of the algorithm, to find the pseudo-optimal Pareto set, the best 

individuals will be those who belong to the best Pareto set found until the current iteration.  

From the pseudo-optimal Pareto front, it is necessary to select only one control sequence 

{ }* * *( ),..., ( 1)�X X N X N 1= + −  and from that, apply the current control action *( )X N �to the system 

according to the receding horizon concept. For the selection of this sequence, a criterion related 

to the importance given to both objectives - �  and - �  in the final decision is needed, as the 

experiments conducted show, detailed in section 3.3.4 next. 

 

The genetic algorithm approach in MO-HPC provides a sub-optimal Pareto front very close to 

the optimal one. The tuning parameters of the GA method are the number of individuals, number 

of generations, crossover probability, mutation probability and the stopping criteria. Once the 

best Pareto front is found, different criteria could be applied in order to select the best control 

action at every instant. The following criteria are proposed: 

 

�� Choose the control action solution from the Pareto front that has a minimal tracking error 

value. 

�� Fix a bounded tracking error and choose the control action solution from the Pareto front that 

satisfies that tolerance and has a minimal control effort. 

 

Next, the design of HPC and MO-HPC of a tank system are described and compared in order to 

show the advantages of the proposed MO-HPC. 
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������� 02�+3&�IRU�D�7DQN�6\VWHP��
�

The tank system consists of a conic tank, a cylindrical tank, valves and pumps as shown in 

Figure 3.8. The controlled variable is the level in the first tank K � , and the manipulated variable is 

the voltage of the pump in the inlet (X), which has discrete levels. It is also assumed that both 

levels K �  and K� , are measured. The behavior of the system is defined by the non-linear 

differential equations and algebraic equations (3.8), which define the switching regions. Note 

that the rules in (3.8) represent the switching or hybrid behavior. The following multi-objective 

problem will be solved: 
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{ }
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    (3.12) 

 

Based on input/output data the same hybrid fuzzy model as in section 3.2.5 is used. The tuning 

parameters of the multi-objective function in (3.12) are given by 11 = 1, 1 = 1"  = 1 #  = 3.  

 

For the optimization based on GA, the mutation probability equals 0.001, the crossover 

probability equals 0.7, the generations number equals 50, the individuals number equals 30 and 

the maximum number of generations is used as stopping criterion. The controllers will be 

compared with a conventional HPC with λ = 0.001. 

 

HPC-EMO is tested using the criteria defined in section 3.3.3:  

- HPC-EMO1. To choose the solution from the Pareto front that has a minimal tracking 

error value. 

- HPC-EMO2. To fix a bounded tracking error equal to 0.5[cm] and to choose the control 

action from the Pareto front that satisfies that tolerance and has a minimal control effort. 

- HPC-EMO3. To fix a bounded tracking error equal to 1[cm] and to choose the control 

action from the Pareto front that satisfies that tolerance and has a minimal control effort. 
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Figure 3.22 and Figure 3.23 show the controlled variable (conic tank level K � ) and the 

manipulated variable (discrete voltage of pump X), respectively for the three criteria HPC-

EMO1, HPC-EMO2, HPC-EMO3 and HPC with λ = 0.001. Figure 3.24 and Figure 3.25 show 

the controlled and the manipulated variables detailed in the range of 1100 to 2000 [V].  
 

From figures 3.22 to 3.25 and as expected from the criteria definitions, HPC-EMO satisfies each 

criterion applied to the controlled variable and the control effort is reduced as the tracking error 

increases. The conventional HPC has a larger control effort than HPC-EMO2 and HPC-EMO3, 

but its response follows the reference in a better way. HPC-EMO1 reaches the lowest tracking 

error, but its control effort is the largest. In Table 3.5 the mean values and standard deviation of 

tracking error and control effort are shown for data of figures 3.22 and 3.23 (performance with a 

fixed reference). From Table 3.5, HPC-EMO3 reaches the lowest control effort, but the largest 

tracking error as observed also from figures 3.24 and 3.25. Therefore, Table 3.5 shows that the 

solutions of the different criteria belong to a Pareto front, which is shown in Figure 3.26. 

 

 

)LJXUH������ &RQWUROOHG�YDULDEOH��&ULWHULRQ���������DQG�+3&��



Chapter 3.- Hybrid Predictive Control: Mono-objective and  Multi-objective design 

90 
 

 

)LJXUH�������6LPXODWLRQ�WHVW��0DQLSXODWHG�YDULDEOH��

�

 

)LJXUH�������&RQWUROOHG�YDULDEOH��



Chapter 3.- Hybrid Predictive Control: Mono-objective and  Multi-objective design 

91 
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7DEOH�����3HUIRUPDQFH�LQGH[HV��

 Mean(y-r)2 Std (y-r)2 0HDQ� X2 6WG� X2 

HPC-EMO1 4.2864 17.5866 118.7500 389.1165 

HPC-EMO2 4.3693 17.5682 19.6023 76.7000 

HPC-EMO3 4.6954 17.4941 17.0455 73.4559 

HPC λ=0.001 4.2884 17.5685 25.0000 98.6984 
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Once the MO-HPC is working, a decision process is performed for obtaining one optimal control 

action. By using this input/output data from a MO-HPC, a conventional HPC is tuned to emulate 

the behavior of the controller (operator/dispatcher) and so. With an off-line model, a MO-HPC is 

used to obtain the responses of the system. Based on the dynamic Pareto optimal front, the 

weight value  at instant N could be estimated, which connects the  MO-HPC solution with the 

HPC.�Then in the real-time application the estimated weighting function ( )Nλ  from MO-HPC 

could be used instead of a fixed value.  This also could be interpreted as a new tuning method for 

the weighting factor of typical MPC. 

 

Once the Pareto Optimal front is obtained as a function of instant N (dynamic front), the 

equivalent HPC problem is obtained by identifying the weighting factor ( )Nλ . Provided that an 

analytical solution of the Pareto front is not available, two methods are proposed in order to 

estimate the ( )Nλ  factor: 

 

A) LS Method.- By non-linear regression or least mean squares, to estimate an analytical 

function of the Pareto front using non-linear regression. After that, at the optimal solution chosen 

from Pareto front, the slope of this analytic function is obtained and it is related with the ( )Nλ �
factor.  

 

B) IM Method.- In this case, first a range of possible ( )Nλ  is determinated considering if 

( )1 2,* *- -  is the selected Pareto front point and the following inequalities have to be satisfied:   

 

0λ ≥ , ( )1 2 1 2 1 2, , * *$- - 3 - - - -λ λ∀ ∈ + ≥ +            (3.13) 
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After that, ( )Nλ �is equal to the minimum λ  that satisfies equation (3.13). Once ( )Nλ �is obtained 

by using one of these two alternatives and registered for a time period. After that, a model for 

( )Nλ  could be identified and will provide a tuning method at every instant for a HPC. Thus, a 

conventional HPC is proposed with a weighting factor ( )Nλ  tuned from the multi-objective 

problem (MO-HPC). The method is explained here to emulate a MO-HPC although it could be 

applied for the emulation of any controller. 

 

Next the dynamic Pareto front is shown for HPC-EMO2 in the instants range between 1000 and 

2000 [V] (Figure 3.27). For this problem, the Pareto front has different shapes at every instant N 
as shown in Figure 3.28.  
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From figure 3.28 and using the analytical LS method described in A), assume that at every 

instant N, the Pareto front belongs to the family of curves 2 1
%&'- D - −= ⋅ , with D (  and E (  being 

positive constants parameters at instant N. The slope of those curves, evaluated at the optimal 

objective function values, provides and estimation of �N� given by: 
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 ( )
1

2 1
1’ )

*
+,+- D E - Nλ

− −= − ⋅ = −      (3.14)  

 

Parameters D (  and E (  are obtained by least mean squares at every instant N. Also, few Pareto 

dominant solutions at some instants are observed (see figure 3.28, instant 4, 5 and 200). That 

happens when the optimization problem either has activated constraints or the control algorithm 

has converged. In those cases ( -3  have 1 or 2 elements), the IM method B) is considered in 

order to obtain the �N� values. 

 

Figure 3.29 shows the function �N� for HPC-EMO2, determined based on a LS method A) and 

based on the IM method B). Note that both estimations are similar. Figure 3.30 shows the 

evolution of the tracking error ( )H N  and the control effort ( )1X N∆ − . From figures 3.29 and 

3.30, it is possible to realize that there is a relationship between ( )Nλ  and ( )H N , ( )1X N∆ −  at 

every instant. Thus, two options are proposed to tune the �N�: 
 

1) By least mean squares based on historical data, to identify the parameters of  the 

following proposed linear model: 

( ) ( ) ( ) ( )1 2 31 1N N H N X Nλ λθ θ θ= − + + ∆ − .     

2) �N��is chosen fixed and equals to the mean value of the observed signal. 

 

Table 3.6 shows the mean value of �N� and the parameters 1θ �� 2θ  and� 3θ  of the linear model 

(option �), obtained for each criterion based on analytical �N� by using LS method. Table 3.7 

also shows the parameters when �N�� is obtained using IM method and option ��. Figure 3.31 

shows �N� and ( )ˆNλ  obtained based on LS  (A) and IM method (B) for HPC-EMO2. 
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7DEOH������/6�PHWKRG��0HDQ�YDOXHV�RI�� �N��DQG�SDUDPHWHUV�IRU�WKH�OLQHDU�PRGHO�

 Mean( (k)) 
1θ  

2θ  
3θ  

HPC-EMO 1 4.2864 17.5866 118.7500 389.1165 

HPC-EMO 2 4.3693 17.5682 19.6023 76.7000 

HPC-EMO 3 4.6954 17.4941 17.0455 73.4559 

 

 

7DEOH������,0�PHWKRG��0HDQ�YDOXHV�RI�� �N��DQG�SDUDPHWHUV�IRU�WKH�OLQHDU�PRGHO�

 Mean( (k)) 
1θ  

2θ  
3θ  

HPC-EMO 1 0.0074 0.27276 0.0018884 -0.000107 

HPC-EMO 2 0.0086 0.62658 0.0016658 -0.001209 

HPC-EMO 3 0.0182 0.62506 0.62506 -0.001268 
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Figure 3.32, Figure 3.33, Figure 3.34 and Figure 3.35 show the system responses using the 

conventional HPC algorithm with the tuned lambda obtained from HPC-EMO2.  

 

Table 3.8 shows mean values of tracking error and control effort of HPC using �N� obtained 

from HPC-EMO2 with a fixed reference. From Table 3.8, the LS method (A) gives better results 

than the IM method (B) due the solutions are very close to the HPC-EMO2. 
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7DEOH�����0HDQ�YDOXHV�RI�WUDFNLQJ�HUURU�DQG�FRQWURO�HIIRUW��+3&�(02���

 Mean(y-r)2 Std (y-r)2 0HDQ� X2 6WG� X2 

HPC-EMO2 4.3693 17.5682 19.6023 76.7000 

LS-1 4.3213 17.5792 25.8523 83.9445 

LS-1 λ=0.0042 4.3504 17.5727 20.7386 69.5037 

IM-1 4.2925 17.5856 108.5227 527.3264 

IM-2 λ=0.0086 4.5085 17.5448 16.1932 45.1752 

 

 

����� 'LVFXVVLRQ��
 

The optimization of the predictive objective function is an NP-Hard problem in the case of 

hybrid non-linear systems, which can be efficiently solved by branch and bound and genetic 

algorithms. The proposed HPC-GA control algorithm was successfully tested on the hybrid tank 

system in terms of accuracy and computation time. In a comparison with an optimal explicit-

enumeration method and the Branch-and-bound method it is shown that the proposed method 

gives comparable reference-tracking results in a considerable reduction of the computational 

load. This characteristic of GA will be very useful in the applications of HPC for transport 

systems, such as the dynamic pick-up and delivery problem (designed to handle a dial-a-ride 

system with real-time requirements) and its combination with other fixed-route transit systems. 
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In such operation schemes, quick on-line responses are required for an efficient operation, and 

the trade-off between computation time and quality of the solutions is very important as current 

technology does not permit to solve large instances ensuring reaching the global optimum in an 

adequate computation time. Other evolutionary algorithms for efficient optimization such as 

PSO could also be investigated, and the convergence or trade/off with computation time of those 

algorithms. 

 

This chapter presents a new approach of the Hybrid Predictive Control problem using the 

Evolutionary Multi-objective Optimization. Two different criteria are proposed in order to obtain 

an optimal control action from the Pareto front. Both criteria are directly related to the tracking 

error and control effort measurements. This fact could be an efficient tool for the controller 

designers in real time plants instead of the typical Model Predictive Control. 

 

Thus, a tuning method for finding the weighting factor of typical MPC based on the EMO 

solution was proposed. In this case, two alternatives are considered to obtain the weighting 

values and it is concluded that the model of the Pareto front identified through last mean squares 

gives the best results. 

 

Further work will be focused on the generalization of the multi-objective predictive control 

design. In chapter 5 the same MO concepts are applied to the aforementioned transport problem 

(dial-a-ride system) where the identified trade-off has physical meanings, in terms of the 

operator who pursues the minimization of its operational expenses on one hand, and the users 

who want to maximize their level of service by means of low waiting and travel times on the 

other. 

 

  

�
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The dynamic pick-up and delivery problem (DPDP) can be formulated as a set of service 

requests (characterized by pick-up and delivery loads, time windows and spatial coordinates) 

served by a fleet of vehicles located initially at several depots (Desrosiers HW� DO., 1986, and 

Savelsbergh and Sol, 1995). The dynamic dimension appears when a subset of the requests is 

unknown in advance and most dispatch decisions have to be made in real-time. The DPDP is of 

great interest for practitioners, mainly due to the fast growth in communication and information 

technologies, as well as the current interest in real-time dispatching and routing.  

 

In the literature, dynamic vehicle routing problems (dynamic VRP) are formulated assuming that 

inputs may change or have to be updated during the execution of the solution algorithm. Within 

this family of problems, the DPDP has been designed to solve the dynamic dial-a-ride problem 

(DARP), which has been intensely studied in the last 20 years (Psaraftis, 1980, 1988, Gendreau 

HW�DO., 1999 and Kleywegt and Papastavrou, 1998). The final output of such a problem is a set of 

routes for all vehicles, which dynamically change over time. With regard to real applications 

Madsen HW� DO. (1995) adapt the insertion heuristics by Jaw HW� DO. (1986) and solve a real-life 

problem for moving elderly and handicapped people in Copenhagen, while Dial (1995) proposes 

a modern approach to many-to-few dial-a-ride transit operation ADART (Autonomous Dial-a-

Ride Transit), currently implemented in Corpus Christi, TX, USA.  

 

With regard to other interesting dynamic VRPs, dynamic TSP (DTSP) introduced by Psaraftis 

(1988) is firstly mentioned. This work motivates the dynamic travelling repairman problem 

(DTRP), defined by Bertsimas and Van Ryzin (1991) and next extended in Bertsimas and 

Howell (1993). Lately Swihart and Papastavrou (1999), and Thomas and White (2004) formulate 

and solve two variants of the DTRP. Kleywegt and Papastravrou (1998) and (2001), 

Papastravrou HW�DO. (1996) study a problem called the dynamic and stochastic knapsack Problem 

(DSKP), in which demands for a given resource occur according to some stochastic process. 

Larsen (2000) develops a nice review of the different dynamic problems. Eksioglu HW�DO. (2009) 

and Berbeglia HW�DO. (2009) present a recent review of dynamic pick-up and delivery problems, 

where general issues as well as solution strategies are described. They conclude that is necessary 

to develop more studies on policy analysis associated with dynamic many-to-many pick-up and 
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delivery problems 

 

There are several key aspects for improving the efficiency of a real implementation behind a 

DPDP instance (see Crainic HW� DO�, 2009). Fundamentally, it is crucial to utilize a correct 

definition of a decision objective function for dispatching, including total travel and waiting 

times for users as well as a performance measure for vehicles (proxy of operational costs). When 

the problem is dynamic, a proper objective function must consider prediction of both future 

demand and expected waiting and travel times experienced by customers in the system due to 

potential rerouting decisions decided in the future. This last issue has been mostly 

underestimated in the dynamic vehicle routing literature, restricting the development of 

algorithms to myopic models (current decisions not affected by unknown future demand events).  

In dynamic as well as stochastic problems, the way in which the current decision considers 

future information of the system differentiates the approaches as being myopic and non-myopic. 

The myopic research line considers only the current information, i.e, it does not consider 

explicitly the expected future information of the system to improve the current solution, while 

the non-myopic option consider a mechanism to update information regarding the future to take 

better decisions at present. Such future data may be imprecise or unknown, and therefore 

developing consistent information update tools are essential for getting good predictions and take 

better real-time dispatch decisions.  

 

Nevertheless, there exists some relevant literature in the field of vehicle routing and dispatching 

(of both freight and passengers) trying to exploit information about future events to improve 

decision-making (Ichoua HW�DO., 2006, 2007 and Spivey and Powell, 2004). Solution approaches 

found in this research line are diverse, with formulations based upon dynamic network models 

(see Powell, 1988), dynamic and stochastic programming schemes (Godfrey and Powell, 2002, 

Topaloglu and Powell, 2005), etc.  

 

Powell and his team have worked for many years in a non-myopic line of research that 

incorporates explicit stochastic and dynamic algorithms with the current information and 

probabilities of future events to produce more efficient solutions than those obtained through 

myopic deterministic strategies. They solve the problem of dynamically assigning drivers to 

loads that arise randomly over time motivated from long-haul truckload trucking applications. 

Powell (1988) first considers the potential advantages of relocating vehicles in anticipation of 

future demands. He writes a two-stage stochastic program including a recourse function 
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representing the future cost. Spivey and Powell (2004) propose a very general class of dynamic 

assignment models, and propose an adaptive, non-myopic algorithm that iteratively solves 

sequences of assignment problems. Topaloglu and Powell (2005) propose a distributed solution 

approach to a certain class of dynamic resource allocation problems.  

 

Larsen (2000) in his thesis investigated the use of future information, by relocating empty 

vehicles in anticipation to future demands. Ichoua HW� DO. (2005), develop a strategy based on 

probabilistic knowledge about future request arrivals to better manage the fleet of vehicles for 

real-time vehicle dispatching, and is solved using a parallel tabu search technique. 

 

Besides, Cortés and Jayakrishnan (2004) and Cortés (2003) realize that the problem could be 

modelled under a model based predictive control scheme (MPC), considering that potential 

rerouting of vehicles could affect the current dispatch decisions, through the extra cost of 

inserting real-time service requests into predefined vehicle routes while vehicles are moving. In 

this thesis a formulation of the dial-a-ride as a HPC is presented, by stating the state space 

variables and models. Based on such an approach, a family of solution algorithms is developed 

based upon artificial intelligence for solving real size instances. 

 

The aforementioned non-myopic vision to deal with the dial-a-ride incorporates an important 

source of stochasticity in real-time routing decisions, which are the extra travel and waiting time 

for users as well as an extra operational cost for the dispatch company, due to the insertion of 

potential customers in the future, unknown at the time of a real-time service decision. However, 

there is another relevant source of stochasticity that could affect dynamic routing decisions, 

mainly in the context of urban transport systems. That is, the uncertainty behind the traffic 

network conditions, interfering the operation of the vehicles under the dispatch rules. This new 

source of uncertainty has not been treated extensively in the literature associated to dynamic 

routing problems, mainly because of the computational complexity arising from the resulting 

formulations. Nevertheless, lately some interesting research effort for adding traffic congestion 

into dynamic as well as probabilistic/stochastic vehicle routing problems is worth to mention.  

 

Berman and Simchi-Levi (1989) considers a variant of the probabilistic travelling salesman 

problem (PTSP), including a random subset of customers requiring service and random travel 

times as well. With regard to stochastic vehicle routing problems, Kao (1978), Sniedovich 

(1981), and Carraway (1989) solve the stochastic TSP, considering arcs having independent and 
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normally distributed travel times. Laporte HW� DO. (1992) study the stochastic vehicle routing 

problem with stochastic travel as well as service times. They solve instances on networks with 

10 to 20 nodes and 2 to 5 scenarios. Lambert HW�DO. (1993) solve an optimization of collection 

routes through bank branches in a network with stochastic travel times. Keyton and Morton 

(2003) also solve stochastic vehicle routing problems on a network with random travel and 

service times, by using a branch-and-cut scheme within a Monte Carlo sampling-based 

procedure. Most of the work described above is based on static models that do not reoptimize 

routes after realizing the random parameters.  

 

With regard to VRPs including traffic conditions, Hill and Benton (1992) define the nodes of the 

road network with time-dependent piecewise constant speeds and compute the travel time on a 

link from the average speed of the incident nodes. Malandraki and Daskin (1992) formulate a 

mixed integer optimization problem for the VRP with time windows (VRPTW) and piecewise 

constant travel times, which is solved via heuristic methods.  

 

There are just a couple of examples of dynamic VRPs, in which routes can be modified in real-

time from updated information of travel time on links and some prediction of the system based 

upon updated data. Fleishmann HW�DO. (2004) consider a dynamic routing system that dispatches a 

fleet of vehicles according to customer requests asking for service randomly over a planning 

period. The authors propose a solution of such a problem, relying on online travel time 

information from a traffic management center, formulating three routing procedures for event-

based dispatching. On the other hand, Kim HW�DO. (2005) examines the value of real-time traffic 

information to optimal vehicle routing in a non-stationary stochastic network. The authors 

develop optimal routing policies under time-varying traffic flows based on a Markov decision 

process formulation. 

 

In this thesis, a hybrid predictive control formulation for a DPDP that combines both sources of 

uncertainty when taking real-time vehicle routing decisions is going to be designed. On the one 

hand, the formulation will consider uncertainty from possible future demand influencing routes 

of current customers. Apart from that, it is considered to also add the uncertainty regarding the 

traffic congestion conditions that could also propose to modify the preplanned schedule of 

vehicle routes based on traffic information around their routes.  
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In this approach, traffic congestion is modelled through the distribution of commercial speed of 

the vehicles on both relevant dimensions: time and space. Traffic conditions of an urban area 

normally change along the day, and they are different depending on where each vehicle is 

travelling. It is assumed the availability of real-time as well as historical data regarding several 

system inputs: demand for service, network speed data obtained from fixed measurement stations 

as well as mobile stations (vehicles). From this database, it is possible to compute expected 

demand profiles, and speed distribution profiles over the city, calibrated from historical data.   

 

This approach allows modelling not only predictable congestion conditions, but also 

unpredictable situations, such as incidents occurring unexpectedly at any location on the traffic 

network. In the second case, the online (real-time) data regarding speed conditions from the fleet 

of vehicles moving around serving the demand is also utilized. The present formulation can be 

extended to the use of fixed stations monitoring traffic conditions at strategically chosen 

locations over the urban area.  

 

In this thesis, first, the HPC that allows systematizing the formulation of the dial-a-ride system as 

a control problem, which open more possibilities for using sophisticated techniques, not only to 

properly characterize the dynamic problem, but also to solve complex DPDP configurations 

unable to be treated without such a framework. Second, in the specialized literature there is no 

experience in modelling the DPDP with a HPC formulation allowing prediction of both future 

demand and future traffic conditions. Third, it is quite attractive (in terms of both computation 

time and quality solutions) to use solution methods coming from the computational intelligence 

literature such as GA, Fuzzy logic and others, in the context of this problem.  

 

Moreover, the addition of the speed distribution in the model ensures a better estimation of both 

waiting and travel times, not only due to demand prediction but also because of traffic 

congestion predictions, generating better real-time routing decisions, and consequently better 

performance of the dispatch service. The more information we have regarding the system, the 

better the performance obtained from the HPC framework. 

 

The HPC approach for the DPDP problem generates a highly non-linear optimization problem, 

which is NP-Hard. Due to this feature of the problem, it is not feasible in terms of computational 

time to solve it by using traditional algorithms for mixed-integer problems. Then, Genetic 

Algorithms (GA) in the way it was explained before in chapter 3 are applied to find good quality 
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solutions for the DPDP problem.  

 

Next, and for the sake of completeness, the recent literature is described in the use of heuristic 

and metaheuristic methods for solving different kinds of vehicle routing problems (VRP), either 

dynamic or static.  

 

With regard to solution methods to handle different DVRPs, Gendreau HW�DO. (1999) modify the 

tabu search heuristics to solve the DVRP with soft time windows motivated from courier service 

applications, which is implemented in a parallel platform. Tabu search methods are derived in 

more sophisticated versions, such as granular tabu search (Toth and Vigo, 2003) and adaptive 

memory-based on Tabu search (Tarantilis, 2005). Tighe HW� DO. (2004) propose a priority based 

solver that considers sub problems of a real-time vehicle routing in order to obtain an optimal 

solution in less time by using fuzzy decisions. 

 

As VRP is NP-Hard, GA based on evolutionary techniques have been analyzed in the specialized 

literature. Specifically, GA have been applied to different versions of the VRP, considering 

various chromosome representations and genetic operators according to the particular problem. 

Skrlec HW�DO. (1997) propose a GA optimization approach with handy heuristic techniques for the 

single VRP that allows further reducing the computation time by using a certain selection of the 

initial population. In addition, in Filipec HW�DO. (1998) the same approach was applied to a multi-

vehicle routing problem. 

 

Moreover, Zhu (2003) describes specialized genetic algorithms based on adaptive parameters to 

solve the static VRP with time windows that prevents the solution search from a premature 

convergence and improves the results when compared with the typical GA method. Tong HW�DO. 
(2004) considers a GA method for the static VRP with time windows under uncertain fleet size. 

To solve this problem, a special gene codification associated with the number of vehicles and 

routes is considered. Haghani and Jung (2005) applied a GA optimization method for the multi-

vehicle dynamic VRP with time-dependent travel time and soft time windows. This method 

provides promising results in terms of computation times.  

 

Jih and Yung-Jen (1999) and Osman HW� DO. (2005), present a successful comparison of GA 

against dynamic programming in terms of computation time. The former method is used to solve 

the DVRP with time windows and capacity constraints while the latter one is addressed to solve 
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a multi-objetive VRP. Moreover, a hybrid method including both algorithms is described, from 

which accurate results are obtained in reasonable computation time. 

 

With regard to other heuristics used in the context of the Dynamic VRP, new metaheuristics 

inspired by the behavior of real ant colonies (Ant Colony Optimization) have been applied to 

solve such problems (Montemanni HW�DO., 2005; Dréo HW�DO, 2006). These methods are especially 

appropriate to efficiently solve combinatorial optimization problems, and are characterized by 

the combination of a constructive and a memory-based approach on learning mechanisms 

(Dorigo and Stutzle, 2004). Montemanni HW�DO. (2005) also apply ant colony optimization to a 

realistic case study that obtains promising results. Dréo HW�DO. (2006) present good results for a 

static VRP by optimizing the fleet size as well as the vehicle route plans. 

 

The two general metaheuristics described above (GA and Ant Colony Optimization) have been 

applied only on myopic dynamic VRP formulations without considering future demand scenarios 

for improving current dispatch decisions. In this chapter, an application of GA on a non-myopic 

formulation for the dynamic VRP (dial-a-ride) is presented, based upon an HPC scheme, i.e., the 

proposed framework in chapter 3. 

 

In summary, GA is used as an efficient optimization solver for the DPDP problem, where the 

optimization variables identify the stops that must be satisfied by the vehicle fleet. The 

individuals are the feasible sequences, fulfilling the load, precedence and no swapping 

constraints. The gene of an individual considers the following components: the vehicle M used for 

the new insertion and the sequence position� of the new call (for both pick-up and delivery) 

within the previous sequence, assuming the QR�VZDSSLQJ policy. Due to the precedence and QR�
VZDSSLQJ constraints, the previous sequence is held.  

 

For more than one-step-ahead, GA is conducted for each scenario associated with a specific 

demand pattern. Previously, the demand patterns are categorized by a fuzzy clustering technique, 

as detailed before. As GA considers random generation of individuals, the genetic operators 

(mutation or crossover) could provide infeasible solutions that have to be removed or repaired 

(typically through the capacity constraint). The number of individuals for each population has to 

be smaller than the total number of feasible combinations in order to avoid solving the explicit 

enumeration method.  
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The complexity of the GA is proportional to the number of individuals for each iteration 

(generation) multiplied by the number of generations. Both, the number of individuals and the 

number of generations are parameters to be tuned by the GA designer. The individuals at each 

iteration are randomly chosen by using genetic operators (selection, mutation and crossover) and 

the number of generations is stated as the GA stopping criterion. This procedure allows a 

considerable reduction in computation time providing near optimal solutions. 

 

The proposed closed-loop controlled routing system is shown in Figure 4.1. The hybrid 

predictive control represented by the dispatcher, takes the routing decisions ( )�6 N  in real-time 

based on the information it has from the routing system (process) and the values for the attributes 

of the vehicle fleet and the transport system (state space variables of the model, like load 

between consecutives stops, departure time to a stop and position, ( )�/ N , ( )�7 N  and ( )�; N  

respectively). The demand �η  and the traffic conditions (ϕ�W�S�) are disturbances (stochasticity). 

The objective function is influenced by the prediction of the uncertain demand and traffic 

conditions ( ( ), �K S N+A  and ˆ( , )Y W S  respectively).  

 

Then, (i) the control actions are the sequences ( )�6 N ; (ii) the traffic conditions ϕ�W�S� is a 

disturbance measured by the vehicle, but unmeasured in the whole network; (iii) the demand �η  

is a measured disturbance; (iv) the continuous space variables are the departure time ( )�7 N  and 

position ( )�; N , while the discrete state space variable is the number of passenger (load) ( )�/ N ; 

(v) the available sensor are located in the vehicles (GPS for the position and the own velocity of 

the car for the traffic conditions) and the dispatcher  receive the calls of users �η , assign the 

sequences, they calculate the load, and predict the departures time. 

 

In this chapter, the formulation of the dial-a-ride system under a HPC scheme as proposed by 

Núñez (2007) is extended to capture the network traffic conditions and provide a more realistic 

representation of the transport system uncertainty. For doing that, it is necessary to define a set 

of state space variables, which is used in order to characterize the key elements of the system at 

certain instant and are needed to provide a formal predictive control formulation to the DPDP 

problem.  
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relevant event happens, such as the occurrence of a real-time request for service demand (namely

�η ). The index N represents the N � �  instant in the discrete sequence of events.  Notice that �η  is 

unknown, comes up in real-time and can be characterized by two positions, indicating the pick-

up and the delivery, the time of the call, a label for the request and by the number of passengers. 

 

In addition, the demand is characterized by four attributes, namely ( ), , ,� �	� �
�3 Uη τ= Ω , which 

corresponds to the last call and have all the information about the request (position, label, load 

and time).  

 

At any instant N, each vehicle M has been assigned to follow a sequence of tasks that include pick-

ups and deliveries. Such a sequence can be represented by a function ( )�6 N  in which the L � �  row 

represents a specific L � �  stop along vehicle M’s route, and ( )�Z N  is the number of scheduled stops. 

The manipulated variable corresponds to the set of sequences 

( ) ( ) ( ) ( ) ( ){ }1 ,..., ,..,
 �X N 6 N 6 N 6 N 6 N= =  associated with all the vehicles in the fleet. The proposed 

HPC dispatcher selects the optimal sequences based on the minimization of an ad-hoc objective 

function (as shown in Section 4.3 next). Thus, a sequence of stops assigned to vehicle M at time N, 
( )�6 N  is given by: 

 

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0 0 0

1 1 1 1

2 2 2 2

� � � �

� � � �
� � � �

� � � � �

��� ��� ��� ���� � � �

] N 3 N U N N
] N 3 N U N N

6 N ] N 3 N U N N

] N 3 N U N N

 
 
 
 
 
 
 
 
 
  

Ω

Ω

= Ω

Ω

# # # #

    (4.1) 

 

In expression (4.1), ( )
��] N  is a binary variable defined at instant N, which is equal to 1 if the stop 

L is a pick-up, 0 if the stop L is a delivery. ( ) 2
��3 N 5∈  is a two-dimensional vector that shows the 

geographical position of stop L assigned to vehicle M�in terms of spatial coordinates [ and \, ( )
��U N  

is a tag to identify the passenger who is calling and ( )
�� NΩ  is the number of passengers to be 

transported between the origin and destination associated with request ( )
��U N . The first row of 

the sequence of stops in (4.1) represents the initial conditions, which correspond to the last stop 
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already visited by the corresponding vehicle M.  
 

Figure 4.2 shows a sequence ( ) 6 N
 
assigned to a vehicle M at time N, which is a picture of the 

assigned vehicle tasks. ( )ˆ !"7 N  represents the expected departure time of the vehicle M at stop L, 
( )#̂ $/ N  is the expected vehicle load when vehicle M leaves stop L.  

 

( ), ( )% &; N Wϕ  is the current position (coordinates) computed at instant time�N that depends on the 

traffic conditions ( )Wϕ . 'W  is a variable connecting the continuous time (clock time) with the 

discrete model in time (index N). Notice that ( ), ( )% &; N Wϕ  must be in between ( )0(3 N  and ( )1(3 N . 

To simplify the notation, hereafter it will use simply denote ( )); N  to represent ( ), ( )); N Wϕ . 

Notice that the traffic conditions ( ( )Wϕ ) affect the current position of each vehicle ( , ( ))* +; N Wϕ , 

which is a measurable output of the system. The vehicle position is a random variable, and 

( , ( )), -; N Wϕ  is a realization of such a variable. 

 

These three types of variables ( ( )ˆ ./7 N , ( ).̂ // N , ( )/; N ) conform the state space vector as 

described next. Moreover, ( )00/ N  and ( )017 N  are the vehicle conditions when the last call request 

was satisfied located at ( )023 N . 

 
)LJXUH�������9HKLFOH�VHTXHQFH�UHSUHVHQWDWLRQ�

 

For simplicity, in this application a conceptual network with Euclidean norm as a distance 

estimator is considered. Although the distance is computed through a fixed measure depending 

( )3; N

( ) ( ) ( )1 1 1ˆ ˆ, ,4 4 47 N / N 3 N
( ) ( ) ( )2 2 2ˆ ˆ, ,5 5 57 N / N 3 N

( ) ( ) ( )ˆ ˆ, ,
6 6 67 7 77 N / N 3 N

( ) ( ) ( )1 1 1ˆ ˆ, ,
8 8 89 9 97 N / N 3 N+ + +

( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ, ,
: : :;=< ;>< ;><? ? ?7 N / N 3 N

( ) ( ) ( )0 0 0ˆ ˆ, ,9 9 97 N / N 3 N

1
2

L
1L +

( )@Z N
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on the coordinates of the initial and final conditions, the modelled travel times on segments 

experienced by vehicles are not fixed, since the speed is variable. 

 

Analytically for any vehicle M, the state space model is given by:  

 

( )
( )

( )

ˆˆ ( ), ( , ),( 1)

ˆ ˆˆ ˆ( 1) ( 1) ( , ( )), ( ), ( ), ( , ),

ˆ ˆ( 1) ( ), ( ),

A B CB
B D B B B C
B E B B C

M N

I 6 N Y W S; N
N 7 N I ; N W 7 N 6 N Y W S

/ N I / N 6 N

η

χ ϕ η

η

  +      + + =   
  +    

=   (4.2) 

 

where ( )F̂ Nχ  is the vector of state space variables defined for vehicle M�at next instant N��, as 

function of the control action ( )G6 N , the estimators of the disturbances Hη , the speed model 

(̂ , )Y W S and the state space variables at instant N, ( ( )ÎJ7 N , ( )K̂ L/ N , ( )M; N ).  

 

The estimated departure time vector ( ) ( ) ( ) ( )( )0 1ˆ ˆ ˆ N
OPRQS S S S7 N 7 N 7 N 7 N 

  
= " and the 

estimated load vector is ( ) ( ) ( ) ( )( )0 1ˆ ˆ ˆ T
UVRWX X X X/ N / N / N / N 

  
= " are vectors of the same 

dimension as that of the sequence.  

 

Notice that only the first component of both the expected departure time and expected load 

vectors at instant N are known, since the remaining components of both vectors are really 

expectations of what is supposed to happen at the scheduled stops of each vehicle defined in 

each sequence, which will depend on the expected disturbances along the vehicle routes. Thus, to 

compute the estimated departure time at stops the predictive model is utilized starting from the 

current vehicle position ( ), ( )Y Z; N Wϕ  (continuously being affected by the disturbance ( )Wϕ ). 

Besides, the expected load as well as the expected departure time at future stops, will also 

depend on the demand over space and time, from where potential reroutings could affect the 

future load and departure times at stops.  

 

In the proposed approach, traffic congestion is modeled through the distribution of commercial 

speed of the vehicles on both relevant dimensions: time and space, since traffic conditions of an 

urban area normally change along the day, and are different depending on where each vehicle is 
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traveling. The real speed distribution is unknown ( , , )Y W S ϕ  and it depends on a stochastic source 

that comes from the network traffic conditions ( )Wϕ  (if the specification is additive, then ( )Wϕ  

will be measured in speed units). Also a known velocity distribution of the urban area during a 

typical period of recurrent congestion is assumed available based on historical data, which is 

represented by a model of the speed (̂ , )Y W S . All of them specified in terms of the continuous 

time W and the spatial coordinate S. The functions [I , \I  and ]I  in equations (4.2) define the 

state space model, and are specified in equations (4.3) to (4.6).  

 

First, the dynamic model for the position associated with vehicle M is given by  

( ) ( ) ( )1 0
0

1 0

2

( ) ( )
ˆ ˆ1 ( ) , ( )

( ) ( )

^
^

_ ` `` `
_ ` `

3 N 3 N; N 3 N Y W S W GW3 N 3 N
τ+ −

+ = +
−∫                     (4.3) 

 

where a aW W W τ≤ ≤ + . So, the model requires a variable stepsize (τ ), defined by the interval 

between the occurrence of a probable future call asking for service ( bW τ+ ) and the occurrence of 

the previous call cW . τ  is calculated as a tuning parameter for the HPC by using a sensitivity 

analysis. Note that 1 0( ) ( )d d3 N 3 N−  provides the information with regard to the direction of the 

vehicle M speed. If a request is fulfilled, an adaptive mechanism uploads 0 ( )e3 N  since this variable 

represents always the last stop position already visited, at every instant W. 
 

Besides, the departure time vector depends on the vehicle speed, and can be computed as follows: 

 

( ) ( )
( )2

0 1

1 1

ˆ 1 ( ) ( ) ( )
f ghjik kl l l l li i ik k7 N 7 N W N W N W Nκ κ κ

= =

 
 
 
 

+ = + + +∑ ∑"     (4.4) 

where  

 

1( )

1

( , ( ))

1
( )

(̂ ( ), )

monp
p pqrntspN GY Wϕ

κ ω
ω ω

= ∫ ,    
( )

1( )

1
( )

(̂ ( ), )

uvowxux xuv wx
N GY Wκ ω

ω ω−
= ∫  ( )2.. yL Z N=     (4.5) 

 

( )
z{ Nκ  is an estimate of the time interval between stop L�� and stop L in the sequence of vehicle M, 

at time N. When L �, the reference for computing the arrival time is the current position of the 
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vehicle instead of the previous stop. ( )|W ω  is the continuous time at which vehicle M reaches 

position ω . In (2.5), the integration is performed along the line between two consecutives stops. 

 

The dynamics embedded in the vehicle load vector depends exclusively on the current sequence 

and the previous load variable at instant N. Analytically, 

 

( ) ( ) ( ) ( ) ( ) ( )
( )1

0 0 0

1 1

ˆ 1 2 ( ) 1 2 ( ) 1
}~��� � � �� � � � � � � �� �

7
/ N / N / N ] N / N ] N

= =

 
+ + − Ω + − Ω 

  
= ∑ ∑" "    (4.6) 

with ��]  and ��Ω  defined in expression (4.1). 

 

Vehicle sequences as well as state space variables have to satisfy a set of constraints that depend 

on the real conditions of the modeled DPDP. Specifically, precedence, capacity and consistency 

constraints are added into the dynamic model to generate only feasible sequences. Those 

constraints can be written as logical conditions, as follows: 

 

&RQVWUDLQW� �� Constraint of precedence. The delivery of a passenger cannot happen before its 

pick-up. Then: 

 

If a sequence contains twice the same label, then the first task is the pick-up, and the second is 

the delivery. So, If ( )1
��U N = ( )2

��U N , then ( )1 1
��] N =  and ( )2 0

��] N = . 

 

If a sequence contains just once a given label, then, the task is to deliver the passenger. So, If 

( ) ( ) ( )1 2
2 2 1, ,� � �� �Z NL L L U N U N≤ ≠ ≠∀ , then ( )1 0

��] N = . 

 

Therefore, the final node of every sequence has to be a delivery. In short, 

( ) ( ) , : ...
�����] N M )= ∀0 1 . 

�
&RQVWUDLQW�����A destination ( )

��3 N  must be visited only once, and is assigned to only one label 

(customer).  In fact, every row in a sequence consists in the information of just one user pick-up 

or delivery point. 
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&RQVWUDLQW���� Consistency. Once a group of passengers get on a specific vehicle, they have to 

be delivered to the destination by the same vehicle.  

 

&RQVWUDLQW�����Capacity load constraint. A vehicle will not be able to carry more passengers than 

its maximum load, that is ( ) max

� �/ N /≤ . 

 

All those constraints will be considered once a possible sequence is generated. The controller 

should provide feasible sequences. 

 

Once the state space variables are analytically defined, the objective function and the 

optimization procedure are needed, in order to complete the description of the controller. 

Moreover, the state space models defined in Section 4.2 along with the objective function permit 

the prediction at one, two and more step-ahead, which are necessary for implementing the HPC 

control strategy. Next, the objective function is presented and discussed. 

�
�
����� 2EMHFWLYH�)XQFWLRQ��
 

The request-vehicle assignment is decided by the dispatcher (controller) based on a proper 

objective function that depends on predictions of the state space variables and consequently, on 

the future control actions applied to the system. The objective function is specified in terms of 

both the total expected waiting and travel time for passengers. The idle travel time (vehicles 

moving around without passengers) is also included in the formulation in order to consider a 

SUR[\ for the operational cost in the decision.  

 

The major issue in the definition of the objective function is to define a reasonable prediction 

horizon 1, which depends on the studied problem. A prediction at one-step-ahead is equivalent 

to performing a myopic assignment, since only the new request (arising at N) is considered when 

taking the routing decision. When a predictive horizon greater than one is assumed, the decision 

maker (controller) adds the predictive feature into the formulation, since decisions taken at N will 

depend not only upon the new request at N, but also on possible events (new service requests 

unknown at the decision instant N) occurring at future instants (N���� N��, …etc). These new 

requests are estimated by using fuzzy clustering based on historical demand data.  
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A set of consecutive expected calls { }1 2 1, , ...,
� � �� � � �η η η+ + + −  define a trip pattern K (note the 

superscript K in the call representation above to join a pattern with the calls associated to it). 

Thus, the central dispatcher (controller) computes the following set of sequences 

( ) ( ) ( ){ }
1 1

1

, ...,1 1¡ ¡¢ ¢¤£
¥
¦6 N 6 N 6 N 1

η η+ + −
=

∪ + + −* , which corresponds to the decisions for the entire 

control horizon 1 and for each pattern K. Then, the dispatcher applies just the next step sequence 

( )6 N , based on receding horizon control. It is important to note that ( )6 N  includes the new 

request to be assigned (η § ), which is known (deterministic) at the decision time. The quality of 

the dispatcher routing decisions will depend on how well the system predicts the impact of 

rerouting passengers due to unknown insertions as well as traffic congestion. Notice that 

deterministic decisions are continuously made by the dispatcher based on the information of each 

call that enters the system along with a forecast of a future decision corresponding to each 

possible pattern (scenario). 

 

The objective function for a generic prediction horizon 1, can be written as follows 

 

( ) ( ) ( ){ }
( )

1 11

1 ,..., 1 1 1

 ¨ © ©
ª ª «©¬®­ ¬®­ ¬¯­±°

²´³
µ·¶ µ¶¸µ S & N 10LQ

η η+ + −=
∪ + + − = =

⋅ +∑∑
*

           (4.7) 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )
( )

1 1 0

1
J travel time J waiting time

ˆ ˆ ˆ ˆ1 1
¹º¼»¾½ ¿ ¿ ¿ ¿ ¿

À À À À À À ÀÁ ¿
Á

& N 1 / N 1 7 N 1 7 N 1 ] N 1 7 N 1 7 N 1α
+

− −

=
=

 
 + + + + − + + + − + − +   

∑
���������	��������
 ��������	�������


(4.8) 

where ( )Â Ã& N 1+  in (4.8) is the cost function of vehicle M at instant N 1+ , provided that the trip 

pattern K,  characterized by { }1 2 1, , ...,
Ä Ä ÄÅ Å ÅÇÆη η η+ + + − , occurs.  Such a cost also depends directly of 

the set of sequences to be applied, namely ( ) ( ) ( ){ }
1 1

, ...,, 1 1,È ÈÉ ÉËÊÌ6 6 N 6 N 1
η η+ + −

+ + − , which are the 

optimization variables. +� is the number of trip patterns considered, ÍS  is the probability of 

occurrence of the K Î Ï  trip pattern (future demand). ( )ÐZ N 1+  is the number of stops estimated 

for vehicle M at instant N 1+ .  
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The future instants N��, N��, etc. are generated by using a variable time step. Then, the expected 

call associated with pattern K, to happen 1-steps-ahead is ( ), , ,
Ñ Ñ Ñ Ñ ÑÒÔÓ ÒÔÓÕÒ>Ó ÒÔÓtÒ>Ó3 Uη τ+ + + + += Ω , where 

Ö×ÙØτ +  is the expected occurrence time of such a call in the future.  Due to the large number of 

parameters, the computations are simplified by assuming 
ÚÛÝÜ ÛÝÜ Kτ τ+ += ∀ . Besides,  

1
Þàß Þàßτ τ τ+ + −= + ∆   with τ∆  tuned through a sensitivity analysis. Finally, α is a weight for the 

waiting time to differentiate its contribution compared with that of travel time in the objective 

function. The number of future demand patterns +�and their probabilities of occurrence áS  are 

parameters in the objective function, and they have to be computed based on either real-time 

data, historical data, or a combination of both. In this case, fuzzy clustering is used to model the 

demand  ( N̂η +1)  by considering only historical data. 

Note that in the first component of the objective function expression in (4.8), the expected travel 

time is weighted by ( )1ˆ 1
â ã/ N 1− + + . In such a computation, the expected load captures the user 

cost associated to travel time, while the added RQH roughly incorporates a SUR[\ for the 

operational cost through the total time travelled by vehicles, even though some of them do not 

carry any passenger on certain segments of their routes. 

 

With regard to the step-size to be used in the prediction, George and Powell (2005), develop and 

discuss many interesting methods to incorporate a good estimation of optimal step-size (like 

Kalman Filter and others). None of these methods properly replicated the dial-a-ride conditions, 

considering that in addition to represent a good estimation of the time between calls, what it is 

aimed is to calibrate a parameter for optimizing the system performance function over time, in 

order to get the optimal routing strategy including future information. In order to do that, a 

sensitivity analysis was conducted from simulated data to find the step-size value that minimizes 

the objective function for more than one-step-ahead. It is very important to highlight the fact that 

these variables are continuous and non-optimal behaviour could occur if they are not properly 

adjusted by sensitivity analysis. For the two-step-ahead application this parameter is denoted by 

τ , and as discussed above, physically it represents the expected time for a predicted request to 

happen. However, what τ  really represents is the best instant for inserting the future expected 

call in order to optimize the routing scheme. In general, these parameters are tuneable for each 

step-ahead of prediction. 
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In this chapter, it is compared a myopic strategy (one-step-ahead) with the two-steps and three-

steps-ahead predictive approaches that includes future information from the system, to show the 

improvements in routing when considering a predictive component in the routing decisions in a 

dial-a-ride system. 

 

It will prove for the three cases it deals with in this chapter, that the optimization problem given 

by (4.7) is equivalent to the following one. 

 

( ) ( ) ( ){ }
( ) ( ) ( )( )

( )

1 11

1 ,..., 1 1 1 1

 1ä å å
æ æ çåèéè®ê è®ê è®ê±ë

ìàíïîðòñ
ó ô ô óî ô ó S N W & N W & N W0LQ

η η+ + −=
= ∪ + + −

+

= = =
+ ⋅ + − + −∑∑ ∑

*

    (4.9) 

 

The one-step-ahead strategy means that the prediction horizon is 1 = 1, and ( )1 1+ =+ N  since 

the new requirement is one and known, and therefore its probability is equal to 1, obtaining the 

following expression for the objective function using (4.9): 
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where 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( )

( 1),1

1 1 0

1
J travel time J waiting time

( 1),1

ˆ ˆ ˆ ˆ1 1 1 1 1 1 1
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=

−

 
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∑
��������	�������
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Note that the difference ( ) ( )( )
( 1),1

1 �� � 	�
& N & N
−

+ −  is evaluated considering the control action in 

the previous instant, represented by ( )1�6 N − . Conceptually, -�represents the insertion cost when 

the system accepts a new call, computed in real-time and considering the entire vehicle fleet. 

Note the equivalence between the optimization problems (4.7) and (4.9). The only different 

between them is just a constant, which do not change the optimization problem. 
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The two-step-ahead prediction’s objective function is different from the previous one, since it 

includes a prediction of where the following call is going to fall, and with which probability. The 

controller selects the vehicle’s sequence that minimizes the general two-step-ahead objective 

function, which is as follows, 

 

( ) ( ) ( )( )
( )

( )

2

( 2),( )
1 1 1
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 1
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In the case of the one-step-ahead strategy (myopic), the new requirement is one and known, and 

therefore its probability is equal to 1. In case of the two-step-ahead prediction, the objective 

function requires the estimation of probabilities that the new call entering the system two-steps-

ahead falls into each demand pattern. A distribution for the time interval between successive 

calls is also assumed in order to compute time interval probabilities.  

 

Another interesting case, is the three-step-ahead objective function, again computed from the 

generic expression, as follows: 
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For illustrative the proposed methodology as shown figure 4.3, let us concentrate on the three-

step-ahead prediction case for an example of two origin-destination pairs at two step, and four at 

three step, in which the strategy would be to evaluate the following chain of scenarios.  

 

( ) ( )
2 probable Calls 4 probable Calls
  H k+1 =2   H k+2 =4  1 New Call
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)LJXUH������3RWHQWLDO�FRPELQDWLRQV�RI�VHTXHQFHV�DW�IXWXUH��
 

At instant N-1, vehicles follow certain sequence )1( −N6  associated with a total cost ( )& N . 

Whenever a new service request enters the system, there are several feasible sets of sequences 

( )6 N  to be evaluated by the controller (each alternative inserting the new pick-up and delivery in 

feasible segments of the sequence of a specific vehicle). At one-step-ahead, one call is 

considered (instant N with probability equals to 1). At two-step-ahead, it fixes two potential calls 

appearing in the next time step N+1, with probabilities ( )1p 2N +  and ( )2p 2N +  respectively. At 

three-step-ahead, it fixes four potential calls appearing in the next time step N+2, with 

probabilities ( )1p 3N + ,  ( )2p 3N + , ( )3p 3N +  and ( )4p 3N +  respectively in order to incorporate 

the dynamic nature of the problem, and consequently to have good estimations of both travel and 

waiting times for the cost function decision. Finally, eight potential cases are evaluated for all 

possible scenarios, containing three new sequential insertions each (the known new call that 

comes up at one-step-ahead and the potential calls that appear at two and three-steps-ahead) 

 

In order to perform a good estimation of future scenarios in the objective function expressions, 

the historical data is analyzed through a systematic methodology for determining the future trip 



Chapter 4. Hybrid Predictive Control for the dial-a-ride system.      
 

126 
 

patterns and their corresponding occurrence probabilities. Next, a fuzzy clustering approach is 

proposed to deal with this issue.  

 

A systematic zoning methodology is developed to split the space into conceptual regions for a 

better representation of historical demand patterns, which can be obtained from demand data 

associated with a representative operation day. This proposal turns out to be an alternative a 

typical classic zoning approach where the total area is divided into homogeneous and not 

overlapping-areas. The classic zoning approach could perform badly in cases where typical 

origin-destination patterns do not match any of the predefined pair of zones according to the 

classic method. In fact, a wrong zoning methodology could impact the computation of 

probabilities in the objective function for more than two-step-ahead predictions. The systematic 

zoning proposed here is based on a fuzzy clustering method that allows us to classify the typical 

origin-destinations calls in representative and flexible clusters. For simplicity and considering 

the problem features, the fuzzy C-means is adapted to model such a spatial classification. 

  

In this application, the FCM method is used to determine the representative centers associated 

with historical origin-destination patterns, which will allow us computing the corresponding 

predictive probabilities. 

 

The probability of each cluster associated with a given origin-destination pair is computed by 

following the procedure stated next: 

 

6WHS��. The fuzzy clusters are obtained from historical demand data by using the FCM method. 

 

6WHS��. Membership degrees associated with each call from the historical database are computed 

for every fuzzy cluster obtained in Step 1. 

 

6WHS��. Each call is associated with only one fuzzy cluster, corresponding to that with the biggest 

membership degree. 

 

6WHS��. Calls with a membership degree smaller than a chosen threshold are not considered in the 

process. 

 

6WHS� �. A probability of occurrence of a new request on a specific origin-destination pair is 
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computed as the number of calls that belong to a fuzzy cluster divided by the total number of 

calls (after removing the negligible data as explained in Step 4). 

 

6WHS� �. Perform a FCM recalculation of cluster center position from historical demand data 

without considering the negligible data removed in Step 4. 

 

Notice that the optimal number of clusters determines the number of trip patterns for each time 

period. The number of potential calls (each one occurring with certain probability) for the 1-

step-ahead will depend on the time period to which the Q instant belongs, according to the 

aforementioned clustering method. 

 

In summary, the FCM method permits the modeller to obtain more realistic origin-destination 

patterns from historical data, and consequently, allows him (her) to systemize and improve the 

probability calculations. This procedure could improve the prediction power of future 

uncertainty resulting from the unknown future calls asking for service once they appear, in 

models with control horizons longer than one-step. 

 

For example, the FCM model performs quite well for jumbled up trip patterns, in which 

representative zones could be spatially overlapped. Next, a one-dimension example is shown to 

illustrate the application of the method in the context of the DPDP. 

 

A simple example for a single-vehicle dynamic routing problem is presented in Figure 4.4 in 

order to clarify the application of the FCM for forecast the probable calls as previously described. 

Let us assume door-to-door requests occurring on a one-dimensional path of nine kilometres, for 

pick-up and delivery positions. In the example, suppose that ten call requests occur over certain 

time-period (Figure 4.4), and suppose that all stops are considered to determine the optimal 

zoning and the corresponding probabilities associated with such a partition.  

 

 �
)LJXUH������6LQJOH�YHKLFOH�UHTXHVWV�LQ�D�FHUWDLQ�SHULRG�RI�WLPH��
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Figure 4.5 shows a two-dimension representation of pick-up and delivery coordinates, for those 

requests shown in Figure 4.4. By looking at Figure 4.5, trip patterns could be identified just by 

looking at the points and identify those that are close by, since the problem is defined on a one-

dimensional path. However, when the problem is defined on a two-dimensional path, the 

analysis needs an automatic methodology as fuzzy clustering proposed. From the historical data 

shown in Figure 4.5, the fuzzy C-means is used in order to obtain the optimal zoning associated 

with such a database. To do this, a fixed number of fuzzy clusters are selected and thus, Figure 

4.6 shows the results of FCM for 2 and 3 fuzzy clusters, respectively. As explained before, the 

cluster centres are obtained and denoted by “x” marks in the figure.  

 

 
)LJXUH������3LFN�XS�'HOLYHU\�FRRUGLQDWHV�RI�KLVWRULFDO�GHPDQG�RYHU�D�FHUWDLQ�WLPH�SHULRG��

 

 

 )LJXUH������&OXVWHU�FHQWHUV�IRU���DQG���FOXVWHUV�VHOHFWHG��
 

Then, the mass centers are obtained after applying the FCM method corresponding to the 

resulting trip patterns, for this particular example. From an analysis of Figure 4.6, it seems 

reasonable to use 2 clusters instead of 3, since most requests are grouped around two mass 
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centers. In general, stating the number of clusters is not as easy as in this example, and in such 

cases, the modeler should use methodologies that are more systematic as for example, the fuzzy 

cluster merging method (Babuska, 1999). 

 

Figure 4.7 shows the membership degree as function of the ten call requests for 2 fuzzy clusters. 

As shown in Figure 4.7, the threshold selection determines that call 3 does not belong to any of 

the two fuzzy clusters, and therefore that datum has to be removed from the historical data. 

 

 
)LJXUH������0HPEHUVKLS�GHJUHH�RI�KLVWRULFDO�GHPDQG�RYHU�D�FHUWDLQ�WLPH�SHULRG�IRU���FOXVWHUV��

 

 

Finally, and using the FCM procedure, the probabilities associated with trip patterns are shown 

in Table 4.1 for 2 fuzzy clusters. 

 

7DEOH�����3UREDELOLWLHV�IRU�WKH�WULS�SDWWHUQV�XVLQJ���IX]]\�FOXVWHUV��

Trip pattern Pick-up 
position 

Delivery 
position Probability 

Fuzzy 
cluster 1 0.7194 6.9800 4/9 

Fuzzy 
cluster 2 4.4748 0.2750 5/9 

 

 

The proposed FCM methodology is applied to a more complex simulated example of a DPDP in 

Section 4.5, and is compared with a classical zoning approach. Once the optimization problem is 
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stated (objective function and model), an efficient optimization algorithm is required to solve it. 

In the next Section 4.4, Genetic Algorithms for HPC are proposed to solve efficiently the 

optimization problem, in terms of both quality of solutions and computation time. Next, HPC 

design based on the proposed modeling described in section 4.2 and objective function with 

fuzzy prediction of demand proposed in section 4.3 is developed. 

 

����� *HQHWLF�$OJRULWKP�IRU�VROYLQJ�+3&�LQ�WKH�FRQWH[W�RI�WKH�GLDO�D�ULGH�V\VWHP��
 

As explained before in chapter 3, the most used strategies of HPC involve two optimization 

algorithms: Explicit enumeration (EE) and Branch and Bound (BB). Both allow to solving mixed 

integer optimization problems (Floudas, 1995), but the elevated computational effort, especially 

in the case of EE, results in inefficient solutions for real-time problems.  

 

On the contrary, GA has proved to be an efficient tool to solve MIOP (Man HW�DO., 1998). Thus, 

as VRP problems are NP-hard, HPC based on GA optimization is considered to face the DPDP 

problem. The framework used is based in the explained before in chapter 3.  

 

Next, the manipulated variable is shown in detail, so the optimization problem and the 

simplifications assumed will be better understood. The original manipulated variable ( )6 N  is 

replaced by a matrix of binary activation values * 
1..
1..

( )4 56487597J =
=

 that is associated with ( )
:
;3 N , which 

is a component of ( )6 N . Thus, ( )<Q Z N= and the matrix element { }0,1= >J ∈ represents the U ? @ �
activation of stop L.  
 

Then, a stop ( )<3 N  associated with passenger ( )
A
BU N  assigned to vehicle M, can be written as a 

linear combination of all the known stops (I C , ID ,…, IE ) assigned to the vehicle M using the binary 

factors of activation F GJ . Analytically,  

 

( ) 1 1 2 2 ... ....
H
I H H H JKJ H L�L3 N J I J I J I J I= + + + + +     (4.10) 

 

where 

   
0
1

M NJ 
= 


    

 is not stop i
 is stop i      

O
O
I
I      (4.11) 
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Therefore, the stop position vector ( )P3 N , excluding the initial condition ( )0P3 N , can be written  

as follows 

( )

( )
( )

( )
( )

1
11 12 1( 1) 1 1

2
21 22 2( 1) 2 2

1
( 1)1 ( 1)2 ( 1)( 1) ( 1) 1

1 2 ( 1)

Q QR
Q QR

R
Q Q Q QSQ Q�Q QR
Q Q Q QTQ Q Q QR

J J J J I3 N
J J J J I3 N

3 N *
J J J J I3 N
J J J J I3 N

−

−

−
− − − − − −

−

     
     
     
     

= = ⋅ =     
     
     
     

        

" "

" "

# # # # # # ##

# # # # # # ##

" "

" "

I⋅   (4.12) 

 

 

From this modeling framework, the constraint 2 above (a stop must be visited just once) can be 

written in terms of logical constraints. Thus, the following new constraints in terms of the F GJ  

values are generated: 

 

1...21 =+++ U VUU JJJ , QL ,...,1=∀      (4.13) 

1 2 ... 1W W XYWJ J J+ + + = , 1,...,U Q∀ =      (4.14) 

 

Among the set of stops, using the sequence, they will be pick-up or delivery. By respecting the 

precedence stops as well as all other logical constraints defined above in this section, state 

analytical relations are stated between elements of the * matrix in order to satisfy such 

constraints (a pick up has to happen before the associated delivery, etc.). When matrix * is used 

as the optimization variable instead of the sequence, the expected load can be expressed as the 

sum of the initial load plus all the activations of the previous pick-ups less the activations of all 

previous deliveries, as shown in (4.15) next:  

 

( ) ( ) ( ) ( )0 0

1

ˆ( 1) 0

Z[
\ \ \ ]_^`] ]_^a]^b]dc ]de/ N / N / N I J I J

= ∈ ∈

  + = + Ω − Ω  
  

∑ ∑ ∑" " "

 
(4.15) 

 

where ( )fIΩ  equals the number of passenger at stop gI  (this value depends on the request) and 

{ }:  is a pick-up= h3 U I , { }:  is a delivery= i' U I . By using (4.15), the capacity load constraint 

(constraint 4) can be written based on the activation factors of the matrix *��Analytically: 
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( ) ( ) ( )0
max

1

j
k lnmol lnmol

m lqp lqr/ N I J I J /
= ∈ ∈

 + Ω − Ω ≤ 
 

∑ ∑ ∑  L ������Q ��=    (4.16) 

 

In addition, and to complete the state space model, the departure time vector can be expressed as 

function of the matrix *. In short, 

 

1 1
0 0 1 2 0 1 0 1

1 1

(̂ 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )
s s s tu vw w w w

w w7 N 7 N 7 N *4 N * 7 N * 4 N * 7 N * 4 N *
− −

+ +

= =

 + = + + +  
∑ ∑" "  

(4.17) 

with 
x*  denotes the U y z  row of *, 4�N� is a matrix containing the network and transfer times 

computed between stops (from estimations based on Euclidean distance and traffic conditions).  

In this model, an expansion and reduction matrix size technique is developed to capture the 

dynamic effect caused by the real operation. The idea is to either increase or reduce the stop 

position vector shown, resulting in changes on the load and time vectors as well. For example, 

when certain vehicle accepts a new service request, the dimension of the position vector 

increases in two rows, accounting for the customer pick-up and delivery stops. Additionally, 

when a vehicle reaches any stop, that point has to be removed from the original position vector, 

reducing its dimension in two rows.   

 

 

������� 5HGXFWLRQ�RI�IHDVLEOH�VHDUFK�VSDFH��1R�VZDSSLQJ�FDVH��
 

In this application, the optimization is performed over a reduced space of solutions that satisfy 

the QR�VZDSSLQJ constraint. This constraint ensures that sequences are constructed by locating 

the pick-up and delivery of the last call within the previous sequence (the order of previous stops 

does not change).  

 

There are practical reasons for considering the no-swapping case in the model instead of 

exploring over a larger feasible search space. First, any other re-optimization strategy is very 

time-consuming for our algorithm, and not needed in most cases as discussed next. In fact, in all 

dynamic systems, it is necessary to use the previous information in order to make real-time 

decisions. Therefore, the configuration of the previous sequences (those scheduled before the 
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insertion) must be considered as a relevant input to the optimization process. Additionally, in 

most pick-up and delivery problem configurations, the optimal solution of inserting a new 

request does not alter the order of previous sequences, as shown from simulation experiments by 

Cortés (2003). He found that the no-swapping strategy was optimal in more than 70% of the 

cases, and in the remainder not-optimal cases, the gap to optimality was negligible.   

 

The global optimum of the dynamic routing problem in terms of the new optimization matrix * 

can be obtained by optimally choosing the activation factors { |J , for each vehicle in the fleet. 

Indeed, * determines an optimal sequence of stops ( )}3 N  for each vehicle M�that minimizes the 

objective function defined in the next section, whenever a new real-time request has to be 

inserted into some previous sequence. Explicitly, the optimal ( )~3 N  vector is given by:  

 

( )

( )
( )

( )
( )

1
11 12 1( 1) 1 1

2
21 22 2( 1) 2 2

1
( 1)1 ( 1)2 ( 1)( 1) ( 1) 1

1 2 ( 1)

� ��
� ��

�
� � � ��� ��� ��
� � � �T� � � ��

J J J J I3 N
J J J J I3 N

3 N *
J J J J I3 N
J J J J I3 N

−

−

−
− − − − − −

−

     
     
     
     

= = ⋅ =     
     
     
     

        

" "

" "

# # # # # # ##

# # # # # # ##

" "

" "

I⋅   (4.18) 

 

where�I�is a vector containing the list of scheduled stops in the whole system at time N. In the QR�
VZDSSLQJ case, new calls are inserted directly in previous assigned sequences; by keeping the 

order of previously scheduled stops (only insertions on previous segments are allowed). As 

previous sequences hold, 1 2 -2( , ,..., )�I I I , the new insertion added to the I vector at the bottom 

(pick-up, delivery), and denoted by (I��� �  , I� ), imposes the following conditions on relation (4.18) 

above. Analytically,  

 

( )
( )

( )
( )

( )

11 1 1, 1 1 1 1

21 1 22 2 2, 1 1 2, 2 2

, 2 2 , 1 1 , , 1 1 ,

1, 3 3 1, 2 2 1, 1 1 1, 1 1

, 2 2 ,

, if
, i

,( )   
,

,

���
��� ���

����� ����� ����� � ��� ��� � ����
����� ����� ����� ����� � �

����� ����� ���

J I J I [ \
J I J I J I J I [ \

J I J I J I J I J I [ \3 N
J I J I J I J I [ \

J I J I [ \

− −

− −

− − − − − −

− − − − − − − − − − − −

− −

+ =
+ + + =

+ + + + ==
+ + + =

+ =

( )

1
f 2

   if 3,..., 2
if 1
if

L
L

L Q
L Q
L Q

 =
 = = −
 = −

=  

  

(4.19) 
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where ( , )���[ \  are the spatial coordinates of the L-stop. For example, the first term of (4.19) 

( 1)L =  represents the first component of the stop sequence that must be either the new pick up or 

the first stop of the previous sequence. The second term ( 2)L = represents the second component 

of the stop sequence that has more options, either the first stop of the previous sequence, the 

second stop of the previous sequence, the new pick-up stop request or the new delivery stop, and 

so on. 

 

Equation (4.19) can also be written in the form of general expression (4.18), obtaining the 

following sparse * matrix (optimization decision matrix): 

 

11 1( 1)

21 22 2( 1) 2

31 32 33 3( 1) 3

42 43 44 4( 1) 4

53 54 55 5( 1) 5

64 65 66

0 0 0 0 0 ... ... ... ... 0 0 0 0
0 0 0 0 ... ... ... ... 0 0 0

0 0 0 ... ... ... ... 0 0 0
0 0 0 ... ... ... ... 0 0 0
0 0 0 ... ... ... ... 0 0 0
0 0 0 ... ... ...

�
� �
� �
� �
� �

J J
J J J J
J J J J J

J J J J J
J J J J J

J J J
*

−

−

−

−

−

=
6( 1) 6

( 4)( 6) ( 4)( 5) ( 4)( 4) ( 4)( 1) ( 4)

( 3)( 5) ( 3)( 4) ( 3)( 3) ( 3)( 1) ( 3)

( 2)( 4) ( 2)(

... 0 0 0
: : : 0 . . . . . . : : : : :
: : : : . . . . . . : : : : :
: : : : . . . . 0 0
: : : : . . . . 0 0
0 0 0 0 0 0 ... ... 0 0

� �

��� ��� ��� ��� �$�
�S� �S� �S� �S� ���

��� �

J J

J J J J J
J J J J J

J J

−

− − − − − − − − −

− − − − − − − − −

− − −
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3) ( 2)( 2) ( 2)( 1) ( 2)

( 1)( 3) ( 1)( 2) ( 1)( 1) ( 1)

2

0 0 0 0 0 0 ... ... 0 0 0
0 0 0 0 0 0 ... ... 0 0 0 0 0

� ��� ��� �$�
��� ��� ��� �K�

� ��`�

J J J
J J J J

J J

− − − − − −

− − − − − − −

−

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 

This analytical problem formulation allows us to generalize the 1-step-ahead optimization 

criteria defined in the next section and to evaluate different nonlinear mixed integer optimization 

methods, as the GA method it will describe next. If the QR�VZDSSLQJ operational constraint is 

relaxed, the search space for optimization increases, resulting in a less sparse matrix *, allowing 

the optimization procedure to obtain a solution closer to a less restrictive global optimum. An 

intermediate case (SDUWLDO� VZDSSLQJ) is currently being studied as discussed in the further 

research section. 
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������� +3&�EDVHG�RQ�*$�IRU�D�GLDO�D�ULGH�V\VWHP��
 

The GA method is suitable for the dial-a-ride system since optimization variables are discrete, 

and therefore the binary codification is not necessary. In other words, genes of the individuals 

(feasible solutions) are given directly by the integer optimization variables. In addition, gradient 

computations are not necessary as in conventional non-linear optimization solvers, which allow 

us to significantly save computation time.  

 

HPC based on GA, described in chapter 3, is used as an efficient optimization solver for the 

DPDP problem, where the optimization variables identify the stops that must be satisfied by the 

vehicle fleet. The individuals are the feasible sequences, fulfilling the load, precedence and no 

swapping constraints defined before. The gene of an individual considers the following three 

components: the vehicle M used for the new insertion and the sequence position�of the new call 

(for both pick-up and delivery) within the previous sequence, assuming the QR�VZDSSLQJ policy.  

 

To explain the gene codification, a simple example for one individual is presented. Let us assume 

the following vector ( 1)�3 N − , associated with the sequence at the previous instant N�� 

( ( 1)�6 N − ). 

( )

1

2

3

4

(1 )
(2 )

1
(1 )
(2 )

�
�

�
�
�

�  

3 E
3 E3 N 3 E
3 E

+

+

−

−

  1 0 0 0   
    0 1 0 0    − = = ⋅    0 0 1 0
    0 0 0 1       ���	��
��	�


    (4.20) 

 

where ( )E [ denotes the position of stop [.�For this example, a new customer labeled as 3 enters 

the system, and has to be inserted. The new optimization variable can be represented in terms of 

( )¡3 N as shown in the following matrix equation system, by adding the request in the last two 

rows of vector I , increasing the dimension of matrix *.  
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   (4.21) 

 

Due to the precedence and QR� VZDSSLQJ constraints, the previous sequence is held, and the 

decision variables are given by the last two columns of matrix *. By using the proposed gene 

codification, a feasible population of 7 individuals for vehicle M is presented by considering the 

previous sequence and the new call request: 

 

( )
( )
( )
( )
( )
( )
( )

, 3 1 2 3 1 2
,1, 4Individual 1

,,1,6Individual 2
,5,6Individual 3

Population   ,3,5Individual 4
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+ + + − − −→ → → → →
  
  
  
  
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  
  
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+ + − − + −

+ + + − − −

+ + − + − −
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+ + + − − −

 
 
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 
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 
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 

→ → → → → 
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M
M
M
M
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   (4.22) 

 

For example, the individual ( ,1,4)M in terms of 3¥ �N�� can be written as: 
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0 0 0 0 1 0 (1 )
1 0 0 0 0 0 (2 )
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   (4.23) 

 

In short, the last two columns of matrix * are the new optimization variables associated with the 

sequence at instant N. As the individuals of a generation are randomly selected, the same 

individuals can be repeated in the next population. For example in (4.22), individuals 2 and 6 are 

the same in the population, ( ,1,6)M .  
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Note that as GA considers random generation of individuals, the genetic operators (mutation or 

crossover) could provide infeasible solutions that have to be removed (typically through the 

capacity constraint). In order to have at least one feasible solution of the population, an always 

feasible�individual, such as ( ), 1,© ©M Z Z−  must be used�� ªZ  is the number of stops including the 

last call). The number of individuals for each population has to be smaller than the total number 

of feasible combinations in order to avoid solving the explicit enumeration method. The 

crossover operator is not applied here since the QR�VZDSSLQJ constraint has to be satisfied.  

 

For a two-step-ahead problem, a possible population is: 
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In this example of codification, it has two patterns request which are 1K  and 2K . A solution of the 

optimization problem in this case consider a two-step-ahead policy, and the solution set includes 

three sequences (the first one for the current call, the other two in the case that once the previous 

request happen, and was located in the sequence of a given vehicle, then the two possible request 

happen). 

 

Figure 4.8 presents the proposed hybrid predictive control system scheme. The real system of 

fleet-clients assigns the sequences using the HPC controller based on the state space variables, 

on a call prediction model and on the new call request information. 
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)LJXUH������2YHUDOO�EORFN�GLDJUDP�RI�DQ�+3&�IRU�GLDO�D�ULGH�V\VWHP��

�
Next, an application of HPC in the context of dial-a-ride system is summarized, to visualize the 

advantages of that method when compared with explicit enumeration, mainly in computation 

time saving. 

 

Illustrative tests using explicit enumeration (EE) and GA methods are conducted to evaluate the 

performance through the proposed objective function and the corresponding computation times.  

 

The dial-a-ride system with 4 vehicles and an objective function of two-step-ahead with 6 

potential calls are considered. Vehicles cover an urban service area of around 81 km2, traveling at 

an average speed of 20 kilometers per hour.  

 

The simulations tests considered are:  

 

 i)  Dynamic vehicle routing under high demand conditions,  

ii)  Dynamic vehicle routing under normal demand conditions and  

iii) Dynamic vehicle routing considering a mixed solution (combining GA and EE methods). 

 

As mentioned before, the GA method considers the number of individuals and generations, and 

mutation probability as tuning parameters. Results for three different cases of tuning parameters 

are presented. The first genetic solution G1 considers 5 individuals and 5 generations, G2 uses 
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10 individuals and 10 generations, and finally G3 considers 20 individuals and 20 generations. 

The simulation tests were conducted in Matlab version 6.5.1 release 13, on a Pentium IV 

processor. 

�
��������� 7HVW����'\QDPLF�YHKLFOH�URXWLQJ�XQGHU�KLJK�GHPDQG�FRQGLWLRQV���
�
In this case, many call requests enter the system over a short time period, generating long 

sequences and consequently, longer computation times due to a larger search space. Figure 4.9 

shows the computation times and the objective function for a certain period over which a lot of 

calls enter the system (note that the step size in the model is variable, and depends on when the 

new call is received by the dispatcher).  

 

From Figure 4.9, the request congestion is observed, and therefore GA presents a cumulative cost 

(see objective function) at each new call because the decision taken at the previous instant 

(previous sequence) does not always correspond to the global optimum. In addition, the 

computation time increases exponentially by using EE while the number of stops increases, 

unlike GA showing stable computation times regardless of the call intensity. In Table 4.2, the 

mean value of the objective function and computation time are reported by using the data 

presented in Figure 4.9. According to Figure 4.9 and Table 4.2, when the number of individuals 

and the number of generations increase, a better tracking of the global optimum objective 

function is observed (G3, in special) with a significantly short computation time. 

 

 
)LJXUH������(YROXWLRQ�RI�SHUIRUPDQFH�LQGH[HV��
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7DEOH�����3HUIRUPDQFH�LQGH[HV��

Control Strategy Test 1 Objective function 
mean 

Computation time 
mean 

Explicit Enumeration EE 1297.4 1536.7 

Genetic Algorithms G1 2288.2 1.4 

Genetic Algorithms G2 1945.8 13.9 

Genetic Algorithms G3 1694.6 49.7 

 

 

��������� 7HVW����'\QDPLF�YHKLFOH�URXWLQJ�XQGHU�QRUPDO�GHPDQG�FRQGLWLRQV��
�
In this case, few call requests enter the system over the studied time period. The selection of sub-

optimal solutions is not very relevant due to the existence of short sequences since most stops are 

reached while the system is working. 

  

Figure 4.10 and Table 4.3 show computation times and objective function values. By looking at 

the objective function evolution in Figure 4.10, the GA behavior looks similar to the optimal one 

(EE), while a non-significant computation time effort is observed using GA. Table 4.3 shows that 

as the number of individuals and generations increase, the solution converges to the optimal 

global solution (EE). Notice that the G3 solution is the same as that provided by EE, because G3 

computes almost all possible solutions, consuming a longer computation time though. 

 

�
)LJXUH�������(YROXWLRQ�RI�SHUIRUPDQFH�LQGH[HV��
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7DEOH�����3HUIRUPDQFH�LQGH[HV��

Control Strategy Test 2 Objective function 
mean 

Computation time 
mean 

Explicit Enumeration EE 94.5 1.1 

Genetic Algorithms G1 110.9 0.5 

Genetic Algorithms G2 95.4 1.1 

Genetic Algorithms G3 94.5 1.8 

 

 

�������� �7HVW����'\QDPLF�YHKLFOH�URXWLQJ�FRQVLGHULQJ�D�PL[HG�VROXWLRQ��FRPELQLQJ�*$�
DQG�((�PHWKRGV�� 

�
This case is similar to Test 1, but here the previous sequences for the GA method are calculated 

by EE, that is to say, at any instant optimization, a good initial solution is used. Figure 4.11 and 

Table 4.4 show the objective function evolution and its corresponding error with respect to the 

optimal solution obtained by the EE method. Although the sequence is longer, the GA objective 

function error is not significantly increased.  

 

 
)LJXUH�������(YROXWLRQ�RI�SHUIRUPDQFH�LQGH[HV���

�
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�
7DEOH�����3HUIRUPDQFH�LQGH[HV��

Control Strategy Test 3 Objective function 
mean 

Computation time 
mean 

Explicit Enumeration EE 1297.4 ------ 

Genetic Algorithms G1 1324.0 26.6 

Genetic Algorithms G2 1315.1 17.7 

Genetic Algorithms G3 1309.3 11.9 

 

According to Figure 4.11 and Table 4.4, dispatch decisions obtained by GA are very similar to 

EE, regardless of the number of planned stops. 

 

In the next section, two more detailed applications are presented. The first one including FCM 

and GA for one, two and three-steps-ahead problems. The second one compares the effect of 

traffic conditions when the model considers variations under predictable traffic conditions. 

  

�
����� 6LPXODWLRQ�UHVXOWV�IRU�+3&�DSSOLHG�WR�D�GLDO�D�ULGH�V\VWHP��
�
������� +3&�ZLWK�GHPDQG�SUHGLFWLRQ��
 

A discrete-event system simulation for a two-hour period is conducted in order to evaluate the 

performance of both fuzzy zoning and genetic algorithm method by using a QR�VZDSSLQJ 

operational policy. A fleet of nine vehicles, with capacity for four passengers each, is considered. 

The simulation tests are implemented in Matlab version 6.5.1 release 13 running on a Pentium 

IV processor.  

 

The future origin-destination trip patterns are assumed unknown. However, historical demand 

obtained from the average demand measured over a week before or so, is available. This scenario 

is not real although, the demand patterns follow a heterogeneous distribution inspired on real 

data.  
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An urban service area of approximately 81

straight between stops at an average speed 

performed over two representative hours 

 

The historical data generated via simulation follows the trips patterns shown in Figure 

arrows. 

 

For the simulation test, 120 calls were generated over the whole simulation period of two hours 

according to a spatial and temporal distribution following the same behavio

historical data.  

 

Regarding the temporal dimension, 

intervals between calls with rate of 1 [call/minute] for both the first and second hour of 

simulation. In terms of spatial distribution, pick

within each corresponding zone. A reasonabl

boundary distortions (10 calls at the beginning and 10 at the end).

)LJXUH����
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urban service area of approximately 81 km2 is considered. Vehicles are assumed to travel 

straight between stops at an average speed of 20 km/hr within the region. All 

performed over two representative hours ( )14 : 00 14 :59,15: 00 15:59− −  of a working day.

The historical data generated via simulation follows the trips patterns shown in Figure 

test, 120 calls were generated over the whole simulation period of two hours 

according to a spatial and temporal distribution following the same behavio

Regarding the temporal dimension, a negative exponential distribution is assumed 

intervals between calls with rate of 1 [call/minute] for both the first and second hour of 

simulation. In terms of spatial distribution, pick-up and delivery points were generated randomly 

within each corresponding zone. A reasonable warm up period was considered to avoid 

boundary distortions (10 calls at the beginning and 10 at the end). 

�

)LJXUH�������2ULJLQ�GHVWLQDWLRQ�WULS�SDWWHUQV��
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Vehicles are assumed to travel 

All simulations are 

of a working day. 

The historical data generated via simulation follows the trips patterns shown in Figure 4.12 with 

test, 120 calls were generated over the whole simulation period of two hours 

according to a spatial and temporal distribution following the same behaviour as that of the 

is assumed for time 

intervals between calls with rate of 1 [call/minute] for both the first and second hour of 

up and delivery points were generated randomly 

e warm up period was considered to avoid 
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Fifty replications of each experiment were conducted to obtain global statistics. With regard to

the cost function, a weight α
waiting time in the cost function expression.

zoning proposed with  respect to a 

two steps algorithms were tested and explicit enumeration results were considered for 

benchmarking.  

 

Figure 4.13 shows an application of the procedure described in Section 

clusters are obtained (Step 1), next their membership degrees are depicted (Step 2). Each call is 

associated with the largest membership degree (Step 3). In addition, the t

equal to 0.6 in order to consider just the data associated with the relev

Next the corresponding probabilities are computed (Ste

obtained again using FCM (Step 6).

 

Table 4.5 shows the coordinates of fuzzy cluster centre

relevant trip patterns and the corresponding probabilities. On the other hand, Table 

classic zoning based upon 4 origin

 

)LJXUH���
 

ter 4. Hybrid Predictive Control for the dial-a-ride system.      

replications of each experiment were conducted to obtain global statistics. With regard to

1=α  was used, which means that travel time is as important as 

waiting time in the cost function expression. In order to compare the performance of the fuzzy 

respect to a classic zoning (the four squared areas shown in Figure 4.

algorithms were tested and explicit enumeration results were considered for 

shows an application of the procedure described in Section 4.3

e obtained (Step 1), next their membership degrees are depicted (Step 2). Each call is 

est membership degree (Step 3). In addition, the threshold is fixed and 

equal to 0.6 in order to consider just the data associated with the relevant trip patterns (Step 4). 

Next the corresponding probabilities are computed (Step 5) and the fuzzy cluster cent

obtained again using FCM (Step 6). 

dinates of fuzzy cluster centres for pick-up and delivery points of 

t trip patterns and the corresponding probabilities. On the other hand, Table 

lassic zoning based upon 4 origin-destination pairs. 

)LJXUH�������0HPEHUVKLS�GHJUHH�IRU�FDOO�UHTXHVWV��

144 

replications of each experiment were conducted to obtain global statistics. With regard to 

was used, which means that travel time is as important as 

In order to compare the performance of the fuzzy 

ng (the four squared areas shown in Figure 4.12), 

algorithms were tested and explicit enumeration results were considered for 

4.3. In fact, 4 fuzzy 

e obtained (Step 1), next their membership degrees are depicted (Step 2). Each call is 

hreshold is fixed and 

ant trip patterns (Step 4). 

p 5) and the fuzzy cluster centres are 

and delivery points of 

t trip patterns and the corresponding probabilities. On the other hand, Table 4.6 shows the 
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�
7DEOH�����3LFN�XS�DQG�GHOLYHU\�FRRUGLQDWHV�DQG�SUREDELOLWLHV��)X]]\�]RQLQJ��

X pick-up Y pick-up X delivery Y delivery Probability 

4.5540 5.7155 2.9218 4.7514 0.1282 

3.7514 4.4812 5.2293 6.2232 0.2051 

4.7989 6.6121 3.0751 4.4972 0.2564 

5.2595 6.5057 4.3494 5.5161 0.4103 

 

 

7DEOH�����3LFN�XS�DQG�GHOLYHU\�FRRUGLQDWHV�DQG�SUREDELOLWLHV��&ODVVLF�]RQLQJ��

X pick-up Y pick-up X delivery Y delivery Probability 

6.75 6.75 6.75 6.75 0.0968 

2.25 6.75 2.25 6.75 0.2151 

6.75 6.75 2.25 2.25 0.3118 

6.75 6.75 2.25 6.75 0.3763 

 

 

One fine-tuning parameter is the predicted in time between successive calls, τ , which is relevant 

when evaluating the performance function of more than one-step-ahead algorithms. The optimal 

value of such a parameter is found by conducting a sensitivity analysis around the observed 

inter-arrival times from the historical data report.  

 

Figures 4.14 and 4.15 show the effective objective function (considering user as well as 

operation cost) using different τ  values for both classic and fuzzy zonings. Ten replications for 

each considered τ  value were used in order to obtain optimal values. For both zoning methods, 

the resulting optimal 5τ = .  
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)LJXUH�������6HQVLWLYLW\�DQDO\VLV�IRU�τ ��FODVVLF�]RQLQJ���

 

 
)LJXUH�������6HQVLWLYLW\�DQDO\VLV�IRU�τ ��IX]]\�]RQLQJV���

 

 

Using the obtained optimal values of τ , 50 replications of the two-steps-ahead algorithm based 

on explicit enumeration were conducted in order to compare the performance of both zoning 

methods. Table 4.7 presents the mean and standard deviations of the waiting, travel and total 

time for users. The comparison of fuzzy zoning with respect to classic zoning is shown in the 

same table. It observed that waiting time is significantly reduced (3.36%) while travel time 

remains almost constant and consequently, total time also decreases (1.71%). 
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7DEOH�����8VHU�FRVWV��

Two-step-ahead 
algorithm 

Waiting time 
(min) 

  Mean        Std 

Travel time 
(min) 

   Mean       Std 

Total time 
(min) 

   Mean        Std 

Classic zoning 6.1437 0.87 10.2358 0.71 16.3795 1.44 

Fuzzy zoning 5.9370 0.72 10.1629 0.76 16.0999 1.36 

Savings 0.2067 0.0729 0.2796 

Improv. (%) 3.36% 0.71% 1.71% 

 

 

Operational costs for the entire vehicle fleet are presented in Table 4.8. In addition, the total cost 

including user and operational cost (as in the objective function) is also shown in Table 4.8. A 

moderate improvement is observed for both components. However, the proposed fuzzy zoning 

methodology is a systematic alternative that allows determining trip patterns and their 

corresponding probabilities over a more realistic dynamic dial-a-ride system with jumbled up 

trip patterns. 

 

7DEOH�����9HKLFOH�DQG�WRWDO�FRVWV��

Two-step-ahead 
algorithm 

Operational costs 
(min) 

  Mean        Std 

Total effective cost 
(min) 

   Mean       Std 

Classic zoning 117.9 8.81 2699.4 122.84 

Fuzzy zoning 115.7 8.12 2651.1 112.86 

Savings 2.2618 48.3163 

Improv. (%) 1.92% 1.79% 

 

 

In order to analyze and evaluate the performance of both the proposed fuzzy zoning and the HPC 

based on GA, simulation tests were conducted for one, two and three-step-ahead problems under 

the same conditions. The results of 50 replications with GA solver are presented by using 20 

individuals and 20 generations. It also assumes the same trip patterns and probabilities obtained 

for the two and three-step-ahead scenarios. 
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Table 4.9 shows the effective waiting, travel and total times of passengers, by using the fuzzy 

HPC based on GA for different prediction horizons.  

 

It is observed that waiting time is significantly reduced by using the two-step-ahead method 

(15.04%) and even more from the three-step-ahead (22.30%), when compared with the myopic 

one-step-ahead method. In addition, a moderate improvement in travel time is observed.  

 

An interesting case is the comparison between the two-step-ahead with the three-step-ahead 

predictive method in terms of travel time. In fact, savings in travel time are greater for the two-

step-ahead method, mainly due to the greater uncertainty as the prediction horizon increases, 

affecting the reliability of the estimated probabilities. Due to this compensatory fact, the total 

time saving obtained with the three-step-ahead method is almost the same as that of the two-step-

ahead (9.78% and 9.45% respectively). 

 

7DEOH�����3HUIRUPDQFH�FRPSDULVRQ�IRU�RQH��WZR�DQG�WKUHH�VWHS�DKHDG�SUREOHPV��

 
Waiting time 

(min) 
Mean        Std 

Travel time 
(min) 

Mean       Std 

Total time 
(min) 

Mean        Std 

One-step-ahead 6.969 0.82 10.877 0.89 17.847 1.46 

Two-step-ahead 5.921 0.67 10.238 0.79 16.159 1.42 

Three-step-ahead 5.415 0.53 10.687 0.65 16.102 1.35 

Savings 2 step 1.048 0.639 1.688 

Improv. (%) 15.04% 5.87% 9.45% 

Savings 3 step 1.554 0.190 1.745 

Improv. (%) 22.30% 1.75% 9.78% 

 

Table 4.10 describes the operational costs for the entire vehicle fleet. In addition, total effective 

cost is also reported in the table. It observes that vehicle operational costs increase with the two 

and three-step-ahead methods, however, total effective costs are still reduced by running both the 

two-step-ahead (5.9%) and the three-step-ahead (4.47%) methods. From the results, it can be 

said that the two-step-ahead method seems better than the three-step-ahead algorithm, because 

the longer the prediction horizon, the less reliable the estimated probabilities are.  
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7DEOH������9HKLFOH�DQG�WRWDO�FRVWV�FRPSDULVRQ�IRU�RQH��WZR�DQG�WKUHH�VWHS�DKHDG�SUREOHPV��

 
Operational costs 

(min) 
Mean        Std 

Total effective cost 
(min) 

Mean       Std 

One-step-ahead 105.04 9.76 2730.0 127.832 

Two-step-ahead 105.87 11.68 2568.7 114.516 

Three-step-ahead 110.86 11.18 2608.0 112.444 

Savings 2 step -0.84 161.27 

Improv. (%) -0.79% 5.90% 

Savings 3 step -5.82 122.05 

Improv. (%) -5.54% 4.47% 

 

 

������ +3&�ZLWK�GHPDQG�DQG�FRQJHVWLRQ�SUHGLFWLRQ��
 

In this section, some simulation tests are carried out in order to quantify the potential benefits of 

HPC with demand and congestion prediction in the context of a dial-a-ride system. In the 

experiments a transportation fleet of nine vehicles, with capacity for four passengers each is 

used. The simulation tests are implemented in Matlab version 7.0.1 release 14 running on a 

Pentium® D CPU 3.20GHz processor.  

 

The future origin-destination trip patterns are unknown. However, historical demand obtained 

from the average demand measured over a week before or so, is available. This scenario is not 

real. However, the demand patterns follow a heterogeneous distribution inspired on real data 

from the Origin-Destination Survey in Santiago, Chile, 2001. An urban service area of 

approximately 81 km2 is considered and all simulations are performed over two representative 

hours ( )14 : 00 14 :59,15: 00 15:59− −  of a working day. The vehicles are travelling straight 

between stops and the embedded network following the speed distribution stated in (4.24). 

 

( )
( ) ( ) ( ) ( )

( )
2 22 24 4 7 6

2 2t t
, , 20+ 5 5

12 12

¬ ­ ¬ ­® ® ® ®
Y W S H H Wϕ ϕ

− + − − + −
− −   = − ⋅ + − ⋅ +      

 (4.24) 
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where W[min] is the clock time, W=0[min] corresponds to 14:00, and W=120[min] to 16:00. S �S̄ �S° � 
[km] denotes a position in terms of the plane coordinates inside the urban area. ( )Wϕ  is the white 

noise that captures the stochasticity coming from traffic congestion.�
 

The speed distribution shows how the congestion moves from one side of the urban area to the 

other along the two hours simulation. The historical data generated via simulation follows the 

trips patterns shown in Figure 4.16 with arrows. From historical data and a fuzzy zoning method, 

Figure 4.16 also shows the pick up and delivery coordinates and the probabilities for the most 

relevant trip patterns. 

 

 
)LJXUH�������2ULJLQ�GHVWLQDWLRQ�WULS�SDWWHUQV��3LFN�XS�DQG�GHOLYHU\�FRRUGLQDWHV�DQG�SUREDELOLWLHV��)X]]\�

]RQLQJ�
 

For the simulation test, 120 calls were generated following the same behavior as that of the 

historical data. Regarding the temporal dimension, a negative exponential distribution is assumed 

for time intervals between calls with rate of 0.9 [call/minute]. In terms of spatial distribution, 

pick-up and delivery points were generated randomly within each corresponding zone. A 

reasonable warm up period was considered to avoid boundary distortions (10 calls at the 

beginning and 10 at the end). 50 replications of each experiment were conducted to obtain global 

statistics. With regard to the objective function, a weight 1α =  was used, which means that 

travel time is as important as waiting time into the cost function expression.  

 

In order to analyze and evaluate the performance of HPC strategies, simulation tests were 

conducted for one and two-step-ahead algorithms under the same conditions. Two-step-ahead 
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algorithm was performed considering the 4 trip patters shown in Figure 4.16. The results of 50 

replications with GA solver are presented by using 20 individuals and 20 generations.  

                            

Table 4.11 shows the effective waiting and travel times of passengers, by using the HPC based 

on GA for one and two-step-ahead prediction, and for the two velocity estimations. A constant 

estimation of velocity means that the expected departure time is computed based on the constant 

speed. The second estimation (variable velocity) is more realistic since it is adapted to the 

network velocity conditions through the recurrent model (̂ , )Y W S . The waiting time is 

significantly reduced by using the two-step ahead method (12%) when compared against the 

myopic one-step-ahead method. In addition, an improvement in travel time is also observed.  

 

Table 4.12 describes the operational costs for the entire vehicle fleet. In addition, total effective 

costs are also reported in the table. The vehicle operational costs and the total effective costs are 

still reduced by running both the constant velocity (8.81%) and the variable velocity (8.00%) 

methods. 

 

From this example, an improvement of 3.26% in waiting time is found, and still one 

improvement of 1.68% in total time, only due to the fact of including a more sophisticated 

prediction of the velocity over the space and time, based on historical data (recurrent congestion). 

 

 

7DEOH�������3HUIRUPDQFH�FRPSDULVRQ�IRU�RQH�DQG�WZR�VWHS�DKHDG�DOJRULWKPV����

Strategy 

   Variable velocity estimation Constant velocity estimation 
waiting time 

(min) 
travel time 

(min) 
waiting time 

(min) travel time  (min) 

Mean Std Mean Std Mean Std Mean Std 
One-step-

ahead 15.443 1.64 17.879 0.61 15.844 1.25 18.346 0.78 

Two-step-
ahead 13.618 1.90 16.939 0.65 14.077 1.78 17.002 0.74 

Savings          
2 step 1.8243 0.9402 1.7671 1.3434 

Improv.  
(%) 11.81% 5.26% 11.15% 7.32% 
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7DEOH�������2SHUDWLRQDO�DQG�WRWDO�FRVWV���

Strategy 

   Variable velocity estimation Constant velocity estimation 
Operational 
costs (min) 

Effective total 
costs (min) 

Operational costs 
(min) 

Effective total 
costs (min) 

Mean Std Mean Std Mean Std Mean Std 
One-step- 

ahead 
143.68 7.3172 3809.1 183.23 145.13 7.84 3906.0 189.51 

Two-step-
ahead 

142.95 8.7826 3504.3 256.51 143.21 7.83 3562.0 258.02 

Savings          
2 step 

0.7316 304.82 1.9125 344.07 

Improv.  
(%) 

0.51% 8.00% 1.32% 8.81% 

 

 

From the results described above, including a good estimation of the distribution of the speed 

into the prediction always improves the routing decisions, just from recognizing the variability of 

the speed (from historical data) as part of the prediction.  

 

Even though the improvement of this modelling scheme above the improvement resulting from 

the demand prediction seems not very impressive, the integrated approach should produce much 

better results as the variability of the speed (not only in time but also in space) became larger.  

 

Next, a methodology to deal with unpredictable congestion is developed, under the same HPC 

formulation developed for recurrent congestion. By following the same line of reasoning as in 

the previous paragraph, in this case it will be tried to measure the impact of applying this 

approach to a scenario in which suddenly a big incident occurs, generating for a while a big 

congestion around the affected area.  

 

The system should react in real-time to the occurrence of such an incident and take proper 

routing decisions taking into account such a change. Intuitively considerable cost savings in this 

case are expected, as shown next. 

�
�
� �
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����� )DXOW�WROHUDQW�FRQWURO�IRU�DEQRUPDO�VLWXDWLRQV�LQ�WKH�'LDO�D�ULGH�V\VWHP��
�
The approach described so far seems useful when a speed distribution is available and calibrated 

in both relevant dimensions, time and space. For that, a statistical work has to be conducted from 

historical data of the studied area, which allows us to have a good prediction of recurrent 

(predictable) traffic conditions. However, in real transportation networks, the unpredictable 

congestion events can also affect the expected vehicle travel times, resulting in bad quality 

routing with the occurrence of a big incident close to the dispatch areas. In order to incorporate 

such an effect, a fault detection and isolation (FDI) method is proposed for detecting the 

unpredictable traffic jam and a fuzzy fault tolerant control (FFTC) to force the vehicles avoiding 

the affected zones. Both systems will permit to reduce the effect of the incident over the users 

waiting and travel times. The unpredictable events will be detected and modelled by using real-

time information from our vehicle fleet, noting that the method is easily extended to the use of 

any other sources of online speed data. In the literature, there are some preliminary results for 

fault detection problems and diagnosis in the transport infrastructure, like traffic monitoring 

sensors and vehicle mechanical systems Capriglione HW� DO. (2004). Related with anomalies, 

Aronson HW�DO. (2002) considers the re-route problem as incident repair method for a multimodal 

transport system; the considered incidents are changes in freight orders, traffic jams and vehicles 

faults. Weinstein (2005) present a model oriented to objects to describe the planning of multi-

agent systems, which enables to diagnose the anomalies executions.  

�
�
������� 3URFHGXUH��

�
In this work, the measurements of ( , , )Y W S ϕ  are available for each position S at every instant 

time W. Besides, a recurrent model of the speed (̂ , )Y W S  is assumed. The speed measurements are 

compared with the results of the speed distribution model and used for the FDI method. 

Analytically, the speed residual is given by ˆ( ) ( , ) ( , , )H W Y W S Y W S ϕ= − . Thus, the residual ( )H W  for a 

reasonable period of time 77 is analyzed in order to activate the FDI system. If the system 

detects a fault during the entire period 77, the FDI system will be activated. During 77, the 

information of the real velocity is recorded to modify the recurrent model of velocity (̂ , )Y W S  

used by the HPC control strategy in order to avoid the negative effects of the incident. This 

procedure corresponds to the FFTC method. 
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After the FDI system is activated, a set of rules have to be defined in order to model the incident 

impact. These rules generate the new recurrent model that includes the original recurrent model 

(̂ , )Y W S  and the fuzzy rules for the incident representation. The fuzzy approach is used in order to 

capture the non-linear behaviour of the incident impact. Moreover, these fuzzy rules permit to 

distinguish different magnitude and features of the incident.  

 

First of all, the definition of the fuzzy rules require establishing the velocity associated with each 

type of incident, which is modelled by a Gaussian function (��σ��P). In the Gaussian model, � is 

the location of the centre of the incident, σ is the affected zone radius and P represents the 

minimum velocity located at the centre where the incident is supposed to happen. These three 

parameters are adjusted based on the type of the incident. The duration of Gaussian model is 

assumed constant. The parameterσ is assumed to be inversely proportional to the Euclidean 

distance associated with the vehicle movement during 77, and µ  is associated with the linear 

trajectory travelled by the vehicle. Analytically, 

 

1
± ²3 3σ =

−
,              ( )³ ´ ³3 3 3µ λ= + ⋅ − , 0 1λ≤ ≤    (4.25) 

 

where µ3  is the position of the vehicle where the fault is detected and ¶3  the position of the 

same vehicle after 77.  

 

Next, once the type of incident is established, the corresponding fuzzy rules are defined based on 

the expected behaviour of the system under incident conditions. These rules are fed by two 

inputs: the speed residual H�W� and the increment of the residual along the trajectory 

( ) ( ) ( 1)GH W H W H W= − − . The rule outputs are the movement size λ and the minimum velocity P for 

each type of incident, the latter proportional to { }* max ( ), ( 1)P GH W GH W= − . The fuzzy rules and 

their corresponding membership functions are defined in Figure 3.  
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)LJXUH�������)X]]\�UXOHV��DQG�PHPEHUVKLS�IXQFWLRQV�IRU�WKH�LQFLGHQW�YHORFLW\�PRGHO��

 

The proposed procedure FDI-FFTC method (as shown in Figure 4.18) consists of the following 

steps: 

 

6WHS��. When some vehicle detects the incident traffic jam for a certain period of time FDI is 

activated. 

 

6WHS� �. A new recurrent model is generated by considering both the (̂ , )Y W S  and the proposed 

fuzzy rules. The incident model based on fuzzy rules intends to represent the effects of the 

unpredictable event.  

 

6WHS��. The requests located somewhere inside the affected zone are re-assigned as new calls for 

the dispatcher system based on HPC, now considering the new recurrent model according to the 

new traffic conditions detected. As re-routing decisions of the re-assignment calls need to be 

fast, a one-step-ahead HPC is proposed ( ( )·6 N ).   

 

6WHS� �. After the re-routing, the new call requests are assigned by the HPC strategy ( )6 N  

considering the same new recurrent model, and for the two-step-ahead case. 

 

6WHS��. If FDI system does not detect an incident, the HPC strategy described in Section 2 is 

used directly ( ( )6 N ) for the two-step-ahead case as well. 
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)LJXUH�������)',�))7&�V\VWHP�IRU�WKH�GLDO�D�ULGH�V\VWHP��

�
�
������� 6LPXODWLRQ�UHVXOWV��
�
A reduced fleet of 4 vehicles in order to test the fault detection proposal. For the simulation test, 

75 calls were generated over the whole simulation period of two hours. In Figure 4.19, the speed 

distribution defined in equation (4.24) is shown for four instant times. Figure 4.20 shows the 

recurrent model (̂ , )Y W S  considered for the HPC before the incident. At 15:00, an incident 

happens (as shown in Figure 4.21) and thus, the fault detection module becomes active by 

checking the detection rules described in Section 4.6.1.  

 

Table 4.13 reports the waiting time, travel time, total time, Operational cost and Effective total 

cost for two cases. The former (Case 1) considers the HPC controller by using the speed 

distribution from the initial recurrent model, without incorporating the incident that start getting 

reflected in the real speed data taken online by the fleet of vehicles. The latter (Case 2) considers 

the HPC scheme together with the proposed FDI detection system. Thus, the HPC approach 

considers a more realistic recurrent model that provides the effect of the incident. In addition, a 

third case is included as a benchmark, in which the HPC is applied by assuming completely 

known the distribution of the speed as a result of the incident occurrence (Case 3), and therefore, 
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the routing decisions are preformed based on a velocity model including the fault effect (Figure 

4.21). 

 

 

7DEOH�������3HUIRUPDQFH�FRPSDULVRQ�IRU�IDXOW�GHWHFWLRQ�PHWKRG���

 
Waiting time 

(min) 
Travel time 

(min) 
Total time 

(min) 

Operational 
Cost 
(min) 

Effective Total 
Cost 
(min) 

Mean Mean Mean Mean Mean 

Case 1 9.5110 12.6994 22.2104 132.3360 687.3965 

Case 2 7.9461 12.9906 20.9367 132.0360 659.7205 

Improv. (%) 16.45% -2.3% 5.73% 0.2% 4.01% 

Case 3 8.1758 11.8525 20.0283 131.9050 632.6113 

∆Improv. (%) -2.42% 8.96% 4.09% 0.1% 3.94% 

 

 

 

The last row in Table 4.13 shows the additional improvement of Case 3 above Case 2 with 

respect to Case 1, to have an idea of how far the solution is from the ideal situation (Case 3) in 

which the incident (fault) is completely known at any time. The improvement in this particular 

case is of the order of 4% (Effective total cost) above the improvement of Case 1 over the model 

without including speed distribution in the prediction. A relevant improvement is observed in 

terms of waiting time in case of using the FDI-FFTC method (16.45%), in this case even better 

than having the information of the fault beforehand.  

 

More tests have to be run in order to completely explain this last result. The intuition suggests 

that this apparent contradiction can be explained from a trade off between travel and waiting 

time, favouring the former in Case 3 due to the extra available information with regard to the 

fault location and impact. Case 2 anyway, performs quite well when compared against the 

benchmark (Case 3) in all cases, except in travel time, in which the fault detection does not help.  
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)LJXUH�������5HDO�VSHHG�GLVWULEXWLRQ�ZLWK�LQFLGHQW��

�
�
�

Finally, in Figure 4.22 the real situation is compared with the new speed model, which 

adaptively updates the fault detector whenever the vehicles of the fleet enter the fault impact 

zone and report its experienced speed. Thus, Figure 4.22a) has to be compared with Figure 

4.22b), while Figure 4.22c) has to be compared with Figure 4.22d), for the real and modelled 

speed respectively at two instants. Results could improve considerably if more speed 

measurement stations were added to the detection system (both fixed and mobile stations). 
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�
����� 'LVFXVVLRQ��
 

In this chapter an analytical formulation for the dial-a-ride system based on a HPC approach is 

developed considering historical demand information for a systematic future prediction to 

improve current dispatch decisions. There are three major contributions of this chapter. First, 

formal analytical formulations of the state space models are developed. Second, fuzzy zoning is 

utilized to compute probabilities and trip patters from historical data under more realistic 

scenarios. Third, based on such an analytical approach, GA are proposed and tested based upon a 

simulated example. 

 

One major contribution of this formulation is the use of artificial intelligence methods to find 

better dynamic dispatching decisions under non-myopic scenarios (more than one-step-ahead 

prediction). Particularly, GA is presented as an efficient solver in computation times for this dial-

a-ride system based upon a detailed analytical formulation. Under certain conditions, a scenario 

of more than two-step-ahead can be solved by using GA in reasonable computation time. The 

analytical formulation developed in this research can be potentially utilized to fit other numerical 

methods to solve the dial-a-ride system optimization process. 
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EE works quite well for small problems (for instance, few planned stops and few vehicles). 

However, as the problem size increases (for example, under more realistic systems), GA 

becomes an attractive alternative to solve such problems in manageable computation time. GA 

applied to this specific problem is a good option to face more complex problems (such as the use 

of longer sequences, more sophisticated objective functions, relaxed constraint problems, etc.). 

Note that choosing the number of individuals and generations is a critical point to get reasonable 

computation time as well as accurate results. 

 

Moreover, a zoning method based on fuzzy clustering is proposed to systematically estimate 

origin-destination patterns from historical data and consequently obtain more reliable 

computations of the corresponding prediction probabilities. The proposed fuzzy zoning 

methodology improves the performance of predictive algorithms, mainly under more realistic 

historical data characterized by jumbled up trip patterns. 

 

The integrated methodology (Fuzzy HPC based on GA) allows solving for more than two-step-

ahead prediction to deal with uncertain and heterogeneous demand pattern scenarios. In a further 

application, to combine historical data (off-line) with online information is proposed in a more 

elaborate model able to capture imminent events in demand distribution that could affect the 

system performance. A fault detection scheme is suggested as it worked nice when detecting 

unpredictable traffic conditions.  

 

A more complete rigorous expression for the objective function could be used. In the next 

chapter, in the context of a multi-objective approach to deal with a similar problem, a more 

realistic objective function is utilized, which can also applied to HPC mono-objective 

formulation, considering the impact of the rerouting on passengers together with non-linear 

behavior of the objective function weights according to the time each user has spent on the 

system. In addition more complex configurations could explore the inclusion of time windows 

(hard and soft), transfer points (in bus stops for example or another ad-hoc locations), and a 

better consideration of operational costs. A sensitivity analysis with regard to both parameters α  

and τ  is planned to be also investigated, for two and three-step-ahead problems. It is possible to 

improve the estimation of tuning variables, such as number of probable calls, future step time 

prediction (τ ) which is unknown, prediction horizon (1), service policy, search over different 

feasible solutions structures, etc.  One nice problem could be to solve the version of the problem 
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where the demand is well known a priori (as benchmark). Heuristic like evolutionary algorithms 

could be applied for finding a good solution in a reasonable computation time. The trade-off 

between accuracy and computation time should be considered. 

 

In addition, the QR�VZDSSLQJ�operational policy will be also relaxed in further developments to 

test less restrictive dispatching rules, for which the analytical formulation approach would be 

useful.  Partial-swapping, or local heuristics that improves the nodes where the last call was 

assigned could improve the performance, however, special attention should be to trying to keep 

the effect of the 1-step-ahead predictions. For example, to repair a route without considering the 

future request could results in myopic assignations. 

 

When considering the predictive velocity distribution, the presented HPC formulation for a dial-

a-ride system combines two sources of uncertainty when making real-time vehicle routing 

decisions. On the one hand, the formulation considers uncertainty from possible future demand 

influencing routes of current customers, and on the other hand, the scheme also considers the 

uncertainty behind the traffic congestion conditions. The predictive model is proposed in order to 

modify the pre-planned schedule of vehicle routes based on traffic information around their 

routes as well as future insertions coming from unknown real-time service requests. In our 

approach, traffic congestion is modelled through the distribution of commercial speed of the 

vehicles on both relevant dimensions: time and space.  

 

The approach allows modelling not only predictable congestion conditions, but also 

unpredictable situations, such as incidents occurring unexpectedly at any location on the traffic 

network. In the second case, online (real-time) data is used regarding speed conditions from the 

fleet of vehicles moving around serving the demand.  

 

Results show the potential benefits of such an approach. Two important contributions of this 

matter can be mentioned. First, the integrated HPC allows systematizing the formulation of the 

dial-a-ride system as a control problem, which open more possibilities for using sophisticated 

techniques, not only to characterize the dynamic problem properly, but also to solve complex 

DPDP configurations unable to be treated without such a framework. Second, in the specialized 

literature there is no other dial-a-ride system formulation allowing prediction of both, future 

demand as well as future traffic conditions. Additional tests have to be conducted to adjust the 

embedded parameters and sophisticate the methods in order to get better solutions under realistic 
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scenarios. Third, the occurrence of an incident can be treated under a FDI-FFTC scheme, 

allowing the reaction of the controller and the adjustment of the speed distribution parameters to 

significantly improve the dispatch rules under such a distorted scenario. The addition of the 

speed distribution into the model ensures a better estimation of both waiting and travel times, not 

only due to demand prediction but also because of traffic congestion predictions, generating 

better real-time routing decisions, and consequently better performance of the dispatch service. 

The more information we have the system, the better performance can be obtained from the HPC 

framework.  

 

This chapter represents a first step in the elaboration of a sophisticated HPC approach to model 

dial-a-ride system and use prediction in the current decisions. The next step is to consider a real 

network configuration (with specific links and nodes) and replace the generic speed model in 

space by a velocity distribution model at a link level. This extension requires the coding of a 

time-dependent shortest path algorithm to compute optimal routes from point to point through 

the network, with link travel times depending on the time at which vehicles reach the upstream 

node of such a link. The coding can result harder, however the general framework remains the 

same. The use of traffic micro-simulation is proposed in order to have a better quantification of 

the performance of the system in real-time (simulation time). Better velocity models should 

result in better performance of the HPC scheme. In the case of unexpected incidents, a FDI-

FFTC method is proposed. However, the rules can be further improved, sophisticating the way in 

which the system reacts to the occurrence of the detected fault. One straight extension is to 

somehow reroute those vehicles whose sequence path fall into the fault area, even though the 

associated stops are not inside the affected zone. Besides, the present formulation can be 

extended to the use of fixed stations monitoring traffic conditions at strategically chosen 

locations over the urban area, in order to have more data available to better trigger the FDI 

detection.   

 

 

� �
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��� +\EULG�3UHGLFWLYH�&RQWURO�EDVHG�RQ�02�IRU�WKH�'LDO�D�ULGH�6\VWHP��
�
����� /LWHUDWXUH�UHYLHZ��
�
In this chapter the multi-objective hybrid predictive control (MO-HPC) framework (presented 

in chapter 3), is applied to the control of the dial-a-ride system shown in chapter 4. 

 

As discussed in chapter 4 for the control of a dial-a-ride system, a well-defined dynamic 

problem should be based on an objective function that includes prediction of future demand in 

current routing decisions, issue not always well treated in the specialized literature. A recent 

and complete review of dynamic pickup and delivery problems can be found in Berbeglia HW�DO. 
(2009), where general issues as well as solution strategies are described. They conclude that it 

is necessary to develop more studies on policy analysis associated with dynamic many-to-many 

pickup and delivery problems. 

 

In chapter 4 of this thesis, an analytical formulation was proposed for the dial-a-ride problem as 

a hybrid predictive control problem using state space models and algorithms that come from the 

computational intelligence literature (GA and Fuzzy Clustering).  

 

It seems reasonable that a proper definition of a predictive objective function includes both 

operator and user costs, computed from the estimated travel time for vehicles and users as well 

as waiting time for passengers before they are picked up. Thus, the formulation should properly 

quantify both the impact on the users’ level of service affected by real-time routing decisions, 

as well as the effect on the associated extra operational costs.  

 

It must be noticed that these two dimensions are opposite objectives. On the one hand, the 

interest of the operator is in minimizing operational costs, and, on the other, the users want to 

obtain good service, implying more direct trips, resulting in lower vehicle occupancy rates and 

consequently, higher operational costs to satisfy the same demand, for a fixed fleet. More 

efficient routing policies from the operator’s standpoint will reflect higher occupation rates, 

longer routes, and consequently, longer waiting and travel time for users.  

 

Thus, the question is how to properly balance both components in the objective function to 

make proper planning and fleet dispatching decisions. The answer has not been clarified yet in 
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the literature. It depends on who makes the decisions and in what context. To guide the 

decisions makers in this line, in this chapter a multi-objective HPC (described in chapter 3) is 

proposed for solving the dial-a-ride problem treated before in chapter 4 under a mono-objective 

HPC scheme. In the current chapter, the Evolutionary Multi-objective Optimization (EMO) 

algorithm proposed in chapter 3 is used to solve the dynamic formulation of the dial-a-ride 

system, considering both opposite dimensions (operator and users) in the objective function. 

 

As mentioned before in chapter 3, multi-objective optimization (MO) has been applied to a 

large number of static problems. Farina HW�DO. (2004) showed several dynamic multi-objective 

problems found in the literature, pointing out the lack of methods that allow testing them 

adequately. The use of MO is not new in static vehicle routing problems. Yang HW�DO. (2000) for 

a static vehicle routing problem (VRP) also realized the different goal pursued by users and 

operators in their costs. Tan HW� DO. (2007) considered a multi-objective stochastic vehicle 

routing problem with limited capacity; for solving it, the authors proposed an evolutionary 

algorithm that incorporates two heuristics for local searching of optimal solution and simulation 

to obtain the fitness function. The authors show that the algorithm is capable of finding useful 

trade-offs and robust solutions.  

 

A complete review of multi-objective vehicle routing problems can be found in Jozefowiez HW�
DO� (2008), where the different problems are classified according to their application (extension, 

generalization, or real-case study) and the components of the problem to which the objectives 

are related (tour, node/arc, or resources). Regarding the multi-objective algorithm for solving 

them, based on the survey, two main strategies are the most widely used. The first relies on 

scalar methods and the second relies on multi-objective evolutionary algorithms.  The authors 

concluded the need to define general multi-objective vehicle routing problems as well as more 

efficient algorithms and operators. 

 

As all the MO applications in VRP are static, the aim of this thesis chapter is to analyze the 

advantages of using MO for making dynamic decisions under a multi-objective optimization 

approach, relying on the Hybrid Predictive Control scheme proposed in chapter 3. One major 

goal of this development is to compare this new scheme with the HPC for a dial-a-ride 

described in chapter 4 of this thesis, based on a mono-objective and more simplistic objective 

function for dynamic dispatch decisions.   
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The multi-objective HPC (MO-HPC) optimization of the dial-a-ride system is non-linear and 

furthermore NP-Hard. Therefore, an ad-hoc evolutionary algorithm is reformulated for finding 

the multi-objective solution, which is the Pareto optimal set. The use of MO allows the 

decision-maker obtaining solutions that are not explored with the typical mono-objective HPC 

scheme. This extra information is a crucial support for the decision-maker who is finally 

looking for reasonable options of service policies not only for users but also for operators.  

 

The outline of the chapter is as follows. In Section 5.2 MO-HPC, the dial-a-ride problem  and 

model are summarized. In Section 5.3 MO-HPC is applied to the dial-a-ride problem under two 

different dynamic objective functions. Simulation results are shown and analyzed, and finally 

the discussion is highlighted.�
 

 

����� 0XOWL�REMHFWLYH�+\EULG�3UHGLFWLYH�&RQWURO��02�+3&��IRU�WKH�'LDO�D�ULGH��
�
������� 0XOWL�REMHFWLYH�+\EULG�3UHGLFWLYH�&RQWURO��02�+3&���
�
The notation hereafter is similar to that used in the previous chapter for defining a multi-

objective problem in two dimensions ( 1-  and 2-  to denote the objective functions commanding 

the process. 

 

In the context of solving a dial-a-ride problem the MO-HPC is dynamic, meaning that real-time 

decisions related to a service policy are made as the system progresses; for example, the 

dispatcher could minimize the operational costs 2-  keeping a minimum acceptable level of 

service for users (through 1- ) when deciding an assignment vehicle-user. Nevertheless, this tool 

could be implemented as a reference to support the dispatcher decision, which has the 

flexibility of deciding which criterion is more adequate. In this kind of problems, MO-HPC 

suits very well, as its helps the dispatcher to choose a solution to be applied, considering the 

trade-off between Pareto optimal solutions. Figure 5.1 shows an example of the dynamic 

evolution of Pareto front.  
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)LJXUH������'LDJUDP�RI�WKH�02�+3&�IRU�GLDO�D�ULGH�

 

 

As Figure 5.1 shows, the dispatch decision in current instant N will affect the Pareto front curve 

in the following instants. In the figure we appreciate that the decision at instant N will strongly 

affect the evolution of the Pareto front that is formed in the next steps (N+1, N+2, and so on).  

 

In the next section, the details of MO-HPC with regard to the implementation of these 

techniques to a dial-a-ride system are described. 

 

 

������� ([WHQGHG�0RGHO�RI�WKH�'LDO�D�ULGH�6\VWHPV��
 

The extended predictive model for the dial-a-ride system, is formulated in terms of three 

variables: estimated time of arrival to a stop, vehicle load among stops, and vehicle position. In 

order to compute these variables, the same two sources of stochasticity considered in chapter 4 

are included. The first regarding the unknown future demand entering the system in real-time, 

and the second coming from the network traffic conditions, in its spatial and temporal 

dimensions. For this application, let us assume a fixed and known fleet size ) over an urban 

area $. The specific location of a request (which includes its pickup as well as its delivery) is 

known only after the associated call is received by the dispatcher.  
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A selected vehicle is then rerouted at real-time to insert the new request into its predefined 

route (sequence) while the vehicles are in motion. The assignment of the vehicle and the 

insertion position of the new request into the previous sequence of tasks associated with such a 

vehicle, are control actions decided by the dispatcher (controller) based on the objective 

function, which depends on the variables related to the state of the vehicles in real time 

(following the same procedure used in chapter 4).�The fleet is in operation travelling within the 

area according to predefined routes. In this extended formulation, the service demand �η  that 

appears in real-time is described slightly differently from what was proposed in the previous 

chapter, namely 0
� � � � ��� �S G W WU Uη   = Ω . The demand is characterized by two 

positions, pickup and delivery ,� �S G , and by the instant of the call occurrence 0 �W . The 

expected minimum arrival time �WU  corresponds to the best possible service for that passenger, 

considering no re-routing of his(her) trip (shortest path) and a waiting time from the call instant 

associated with the closest available vehicle (in terms of capacity) to pick that passenger up. �U  

is the label that identifies the passenger who is making the call, and finally �Ω  denotes the 

number of passengers waiting there (size of the request).  

 

As stated before, N represents the N � 	  instant in the discrete events sequence. At any instant N, 
each vehicle M has assigned a sequence of tasks, which includes several points of pickup and 

delivery. Recalling some definitions from the previous chapter, the sequences are represented 

by the function ( ) ( ) ( ) ( ) ( ) ( )0 1 

���
�� � � � �6 N V N V N V N V N =  " " . Note the set of sequences 

( ) ( ) ( ) ( ){ }1 ,..., ,...,� �6 N 6 N 6 N 6 N=  associated with the fleet of vehicles correspond to the 

control (manipulated) variable ( )X N , and its specification is detailed in equation (4.1).  

 

In Figure 5.2 an example of a sequence is shown, in order to introduce the extended 

formulation proposed here for MO. Users labeled as “ 1U =1”, “ 2U =2” and “ 3U =3” are assigned to 

vehicle M . The sequence assigned considers to pick up user “1” (coordinate 1+ ), then to pick up 

user “3” (coordinate 3+ ), then to delivery user “1” (coordinate 1− ) and so on.  In the figure, 

users “1” and “3” will experience longer travel times due to rerouting. A different situation 

happens with user “2” whose pickup occurs just before the delivery. However the sequence 

could be improved for user “2” if the first stop of the vehicle sequence were the pickup of user 
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“ 2”  and then its delivery.  Then the controller must decide which sequence is better in order to 

keep a desired user police, and a minimum operation cost.  

 

 
)LJXUH������5HSUHVHQWDWLRQ�RI�VHTXHQFH�RI�YHKLFOH�M�DQG�LWV�VWRSV��

 

In Figure 4.2 another sequence assigned to vehicle M at instant N is shown. ( )ˆ ��7 N
 denote the 

expected departure time of vehicle M from stop L, ( )�̂ �/ N  the expected load of vehicle M�when 

leaving stop L, and ( )�; N  representing the current position of the vehicle at instant N� In the 

present work, the traffic conditions are modeled by means of a commercial distribution of 

speeds associated with the vehicles. This distribution considers two dimensions: spatial and 

temporal. The real distribution of speeds is assumed to be unknown (denoted by Y�W�S� �W��) 
which depends on a stochastic source �W�, representing the traffic conditions of the network as 

they change in time, and of a position S. A conceptual network will be assumed in this work, 

where the trajectories are defined as the straight line that joins two consecutive stops. Besides, 

a speed distribution for the urban zone during a typical period of recurrent congestion, 

represented by a speed model ( )ˆ ,Y W S , is supposed to be known, which could be obtained from 

historical speed data.  

 

The closed loop of the dynamic vehicle routing system under MO-HPC is shown in Figure 5.3. 

The HPC represented by the dispatcher makes the routing decisions in real-time based on the 

information of the system (process) and the values of the fleet attributes, which allow 

evaluating the model under different scenarios. Service demand η �  and traffic conditions ϕ�W�S� 
are disturbances in this system.  

 

( )�; N

( )1 1 3 1 2 2 3�6 N + + − + − − − ≡ → → → → → 
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)LJXUH�����&ORVHG�ORRS�GLDJUDP�RI�WKH�+3&�02�+3&�IRU�WKH�G\QDPLF�GLDO�D�ULGH�SUREOHP��

 

To apply the HPC and the MO-HPC approach, a new dynamic model is proposed to represent 

the routing process (an extension of model in chapter 4). 

 

For vehicle M, the state space variables are the position ( )�; N , the estimated departure time 

vector ( ) ( ) 1ˆ �����7 N 5 +∈  and the estimated vehicle load vector ( ) ( ) 1ˆ ��� !/ N 5 +∈ . The dynamic 

model for the vehicle M variables is the following. 

 

 ( )
( ) ( )( )

( ) ( )( )
( ) ( )

( )

( ) ( )

* *

*

* *

*

1

*

1

2

*

ˆ , if   
ˆ 1

if   

"

"

# #$ % %#% %# #$% % %
#% %

3 N 3 N
3 N Y W S W GW L Z N

; N 3 N 3 N
3 N L Z N

τ ++

+

 −
 + <+ = −

 =

∫          (5.1) 

 

( )
( )

( ) ( )
0

1

0
ˆ 1 , 0,1,...,

0

&' '& &() &(

7 N L
7 N L Z NW N Lκ

=

 =
+ = = + ≠

∑
               (5.2) 

 

( )
( )

( ) ( )( ) ( ) ( )
0

0

1

0
ˆ 1 , 0,1,...,

2 1 0

*+ +* *, ,* * *,

/ N L
/ N L Z N/ N ] N N L

=

 =
+ = = + − Ω ≠

∑
  (5.3) 

 

Equations (5.1), (5.2) and (5.3) are explained in section 4.2. 
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The proposed vehicle sequences and state variables satisfy a set of constraints given by the real 

conditions of the dial-a-ride problem. Specifically, must be considered the constraints of 

precedence, capacity and consistency in the solution of the MO-HPC problem to generate only 

feasible sequences, as explained in chapter 4 in detail. 

 

In the next section, two experiments with different MO-HPC formulations are conducted. In the 

first one, the same objective function used in chapter 4 is proposed for a small fleet of vehicles. 

As some users become particularly annoyed because their services were postponed, a new 

objective function is proposed and used to control with MO-HPC a larger fleet of vehicles. 

 

 

����� 2EMHFWLYH�)XQFWLRQ�'HVLJQ�DQG�6LPXODWLRQ�5HVXOWV��
 

������� 02�+3&�IRU�WKH�'LDO�D�ULGH�6\VWHP��
 

The motivation of this MO formulation is to provide to the dispatcher an efficient tool that 

captures the trade-off between users and operator costs. The objective of the HPC is to 

minimize an objective function from which the best routes for the vehicles will be selected. The 

proposed objective function quantifies the costs over the system of accepting the insertion of a 

new request. Such a function incorporates two decision dimensions, which normally move in 

opposite directions. The first component is the users’  cost which includes both waiting and 

travel time experienced by each passenger. The second component is the cost associated with 

the operation of vehicles. In this approach, the latter cost incorporates two types of expenses: 

the cost per travelled distance unit and the cost spent by operating the vehicles in time units. A 

fixed fleet size is considered. 

 

 

��������� +3&�IRU�D�'LDO�D�5LGH�6\VWHP��
 

A reasonable prediction horizon 1� is defined, which depends on the problem in study and on 

the intensity of unknown events, which can occur in the system in real time. If the prediction 

horizon is greater than one, the controller adds the predictive characteristic into the decision. 

The controller will compute the decisions for the complete control horizon 1, namely 
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( ) ( ){ },..., 1
-/.-6 6 N 6 N 1+ = + − , considering the predictions based on historical data, and will 

apply only the sequence decided for the current instant� ( )6 N �to the system according to the 

rolling horizon method. The performance of the vehicle routing scheme will depend on how 

well the objective function can predict the impact of possible rerouting, due to insertions 

caused by unknown service requests. Analytically, a mono-objective version of the proposed 

objective function for a prediction horizon 1, can be written as follows: 
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In (5.4), �- Z
[

 and 
\]-  denote the user and operator costs respectively, associated with the 

sequence of stops that vehicle M must follow at certain instant.  In equations (5.4)-(5.6), N + A  is 

the instant at which the A
^ _ �request enters the system, measured from instant N. max ( )K N + A  is the 

number of possible call patterns at instant N + A , ( )`S N + A  is the probability of occurrence of 

the K ^ _  request, associated with a trip pattern related to a specific pair of zones. The occurrence 

probabilities ( )aS N + A  associated with each scenario are parameters in the objective function 

and must be calculated based on real time or historical data, or a combination of both. In 

chapter 4 a zoning based method for trip patterns estimation based on Fuzzy Clustering was 

designed. Expressions (5.5) and (5.6) represent the operator and users cost functions related to 

vehicle M at instant N + A , which depend on the previous sequence ( )2b6 N + −A  and a new 
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potential request K which occurs with probability ( )S N + A ; ( )cZ N + A  is the number of stops 

estimated for vehicle M at instant N + A � The travel time is weighted by a factor d , and the term 

related to waiting time is weighted by e . Similarly, we will assume a generic expression for the 

vehicle operation cost (5.5), with a component which depends on the total traveled distance, 

weighted by a factor Ff , and another which depends on the total operational time, in this case at 

unitary cost F g . Thus, ( )
hi' N + A  represents the distance between stops L���and�L�in the sequence 

of vehicle M. Given the mono-objective nature of this formulation, expression (5.4) is 

generalized assuming an arbitrary factor  to be defined by the decision maker. 

 

 

��������� 02�+3&�IRU�D�'LDO�D�5LGH�6\VWHP��
 

The MO-HPC strategy is a generalization of HPC where the optimal control action is selected 

based on a criterion that takes solutions from the optimal Pareto region considering the 

following multi-objective problem: 
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with - x  and - y �corresponding to the objective functions defined in (5.4). Note that this scheme 

does not need to define an arbitrary parameter λ  as stated in (5.4).  

 

The solution to this problem corresponds to a set of control sequences, which form the optimal 

Pareto set. It is considered that ( ) ( ){ },..., 1
z z z6 6 N 6 N 1= + −  is a feasible control action 

sequence. In this case, as the control sequences are defined within a feasible finite set, the 

resulting optimal Pareto front corresponds to a set with a finite number of elements.  

 

From the Optimal Pareto front solutions for the dynamic MO-HPC problem, it is necessary to 

select only one control sequence ( ) ( ){ },..., 1
z z z6 6 N 6 N 1= + −  and from that, apply the control 

action ( )
{6 N �to the system according to the rolling horizon concept. For the selection of this 
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sequence, a criterion related to the importance given to both the user (- | ) and operator (- } ) costs 

in the final decision is needed. We must point out that the solutions obtained from the MO 

problem form a set, which includes as a particular case, the optimal point obtained by solving 

the mono-objective problem. Furthermore, an analytical relation between both solutions can be 

established; such a relation in the mono-objective case can be represented by the proper 

selection of the weight factor . 

 

A relevant step of this approach in the controller’ s dispatch decision is the definition of criteria 

to select the best control action at each instant under the MO-HPC approach. For example, once 

the Pareto front is found, different criteria regarding a minimum allowable level of service can 

be dynamically used to take policy dependent routing decisions. Three criteria for level of 

service will be evaluated: 

�
&ULWHULRQ����XVHU�FRVW�XQGHU���3��SHU�SDVVHQJHU.  
&ULWHULRQ����XVHU�FRVW�XQGHU��3��SHU�SDVVHQJHU. 
&ULWHULRQ�����XVHU�FRVW�XQGHU��3��SHU�SDVVHQJHU���
 

P1<P2<P3. In cases where the policy is accomplished for several solutions, the one that 

minimizes the operator cost will be selected. If the policy cannot be respected (no feasible 

solution for such a policy exists), the best solution found (the closest to the policy boundaries) 

is applied. Results and analysis of these operation policies from simulations are reported in 

Section 5.3.1.3.  

 

��������� 6LPXODWLRQ�5HVXOWV��
 

In this section we summarize the simulation tests conducted to show the MO-HPC approach 

application. A period of two representative hours is simulated, over a service urban area of 

approximately 81 km2. A fleet of four vehicles is considered, with a capacity of four passengers 

each. Assume that the vehicles travel through a straight line between stops and on a transport 

network that behaves according to an unknown speed distribution. Also assume that the future 

calls are unknown for the controller. However, historical data is available from where the speed 

distribution model and typical trip patterns can be extracted. The speed distribution is shown in 

Figure 5.4 and the historical data generated by simulation follow the trip patterns (arrows) in 
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Figure 5.5. From the historical data and the fuzzy zoning method proposed in chapter 4, the 

pickup and delivery coordinates and probabilities are shown in Table 5.1. 

 

 
)LJXUH�����6SHHG�GLVWULEXWLRQ��

 

7DEOH������3LFNXS�DQG�GHOLYHU\�FRRUGLQDWHV�DQG�SUREDELOLWLHV��)X]]\�]RQLQJ��
X pickup Y pickup X delivery Y delivery Probability 

1.9197 2.9006 5.8348 3.1773 0.1027 

2.0155 2.9567 3.2173 6.1373 0.1027 

1.9364 2.9974 6.5663 6.0621 0.3836 

5.5138 2.9972 6.5569 6.0215 0.411 

 

 
)LJXUH�����2ULJLQ�GHVWLQDWLRQ�WULS�SDWWHUQV�



Chapter 5. Hybrid Predictive Control based on MO for the Dial-a-ride System. 

181 
 

�
Sixty calls were generated over the simulation period of two hours following the spatial and 

temporal distribution observed from the historical data. Regarding the temporal dimension, a 

negative exponential distribution for time intervals between calls with rate 2 [call/minute] for 

both hours of simulation was assumed. Regarding the spatial distribution, the pickup and 

delivery coordinates were randomly generated within each zone.  

 

The 10 first calls at the beginning and the 10 last calls at the end of the experiments were 

deleted from the statistics to avoid boundary distortion (warm up period). 10 replications of 

each experiment were carried out to obtain the global statistics. Each replication took 20 

minutes in average, in a Pentium® D, 2.40Ghz processor.  

 

The objective function is formulated at two-steps-ahead, considering parameters:  

~ =16,7[$/min], �  =50[$/min], F � =25[$/min], F � =350[$/Km]. P1=1000, P2=1125, P3=1250. 

 

The first set of results were of the HPC approach with mono-objective functions, computed for 

weights  �������������������and �, in order to verify that the objectives pursued by users and 

operator are effectively opposite. Table 5.2 shows average values per user or vehicle according 

to the case. In order to analyze and evaluate the performance of the MO-HPC strategies, 

simulations for two-steps-ahead prediction were performed, under the same conditions.  

 

The results are reported in Table 5.3, showing the effective user waiting and travel time, and 

the average travel time and distance associated with vehicles, for the MO-HPC, with 1 � and 

the three criteria of level of service proposed in Section 5.4.1.2. 

 

Figure 5.6 shows the global results obtained from both approaches: HPC and HPC-EMO, 

detailing the cost components to global users and operators using the different criteria. The 

MO-HPC approach generates a range of options for the decision maker to decide the operation 

policy in real time with richer information, not possible to be provided with a traditional HPC 

approach. Furthermore, it is possible to add solutions under certain criteria (motivated by user 

level of service as well as operation savings). In this work three service level criteria were 

explored. Under criterion 1 we obtained a user cost equal to $1014.4 similar to the $1000 

constrained by the service policy. Under criterion 2 a user cost equal to $1088.86 lower than 
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the $1125 specified in the service policy is obtained. Finally, under criterion 3 we obtained a 

user cost equal to $1177.7 which is lower than $1250 so the service policy is also fulfilled here.  

 

�
7DEOH������+3&�ZLWK�GLIIHUHQW�ZHLJKWLQJ�IDFWRUV��

Weight factor � Travel time 

[min/pax] 

Waiting time 

[min/pax] 

Travelled time 

[min/veh] 

Distance 

travelled 

[km/veh] 

 = 0 14.0512 25.3705 82.4936 21.8086 

 = 0.25 16.2678 12.7871 106.2952 26.8951 

  = 0.5 16.4896 10.4631 111.3786 27.4946 

 = 0.75 15.8964 9.4583 113.7029 28.6032 

  = 1 16.2400 8.4579 121.7460 30.8408 

 

 

 

7DEOH������02�+3&�GLIIHUHQW�FULWHULD��

MO Criteria� Travel time 

[min/pax] 

Waiting time 

[min/pax] 

Travelled time 

[min/veh] 

Distance 

travelled 

[km/veh] 

&ULWHULRQ�� 15.8817 14.9941 94.4766 27.3942 

&ULWHULRQ�� 15.3825 16.6497 91.7576 26.8549 

&ULWHULRQ�� 14.8654 18.5962 88.5647 24.1264 
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)LJXUH�����*OREDO�VWDWLVWLFV��+3&�ZLWK�GLIIHUHQW�ODPEGD�YDOXHV�DQG�VROXWLRQV�ZLWK�(02�FULWHULD��

 

 

������� 02�+3&�IRU�WKH�'LDO�D�5LGH�6\VWHP�ZLWK�D�8VHU�6HUYLFH�3ROLF\��
 

After analyzing the previous results, several issues regarding users’  level of service were raised. 

To handle some undesired situations in that sense, a new objective function was designed, able 

to account for the fact that some users can become particularly annoyed if their service is 

postponed (either pick-up or delivery). See for example in Figure 5.7 the type of situations that 

could arise if such issues are not considered. In the Figure, circles represent annoyed users in a 

typical dynamic setting. In a proper formulation, a higher weight in the objective function 

should penalize differently very-long waiting or travel times. Next in this section, these ideas 

are formalized in an analytical proposal.    

 

In this section, a mono-objective function of the hybrid predictive controller is defined, which 

chooses the best routes and vehicles to serve the dynamic demand. The proposed objective 

function quantifies the costs over the system of accepting the insertion of a new request. Such a 

function incorporates two dimensions, which as mentioned before, normally move towards 

opposite directions. The first component that takes into account the users’  cost, includes both 

waiting and travel time experienced by each passenger. The second component is associated 
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with the operational cost of running the vehicles of the fleet. After highlighting the details of 

the mono-objective specification, the function is extended to a multi-objective structure in 

order to compare the results. 

 

 
)LJXUH������5RXWHV�VKRZLQJ�SRVWSRQHG�XVHUV��

 

 

��������� +3&�IRU�D�'LDO�D�5LGH�6\VWHP��
 

The performance of the vehicle routing scheme will depend on how well the objective function 

can predict the impact of possible rerouting due to insertions caused by unknown service 

requests. Analytically, a mono-objective version of the proposed objective function for a 

prediction horizon 1, can be written as follows: 

 



Chapter 5. Hybrid Predictive Control based on MO for the Dial-a-ride System. 

185 
 

( )

( ) ( ) ( )( )
( )

( ) ( ) ( )( )
( )

max

max

1 2

1
1 1 1

2
1 1 1

1

1

1

�2���
�6�8��;� � �

� � �� �
�6�>��?� � �

� � �� �

0LQ - -

- S N - N - N

- S N - N - N

λ λ
+

+

= = =

+

= = =

+ −

= + + − + −

= + + − + −

∑∑ ∑

∑∑ ∑

�

�

A A A

A A A

   (5.8) 

where 

( ) ( ) ( ) ( )( ) ( )( )
( )

0

1

ˆ ˆ
�� ������� �� �I� � � �� � �- N F 7 N 7 N F ' N

+
+

=

+ = + − + + +∑
��

A A A A   (5.9) 

( ) ( ) ( )( ) ( )
( )

( ) ( ) ( )
( )

( )
1

re-routing time

0 ( )
1

waiting time

ˆ1

ˆ

�
��

�
��

���� � ��     � � ¡ ��
¢

�P� � �
£ £ � � ¡ ��

¢

- N I N ] N 7 N WU

I N ] N 7 N W

θ

θ

+

+
=

+

+
=

  
  + = + − + + − +  

    

  
  + + + −  

    

∑

∑

¤
¤

¤
¤

A A A A
����	���


A A A
����	���


  (5.10) 

 

In (5.8), �- ¥
¦

 and 
§¨-  denote the user and operator costs respectively, associated with the 

sequence of stops that vehicle M must follow at certain instant. In chapter 4 a zoning based 

method for trip patterns estimation based on Fuzzy Clustering was designed. Expressions (5.9) 

and (5.10) represent the operator and users cost functions related to vehicle M at instant N + A , 

which depend on the previous sequence ( )2©6 N + −A  and a new potential request K which 

occurs with probability ( )ªS N + A ; ( )«Z N + A  is the number of stops estimated for vehicle M at 

instant N + A � To explain the flexibility of the formulation and its economic consistency, the 

term related with the extra time experienced by passengers in this service (delivery time minus 

the minimum time the user could arrive to its destination) is weighted by a factor ¬ , and the 

term related to total waiting time of each passenger is weighted by ­ . Note that the terms in the 

objective functions for user are weighted by the functions ( )®I N + A  and ( )¯I N + A , which 

include a service policy for users, so the cost of a user that entered the system a long time ago 

is considered more importantly than another user who has just made the request. In this work, 

we propose the following weighing functions: 
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Expression (5.11) implies that if the delivery time ( )¹̂º7 N + A  associated with user ( )
»¼U N + A  

becomes greater than  times its minimum total time ( )( )0 ( )
½ ½¾ ¾¿ÁÀ ¿·ÀWU W

+ +
−Â Â , the weighting function 

( )ÃI N + A  grows linearly, resulting in a critical service for such a client. Regarding the waiting 

time factor, 
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The intuition behind (5.11) is analogous to (5.12). In addition, we will suppose an expression 

for the vehicle operational cost (equation 5.9), with a component depending on the total 

traveled distance, weighted by a factor F Í , and another on the total operational time, in this case 

at unitary cost F Î . Thus, ( )
ÏÐ' N + A  represents the distance between stops 1L − �and� L� in the 

sequence of vehicle M.  
 

 

��������� 02�+3&�IRU�D�'LDO�D�5LGH�6\VWHP��
 

The MO-HPC strategy is a generalization of HPC where the optimal control action is selected 

based on a criterion that takes solutions from the optimal Pareto region considering the 

following multi-objective problem: 
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A relevant step of this approach in the controller’ s dispatch decision is the definition of criteria 

to select the best control action at each instant under the MO-HPC approach. In this case, and 

given that the level of service is better considered, different criteria regarding a minimum 

allowable level of service can be dynamically used to take policy dependent routing decisions, 

based on the Pareto front obtained from the MO scheme. In this work, three criteria for level of 

service are evaluated: 

�
&ULWHULRQ����0LQLPXP�XVHUV¶�FRVW�FRPSRQHQW��
&ULWHULRQ����0LQLPXP�RSHUDWLRQDO�FRVW�FRPSRQHQW��
&ULWHULRQ����7KH�QHDUHVW�YDOXH�WR�D�JLYHQ�XVHU�FRVW��WUDYHOOHG�WLPH�SOXV�ZDLWLQJ�WLPH�FRVWV���
 

In those cases where the policy for users is accomplished for several solutions, the one that is 

the closest to the pursued policy will be selected. So, soft-constraints are included directly, 

without incorporating them into the optimization problem, although they are considered in the 

choice process that emulates the dispatcher. Results and analysis of these operation policies 

from simulations are reported in Section 5.4.3.  

 

 

��������� 6LPXODWLRQ�5HVXOWV��
 

In this section the simulation tests conducted to show the MO-HPC strategy application are 

presented. A period of two hours representative of a working day (14:00-14:59, 15:00-15:59) is 

simulated, over an urban area of approximately 81 km2. A fixed fleet of fifteen vehicles is 

considered, with a capacity of four passengers each. Assume that the vehicles travel in a 

straight line between stops and that the transport network behaves according to a speed 

distribution with mean equal to 20[km/h].  
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The future calls are assumed unknown for the controller. However, he(she) has historical data 

from where the typical trip patterns can be extracted. A speed distribution model and the trip 

patterns are known, from the historical data and the fuzzy zoning method proposed in chapter 4. 

This fuzzy zoning permits to generate the trip patterns and their probabilities as shown in 

Figure 5.8 and Table 5.4. 

 

Two hundred and fifty calls were generated over the simulation period of two hours following 

the spatial and temporal distribution observed from the historical data. Regarding the temporal 

dimension, a negative exponential distribution for time intervals between calls with rate 0.5 

[call/minute] for both hours of simulation was assumed. Regarding the spatial distribution, the 

pick-up and delivery coordinates were generated randomly within each zone. The 15 first calls 

at the beginning and the 15 last calls at the end of the experiments were deleted from the 

statistics to avoid limit distortion (warm up period). 10 replications of each experiment were 

carried out to obtain the global statistics. Each replication (emulating two hours and 250 on-line 

decisions) took 20 minutes in average, in a Intel® Core™2 CPU, 2.40Ghz processor.  

 

�
7DEOH������3LFNXS�DQG�GHOLYHU\�FRRUGLQDWHV�DQG�SUREDELOLWLHV��)X]]\�]RQLQJ��
X pickup Y pickup X delivery Y delivery Probability 

4.007 4.1847 5.6716 4.5576 0.119 

3.9312 4.0303 6.4762 6.1463 0.1726 

5.4013 4.0548 6.5659 5.9723 0.3512 

6.4578 5.9338 3.9844 5.9785 0.3571 
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)LJXUH������2ULJLQ�GHVWLQDWLRQ�WULS�SDWWHUQV��

�
The objective function is formulated at two steps ahead, considering parameters 

Ýθ =16,7[$/min], Þθ =50[$/min], F ß =25[$/min], F à =350[$/Km], α = 1.5, 77 = 5 [min]. First, the 

results of the HPC approach with a mono-objective function at two steps ahead are reported, 

computed for weights  ��������������������and �, in order to verify that the objectives pursued 

by users and operator are effectively opposite. Table 5.5 shows effective travel and waiting 

average times per user, as well as user cost. Table 5.6 shows effective total travel time, distance 

travelled per vehicle and total operator cost, all on average. 

 

 

7DEOH������+3&�ZLWK�GLIIHUHQW�ZHLJKWLQJ�IDFWRUV��8VHU�LQGH[HV��
Weight 

factor �
Travel time [min/pax] Waiting time [min/pax] Mean user 

cost [$] Mean Std Mean Std 

� ��� 9.36 3.66 4.52 2.74 382.27 

�� ������ 9.79 4.25 4.47 2.49 386.89 

� ������ 10.19 4.49 4.60 2.99 399.88 

� ������ 10.48 4.75 5.38 3.06 444.12 

�� ��� 10.01 7.38 15.44 10.80 939.15 
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7DEOH������+3&�ZLWK�GLIIHUHQW�ZHLJKWLQJ�IDFWRUV��2SHUDWRU�LQGH[HV��
Weight 

factor �
Time Travelled [min/veh] Distance Travelled [km/veh] Mean operator 

cost [$] Mean Std Mean Std 

� ��� 88.16 7.55 24.84 1.86 10898.28 

�� ������ 75.17 11.06 20.61 2.94 9094.22 

� ������ 67.57 12.78 18.62 3.51 8207.24 

� ������ 61.67 12.57 16.95 3.17 7476.06 

�� ��� 43.90 17.94 12.58 5.09 5500.82 

�
 

Tables 5.7 and 5.8 clearly show a clear trade off between opposite components. Besides, small 

values for standard deviation imply that the travel and waiting times are more balanced among 

passengers as a variable weight for them was included in the objective function specification. 

Notice the extreme case benefiting the operator results in a very poor service for users, not only 

around the mean but also in terms of bounding the standard deviation.  

 

Additional simulations for two steps ahead were conducted to analyze and evaluate the 

performance of the MO-HPC strategies. The results are reported in Table 5.7, showing the 

effective user waiting and travel time. In table 5.8 we also show average travel time and 

distance associated with vehicles. The results are reported associated with the previously 

described criteria (Section 5.3.4) for selecting the current policy at each event during the 

simulation.  In case of criterion 3�(the nearest value to a given user cost), three references are 

considered: 400, 500 and 600 [$] for sub-cases a), b) and c) respectively. 

 

Note from Table 5.7 and 5.8, the first two criteria are equivalent to cases of �equals to���and � 

from Tables 5.5 and 5.6.  With regard to criterion 3, the resulting mean user cost over the whole 

simulation fitted quite well the thresholds defined at each sub-case. Note also the small 

standard deviation of users cost, as a result of the service policy included by means of the 

special weighting functions in the new objective function formulation.   

 

 

�
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7DEOH������02�+3&�ZLWK�GLIIHUHQW�ZHLJKWLQJ�IDFWRUV��8VHU�LQGH[HV��

02� Travel time [min/pax] Waiting time [min/pax] Mean user 

cost [$] Mean Std Mean Std 

&ULWHULRQ��� 9.36 3.66 4.52 2.74 382.27 

&ULWHULRQ��� 10.01 7.38 15.44 10.80 939.15 

&ULWHULRQ��D� 10.32 4.75 4.62 2.67 403.17 

&ULWHULRQ��E� 10.76 5.36 5.63 3.58 461.30 

&ULWHULRQ��F� 10.63 6.09 7.25 4.59 540.20 

�
�

7DEOH������+3&�ZLWK�GLIIHUHQW�ZHLJKWLQJ�IDFWRUV��2SHUDWRU�LQGH[HV��

MO� Time Travelled [min/veh] Distance Travelled [km/veh] Mean operator 

cost [$] Mean Std Mean Std 

&ULWHULRQ��� 88.16 7.55 24.84 1.86 10898.28 

&ULWHULRQ��� 43.90 17.94 12.58 5.09 5500.82 

&ULWHULRQ��D� 74.99 8.76 20.91 2.19 9193.45 

&ULWHULRQ��E� 69.56 11.52 19.92 3.05 8713.60 

&ULWHULRQ��F� 71.40 10.53 20.39 2.80 8924.53 

�
 

 

 

����� 'LVFXVVLRQ��
�
This chapter presents a new approach to solve the dial-a-ride problem under a hybrid predictive 

control scheme using dynamic multi-objective optimization. Three different criteria are 

proposed to obtain control actions over real-time routing using the dynamic Pareto front. The 

criteria allow giving priority to a service policy for users, ensuring a minimization of 

operational costs under each proposed policy.  
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The service policies are verified approximately on the average of the replications. Under the 

implemented RQ�OLQH system it is easier and transparent for the operator to follow service 

policies under multi-objective approach instead of tuning weighting parameters dynamically.  

 

The multi-objective approach allows obtaining solutions that are directly interpreted as part of 

the Pareto front instead of results obtained with mono-objective functions, which lack of direct 

physical interpretation (the weight factors are tuned but they do not allow applying operational 

or service policies such as those proposed here). Thus, more generic solutions are searched.  
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��� +\EULG�3UHGLFWLYH�&RQWURO�IRU�DQ�,QWHJUDWHG�3XEOLF�7UDQVSRUW�6\VWHP��
�

����� /LWHUDWXUH�UHYLHZ��
�
The provision of efficient public transport systems in urban areas is crucial for the better 

development of a city and for improving the quality of life of public transport users that use the 

system to develop their regular activities every day. In addition, it is reasonable to offer a more 

personalized scheme for a subset of users willing to pay more in order to have a point to point 

transport service, which in essence should belong to the whole public transport system of the 

studied system. There are other reasons for promoting such integrated systems: in low demand 

density settings, it is very expensive to run fixed routes. With the development of technology, 

one should be able to add the dynamic dimension in the design of an efficient operational 

scheme, obtaining a more flexible integrated public transport system, able to serve not only in-

advance but also real-time requests. An interesting way to handle the request of these 

passengers is by coordinating the operation of traditional fixed-route public transport schemes 

with a more personalized sub-system working in a rerouting setting, operated by small vehicles 

of dial-a-ride type. Under real situations, the optimization of such systems can become is 

extremely complex and more sophisticated procedures are needed. Then, this chapter describes 

the design of a predictive control strategy for an integrated public transport system (IPTS) of 

this type, considering operational and service policies, as well as costs reduction.  

 

This chapter represents a first step in the design of coordination between dial-a-ride and other 

transportation system. The incorporation of transfer points in bus stops is a huge problem and 

more efficient optimization solvers are required. The inclusion of other transportation systems 

like taxis, subway, train, etc., is part of the further research. 

 

In the literature, there are many references regarding dynamic routing problems and public 

transport systems, but limited works trying to integrate door-to-door systems with fixed route 

lines. These integrated systems are usually called mixed service systems. The idea of 

combining trunk corridors (fixed route system) with feeder services (reroutable scheme) is in 

adding flexibility to the system together with reducing the demand pressure for the door-to-

door service. 
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Malucelli HW� DO. (1999) and Crainic HW� DO. (2001) describe a new flexible collective 

transportation system. Their system considers conventional fixed route lines combined with 

lines based on flexible itinerary and timetable. Hickman and Blume (2000) formulate the 

problem of scheduling both passenger trips and vehicle trips for a proposed integrated service. 

The service works in three stages: the demand responsive service connects passengers from 

their origin to the fixed route service and (or) from the fixed route service to their final 

destination. A schedule for both passenger and vehicle trips is created in order to minimize a 

measure of the cost of service. They use a modified insertion version of the heuristics by Jaw HW�
DO. (1986) in order to schedule integrated transit trips that accommodates both passenger and 

vehicle scheduling objectives. One strong assumption made by Hickman and Blume (2000) 

when specifying the generalized time or disutility function used in their algorithm, is to add a 

fixed transfer penalty, independent of the number of transfers realized. The number of transfer 

is also part of the cost function, but it only has a linear influence on the general expression.  

 

Liaw HW� DO. (1996) define the integrated mode as a bimodal dial-a-ride problem (BDARP), 

including paratransit vehicles as well as fixed route buses. They design a decision support 

system (DSS), which automatically constructs efficient paratransit vehicle routes and schedules 

for the BDARP. The insertion heuristics was tested on a data set from Ann Arbor, Michigan. 

Hickman and Blume (2000) illustrate their method using a case study of transit service in 

Houston, Texas, showing the advantages in cost as well as the impact on passenger level of 

service from implementing integrated transit service.  

 

Horn (2002a, 2002b, 2003, 2004) propose and describe the main analytical and procedural 

components of a modelling system which provides a framework for investigating the 

performance of urban passenger transport systems with particular attention to demand-

responsive transport modes and traveller information technologies (demand coming up in real-

time). The modes covered include conventional timetabled services (buses, train, etc.), taxis 

(both single and multiple hire) and other demand responsive services. Individual requests are 

resolved as single or multiple leg journeys through the use of request broking and journey-

planning modules that seek to minimise travellers’ generalised costs. Both modules are 

designed as embedded control systems and are intended for use in real-time as well as 

modelling applications. The decisions are made based on an interesting heuristic insertion 

procedure (time-windowed incremental insertion); however, there is no prediction power in this 

decision.  
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Cortés (2003), Cortés and Jayakrishnan (2002) proposes the development and evaluation of a 

new concept for high-coverage point to point transit systems (HCPPT). The proposed scheme 

design consists on a set of vehicles that perform both door to door service and fixed route 

service, so the waiting times in transfer nodes are minimized for all passenger picked-up for a 

vehicle that travel the fixed route. Sophisticated dynamic real-time routing rules were 

implemented in a multi-purpose simulation platform that showed that with enough deployed 

vehicles, the system can be substantially better, even competitive with personal auto travel, and 

compared to the existing fixed route public transit. HCPPT can be incrementally implemented 

by contracting out services to existing private operators. The strict optimization formulation 

and solution considers accounts for future dispatch decisions and can thus be interpreted as 

form of quasi-optimal predictive adaptive control problem.  

 

So far, the HPC framework to represent the real-time fixed-route public transport control for a 

system of buses (applying strategies such as holding, station skipping, signal priority, etc.) and 

the HPC formulation for door-to-door services, described in chapter 4, have been analyzed 

separately. In Cortés et al. (2009), Sáez HW� DO. (2009) a HPC framework was successfully 

applied for the control of a one corridor fixed-route bus system.  

 

The integrated system proposed here is described using the same HPC formulation for the bus 

system, which allows the prediction of the headways obtained from the fixed-route controller as 

inputs of the controller for the dial-a-ride system. Then, the proposed HPC for a dial-a-ride 

system, explained before in chapters 4 and 5, is adapted for including the demand that use both 

systems.  

 

Regarding the optimization procedures, in real urban situations and with similar hardware, 

more sophisticated procedures such as hybrid predictive control (HPC) proposed in chapter 3 

would entail much longer execution times than simpler heuristic algorithm. To cope with this 

problem, as the HPC solves an NP-Hard non-linear mixed integer optimization problem 

whenever a new decision needs to be made, computational intelligence methodologies of the 

type described in chapter 3 are proposed to simplify the computation load and, at the same 

time, to maintain the good quality of solutions. The details in the implementation of such 

methods is part of further research.   
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Thus, in this chapter the integrated dial-a-ride problem of a fleet of vehicles together with a 

public transport system is formulated using a hierarchical hybrid predictive control (H-HPC) 

approach. 
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The major idea in this chapter is to combine a regular fixed-route public transport trunk 

service (using large buses in the operation) with a typical dynamic dial-a-ride service (served 

with small vehicles, such as vans) described in chapter 4. The major objective of this 

development is to write an integrated hierarchical HPC formulation for both systems, where 

the relations between systems occur at transfer points corresponding to the stops of the bus 

corridor. The better the coordination and synchronization of transfer operations, the better the 

performance of the whole system. Considering that a regular passenger will have several 

options to travel from origin to destination, depending on the location of such points (close or 

far from a trunk bus route), and on the passenger willingness to pay higher fares for a more 

personalized service as well. 

 

Then, a proper integrated design should be able to fulfil point-to-point travel requests for five 

types of travel options represented in Figure 6.1 and Figure 6.2.  Option 1 is to travel door-to-

door directly on a re-routable small vehicle (say a van). Option 2 shows a combination of a re-

routable collector service finishing at a trunk bus stop. Option 3 shows a typical distribution 

system, in which passengers are picked up at a bus stop and taken to their final destination. 

Option 4 is a door-to-door option by using both systems, first the small re-routable vehicle, 

then the bus and finally another small vehicle. Notice that option 4 is not as attractive as the 

other options as it requires transferring twice. The option 5 is simply the use of the trunk 

corridor for the passenger trip, if that passenger has both pick-up and delivery locations close 

to the bus corridor stops. 
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Next, the characteristics of the demand are described for the five types of journey modes 

shown in Figure 6.2.  

 

The first type of demand uses just the dial-a-ride system (option �2 =1), similarly to the 

description in chapter 4. The demand is characterized by two positions, pickup and delivery 

,� �S G , by the instant of the call occurrence 0 �W . The expected minimum arrival time �WU  

corresponds to the best possible service for that passenger, considering no re-routing of 

his(her) trip (shortest path) and a waiting time from the call instant associated with the closest 

available vehicle (in terms of capacity) to pick that passenger up. �U  is the label that identifies 



Chapter 6. HPC for an Integrated Public Transport System. 

198 
 

the passenger who is making the call, and finally �Ω  denotes the number of passengers 

waiting there (size of the request). The service demand �η  comprises the information of the 

request, namely 0
� � � � � ��� �2 S G W WU Uη   = Ω . The first term equals 1 and indicates 

the passenger-journey is of the type 1.  

 

Figure 6.3 shows an example of demand of type 1. For the calculation of �WU , even though 

vehicle 2 is closer to the pickup point, it is not available, so the best vehicle to serve the new 

demand is vehicle 1. In the figure, the arrows represent the best service path satisfying the 

request. L6W  are the bus stops, not used as transfer points in this case. 
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The second type of demand is a combination of a re-routable collector service finishing at a 

trunk bus stop (option 	2 =2). The demand is characterized by one coordinate of pick-up 
S , 

one destination stop 
��VW  and by the instant of the call occurrence 0 �W . The expected minimum 

arrival time 
WU  corresponds to the best possible service for that passenger, considering a 

waiting time from the call instant associated with the closest available vehicle (in terms of 

capacity) to pick that passenger up, no re-routing of his(her) trip (shortest path) to the best 

bus-stop so the waiting time in that stop and total travel time is the minimum. 
U  is the label 

that identifies the passenger who is making the call, and finally �Ω  denotes the number of 

passengers waiting there (size of the request). The service demand �η  comprises the 
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information of the request, namely 0
� ��� � � ��� �2 S VW W WU Uη  

 = Ω . The first term �2 =2 

means the passenger journey is of type 2. This kind of user could use any transfer point 

belonging to the transit system (at any bus-stop) and it can be changed dynamically if the re-

routing positively affects the system performance. This variable transfer point could turn the 

optimization problem hard to be solved in real-time, so it will be assumed that among the 

possible transfer points, only the closest stop to the pickup coordinate plus the consecutives 

two bus-stops are considered as real transfer options.  Figure 6.4 shows an example of 

demand type 2. For the calculation of �WU , although vehicle 2 is closer to the pickup point, it is 

not available, so the best vehicle to serve the new demand is vehicle 1. Then, vehicle 1 have 

three possibilities for transferring:  bus-stop 6W � , bus-stop 6W �  and bus-stop 6W � . In the figure, 

the arrows show the best path for the vehicle to serve in the best way the request with bus-

stop 6W �  as the selected transfer point. Even though vehicle 1 and bus-stop 6W�  are chosen to 

compute �WU , in the final solution, a different vehicle and a different transfer point could be 

used. In fact, once the demand is assigned to a vehicle, the transfer point can change if the 

impact of that decision affect positively the system performance. Therefore, the transfer point 

is variable. In the objective function formulation defined later, �WU  is decoupled in two times, 

first the time 1�WU  to reach the transfer point (waiting time plus travel time), and the time �̂ �7  to 

reach the destination from the transfer point (waiting time at bus station plus travel time). 

Note that if the transfer point is set to be 6W � , a shortest travel time in the bus system is 

expected; however, the waiting time at the stop depends on the headways of the buses.    
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The third type of demand is a combination of trunk bus-stop finishing at a re-routable 

collector service (option #2 =3). The demand is characterized by one bus-stop of origin 
$%VW , 

a delivery coordinate NG , and by the instant of the call occurrence 0 &W . The expected 

minimum arrival time 'WU  corresponds to the best possible service for that passenger, 

considering a waiting time from the call instant in the bus-stop 
$%VW , the best travel time in-

bus (the best bus-stop used as transfer point) so the minimum waiting and travel time is 

obtained with the closest available vehicle in terms of capacity, once the user arrives to the 

transfer point, with no re-routing of his(her) trip (shortest path) to the destination. (U  is the 

label that identifies the passenger who is making the call, and finally )Ω  denotes the number 

of passengers waiting there (size of the request). The service demand *η  comprises the 

information of the request, namely 0
+ ,- - - - -�- -2 VW G W WU Uη  

 = Ω . The first term 

equals 3 and means that the passenger journey is of the type 3. This kind of user could use any 

transfer point belonging to the transit system (at any bus-stop where the user will wait for 

being picked up for a vehicle). However, this transfer point cannot be changed dynamically, 

even in cases where the re-routing would positively affects the system performance. This is 

for practical reasons, since once the user calls the dispatcher must indicate the transfer bus-

stop, which remains as a definite decision. Figure 6.5 shows an example of demand type 3.  
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In Figure 6.5 for the calculation of time 2WU , first the arrival time to the closest bus-stops to 

the destination 3G  are obtained. In the figure those times are *
1W  to the bus-stop 6W 4 , *

2W  to the 

bus-stop 6W5  and *
3W  to the bus-stop 6W 6 . Then, the position of the vehicles are estimated in each 

arrive time, and the vehicle which is closest and available, that produces the minimum waiting 

time in the transfer point and minimal travel time is chosen for obtaining 2WU . In Figure 6.5, 

the transfer point is 6W 5  and vehicle 2 is the best for the pickup and delivery of the user. A 

difference with users of type 2 is that, once the user is inserted, the transfer point will not 

change (for communication and practical reasons). In the figure, the arrows denote the best 

path for the user to be served. Even though vehicle 2 and bus-stop 6W 5  are used for calculating 

2WU , the vehicle used for serving the demand and the transfer point may be different. In the 

objective function formulation, 7WU  is decoupled in two times, first the time to reach the 

transfer point (including waiting and travel time on bus), and the time to reach the destination 

from the transfer point 18WU  (waiting time in bus station plus travel time). Note that if the 

transfer point is set to be 6W 6 , which seems to be the closest bus-stop to the destination, a 

longer travel time in the bus system is expected.    
 

The fourth type of demand is a combination of the dial-a-ride service, then trunk bus-stop, 

finishing at a re-routable collector service (option 92 =4). The demand is characterized by two 

positions, pickup and delivery ,: :S G , by the instant of the call occurrence 0 7W . The expected 

minimum arrival time 7WU  corresponds to the best possible service for that passenger, 

considering a waiting time from the call instant associated with the closest available vehicle 

(in terms of capacity) to pick that passenger up, no re-routing of his(her) trip (shortest path) to 

the best bus-stop so the waiting time in that stop and total travel time is minimum, 

considering also the best travel time in-bus (the best bus-stop used as transfer point) so the 

minimum waiting and travel time is obtained with the closest available vehicle in terms of 

capacity, once the user arrives to the transfer point, with no re-routing of his(her) trip (shortest 

path) to the destination. ;U  is the label that identifies the passenger who is making the call, 

and finally <Ω  denotes the number of passengers waiting there (size of the request). The 

service demand =η  comprises the information of the request, namely 

0
> ? ? ? ? ?�? ?2 S G W WU Uη   = Ω . The first term equals 4 and means the passenger journey 

is of the type 4. This kind of user requires two transfer bus-stops. The first transfer could be 
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changed dynamically if the re-routing positively affects to the system. The second transfer 

bus-stop cannot be changed dynamically, even if the re-routing could positively affect the 

system.  

 

The last type of demand uses just the transit system (option @2 =5). The demand is 

characterized by two bus-stops, the origin bus-stop ABVW  and the destination bus-stop 
CDVW , by 

the instant of arrival to the pickup bus-stop occurrence 0 EW . The expected minimum arrival 

time EWU  corresponds to the best possible service for that passenger, where waiting and travel 

time is minimum. EU  is the label that identifies the passenger, and finally <Ω  denotes the 

number of passengers. The service demand Fη  comprises the information of the request, 

namely 0
G H IJ J J J J�J J2 VW VW W WU Uη  

 = Ω . The first term equals 5 and indicates the 

passenger-journey is of the type 5.  

 

The modelling approach is in discrete time, where the steps are activated every time a relevant 

event occurs, that it is when a call asking for dial-a-ride service is received or whenever a bus 

arrive to a bus-stop (in more sophisticated schemes it could also be the time when the 

dispatcher decide to change a route due to congestion, accident, etc). N represents the N K L  
instant in the discrete events sequence. The preferred journey mode will be asked/suggest to 

the user, so this information will be provided to the HPC. In this chapter in-advance requests 

and time windows are not considered. The demand is inelastic and the value of users´ time 

will be assumed fixed (no preferences for the users), although annoyed user for long re-

routing will be considered through the weighting factors in the objective function. In addition, 

the dial-a-ride vehicle will not be able to wait for a user at any transfer point if the vehicle has 

at least one other user on board. 

 

The proposed operational scheme is designed in order to minimize the total operational costs 

and to optimize the level of service of users, the latter by means of the minimization of travel 

and waiting times as well as number of transfers. The entire optimization scheme relies on the 

availability of computer and communication technology in order to allow real-time 

optimization and coordination/synchronization between subsystems. Fixed route services in 

transit without near-the-door pickup and delivery are not very attractive to certain users with 

poor accessibility to the bus route from their origin or destination; however, fixed route 
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services are recommended in cases of some very high-density demand corridors. That is the 

major reason to propose more flexible alternatives to the user, taking advantages of fixed 

route (with high capacity vehicles) services on high-demand corridors, in combination with 

local dial-a-ride systems for low demand density portions of the trip. This type of scheme 

could become attractive to people who presently prefer the automobile to traditional transit 

systems for their regular trips but are not willing to pay the fare of a taxi for accomplish it. 

The closed-loop diagram of the integrated public transport system is shown in Figure 6.6. 

IPTS stands for Integrated Public Transport System, PTS for Public Transit System and 

DARS for Dial-a-ride system. 
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A challenge in this chapter is to design a way to integrate both systems, requiring special 

attention on the proper way to define the interface between them. A first scheme is to control 

both systems (buses and re-routable vehicles) with different hybrid predictive controllers (see 

Figure 6.7). The control actions decided for one system will be considered as disturbances for 

the other system.  

 

The scheme proposed in this chapter is to control both systems within a hierarchical 

framework, in which the hybrid predictive controller for the dial-a-ride system will include 

information of both systems (buses and re-routable vehicles). The advantage in this scheme is 

that a better service could be reached for users transfering between both systems; however, 

local controllers are safer in cases where the global controller failed. 
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The Hierarchical HPC is described in Figure 6.8. It receives information regarding the status of 

the dial-a-ride system (DARS) and the public transit system (PTS), as also the status of each 

user (effective travel times, waiting times, etc). For doing the predictions, Hierarchical HPC 

also uses an estimator of the disturbance input (demand and traffic conditions), so the controller 

can look forward and make decisions (control actions) using the predictions of the whole 

system.  

 

The H-HPC has two levels. The former is the control algorithm for the public transit system 

(PTS) exclusively. This level will keep the headways of the buses as regular as possible and the 

effect of the dial-a-ride system will not be considered since we assume a high demand of 

passengers who only use the transit system (users with journey Option 5). From this level, 

control actions like station-skipping, holding, etc, will be made based on the predictions of 

some variables like headways, buses positions, transference times, etc. The information 

required in this level is the status of users and buses, and demand and traffic conditions 

predictions. 

 

Public Transit 
HPC 

Demand 
Traffic 

Demand 
Predictor 

( )M6 N

Traffic 
Predictor 

( )NK N
( )O6X N

Buses and 
users status 

Vehicles and 
users status 

Dial-a-ride  
HPC 

IPTS 
 

PTS 
 
 

DARS 
 



Chapter 6. HPC for an Integrated Public Transport System. 

205 
 

The control algorithm of the dial-a-ride system (DARS) is established at a second level. This 

level selects the best vehicle to serve each request, using information that comes from the first 

level (headways) whenever a user requires the public transit system. Also, based on some 

heuristic, this level chooses the candidate vehicles to serve the new request avoiding the 

evaluation of the insertion cost of the whole fleet (obtaining the corresponding computation 

time savings). At the second level, some specific vehicles evaluate the insertion cost of 

different scenarios, considering the current request and the demand pattern. Each vehicle sends 

the costs to the second level, which chooses the best vehicle that provides the minimum cost for 

user and operator. The information required at this level comes from the first level (predicted 

headways of buses), the demand and congestion predictor (trip patterns, velocity), and from the 

incremental cost of each vehicle. The output of this level is the assignment of a request into a 

vehicle, in order to obtain a minimum incremental cost of the system. 
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In the Integrated Public Transport System (IPTS), the number of buses and vehicles, their 

capacity and the number of bus-stops are fixed. In the closed-loop diagram, the main variables 

of the Public Transit System (PTS) are the buses and users status. The state space variables 

for each bus E  are its load ( )P/ N , departure time to a stop ( )Q7G N  and position ( )R[ W . In the 

fixed stops, the state space variables are number of passengers waiting for a bus ( )S NΓ  and 
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the headway ( )X+ N  at the stop S.  The manipulated variables are the holding ( )YK N  and the 

station skipping ( )Z6X N  actions associated with bus E at instant N. In the Dial-a-ride system 

(DARS), the main variables, described in detail in chapter 4, are the vehicles and users status. 

The state space variables of each vehicle M, as in chapter 4, are position ( )[; N , departure time 

vector ( ) ( ) 1\]_^7̀ N 5 +∈  and vehicle load vector ( ) ( ) 1abdce/ N 5 +∈ . The manipulated variables are 

the sequences ( )f6 N  for each vehicle. The user status is given by a measurement of the 

effective waiting and travel times of each user, considering separately the effective waiting 

time at the pickup as well as at the transfer points. The demand and the traffic conditions are 

disturbances (stochasticity). Moreover, the objective function is influenced by the prediction 

of the uncertain demand and traffic conditions.  Next the different objectives functions are 

defined for each level of the proposed Hierarchical Hybrid Predictive Controller (H-HPC). 

 

�
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Whenever a bus arrives to a bus stop, the following objective function is optimized at level 1 by 

the HPC in order to make the real-time decisions and optimize the dynamic system, as in Sáez 

HW�DO. (2009) and Cortés HW�DO� (2009): 
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  (6.1) 

 

Objective function (6.1) comprises five components, all of them definitely oriented to user cost 

through total in-vehicle ride and waiting time. ( ) ( ){ }, ..., 1X N X N 1S+ −  is the control-action 

sequence with 
( 1)

( 1)
( 1)

y
y

K NX N 6X N
+ − 

+ − =  + − 

A
A

A
 when bus E triggers event 1N + −A . 1S  is the 

prediction horizon and % is the number of buses in the fleet. Note that { }( 1) 1,...,E E N %= + − ∈A , 

{ }( 1) 1,...,S S N 3= + − ∈A , if we consider that the future event 1N + −A  is triggered by one bus 



Chapter 6. HPC for an Integrated Public Transport System. 

207 
 

( 1)E N + −A  arriving to a specific station downstream ( 1)S N + −A . In expressions (6.1), 

, 1,...,5,z Mθ =  are weighting parameters, +  corresponds to the desired headway (set-point). 

The first term in (6.1) quantifies the total passenger waiting time at stops and depends on the 

predicted headway along with the bus stop load. The second term captures the regularization of 

bus headways, to maintain the headway as close as possible to the design headway. The third 

component measures the delay associated with passengers on-board a vehicle when they are 

held at a control station due to the application of the holding strategy. The fourth component 

corresponds to the extra travel time incurred by the passengers on board due to the transfer of 

other passengers. The longer the transfer is, the higher this component becomes. Finally, the 

fifth component is the extra waiting time of passengers whose station is skipped by an 

“expressed” vehicle, associated with the station-skipping strategy. 

 

Next, the model for transit transport system, described in Sáez HW�DO. (2009), is presented. The 

first state space variable modeled is the bus position at any instant W, ˆ( ){[ W , is described as a 

function of the bus’s instantaneous speed ( ){Y W  that depends on the continuous time and the 

applied control actions. Let us start computing the position of the bus E in continuous time W as 

follows. 

    

ˆ ˆ( ) ( ) ( )
|

}
~ ~�� ~

}[ W [ W Y Gϑ ϑ= + ∫ ,     (6.2) 

where �W  is the continuous instant at which the event N is triggered and ( )���[ W  the position of 

bus E at instant �W .  

 

The instantaneous speed ˆ( )Y W  is modeled by assuming a constant speed (Y � ) whenever the 

vehicle is moving, and the speed is equal to zero otherwise, which implies that the processes of 

acceleration and deceleration of the buses are ignored. Figure 6.9 shows the speed function of 

bus E while it is traveling from the station it reaches at instant N until the bus arrives at the next 

stop along its route (which is associated with future instant N�G). Notice that G corresponds to 

the time lapses (intervals) triggered by other buses of the fleet arriving at different bus stops, 

taking place while bus E is traveling between its current stop and the next (including the time it 

is at its current stop).  
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In the figure, ˆ ( )�7U N  is the estimated time associated with passenger transfer (maximum 

between the boarding and alighting times) and ˆ ( )�7Y N  is the estimated travel time between two 

consecutive stations, namely station S and the next station. As defined above, the dispatcher 

decides the holding time at station S, denoted ( )�K N . Clearly, when a bus is at a bus stop, its 

velocity equals zero while the bus is transfering passengers and also during the holding period 

(if the bus is held there), which means that the instant speed actually depends on those variables. 

In this context, an estimation of the instantaneous speed can be computed as: 

 

0
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    (6.3) 

 

In order to trigger the next event of the dynamic model, the expected remaining time (measured 

from instant�W) for the bus E to reach the next stop is required; it can be computed as follows: 

 

( )ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ,� � � � � �7 W W 6X N K N 7U N 7Y N W= + ⋅ + + −     .� ���W W W +≤ ≤   (6.4) 

 

Estimations of the continuous state space variables of our proposed scheme are given by (6.2) 

and (6.4).  Next, the discrete output variables of the dynamic model, required for the HPC 

strategy ( ˆ( 1)�/ N +  and ˆ ( 1)�7G N + ), are defined and analytically computed. 

 

First, let us define the predicted passenger load ˆ( 1)�/ N + , as the estimated number of 

passengers on bus L once it departs from the station. Analytically,  

�W

ˆ( )�Y W

��W +

ˆ ( )�7U N ( )�K N ˆ ( )�7Y N

0Y
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( )                                            otherwise

� � � ��
�

/ / N 6X N % N $ N E N/ N
/ N

 + −+ = 


,   (6.5)  

 

where /  is the bus capacity, ( )�/ N  is the load of bus E at instant N, ˆ( )�% N  corresponds to the 

expected number of passenger that will board bus E, constrained by the available capacity of 

the bus, and ˆ( )�$ N  represents the estimated number of passenger alighting from bus E�at event 

N��Note that ˆ( )�$ N  and ˆ( )�% N  are obtained through a statistical analysis of data collected from 

sensors that should be located at stops and buses. In this approach (Sáez HW� DO�, 2009), these 

estimations are obtained from data of both a set of previous similar days (off-line historical 

data) and dynamic information occurring the same day (on-line data).  

 

Based on off-line data, estimated ˆ( )�$ N  is using the most frequent destination patterns from 

previous days over the same period; then, those estimations are corrected with online 

destination data obtained from observed preferences from passengers already in the system. 

ˆ( )�% N  is computed based on both the estimated bus stop load ( )� NΓ  at instant N and the bus 

capacity; it is estimated considering autoregressive moving average models for the arrival time 

of passengers at stops. Moreover, the estimated transfer time defined before can be analytically 

described by  { }ˆˆ ˆ( ) ( ), ( )  ¡�   ¢ 7U N 0D[ W $ N W % N= ⋅ ⋅  where £W  and ¤W  are the marginal rate of 

boarding and alighting respectively in seconds per passenger. 

 

In addition, the estimated departure time ˆ ( 1)¥7G N +  once the bus E departs from its current stop 

can be computed as  

 

( )ˆ( ) ( ) ( )    if bus  triggered event ˆ ( 1)
( )                                    otherwise

¦ § § §§
§

W 6X N K N 7U N L N7G N
7G N

 + ⋅ ++ = 


    (6.6) 

 

The prediction of the bus stop load ˆ ( 1)¨ NΓ +  (when bus E departures from stop S), defined as 

the number of passengers waiting at bus stop (station) S�associated with the bus E that triggered 

event N; it can be computed as follows: 



Chapter 6. HPC for an Integrated Public Transport System. 

210 
 

 

ˆ ˆ( ) ( ) ( )   if bus  triggered event ˆ ( 1)
ˆ( ) ( )              otherwise

© © ª©
© ©
N N % N E NN N N

δ

δ

Γ + −Γ + = 
Γ +

,    (6.7) 

where ( )« NΓ  is the bus stop load at the same stop S at instant N. ˆ( )¬ Nδ  provides the number of 

passengers that arrive at the bus stop between instants N and the instant when the bus departure 

from this stop. ˆ( )­ Nδ  is generated based on the statistical analysis of the data in both the 

previous similar days and the same day (both off and online historical data) and is estimated 

considering autoregressive moving average models for the arrival time of  passengers to stops.  

 

By using the prediction of the departure time as in equation (6.6), it is possible to predict the 

headway ˆ ( 1)®+ N +  of the bus stop S where the event N  was triggered, with respect to its 

precedent bus E�� when it reaches the same stop, which corresponds to event 11 ¯N ] −+ − .  

Analytically:  

 

( ) ( ) ( )1 1
ˆ ˆ ˆ1 1 1° ± ± ²+ N 7G N 7G N ]− −+ = + − + −     (6.8) 

 

where ( )ˆ 1³7G N +  is associated with the bus E that triggers the event N , and ( )1 1
ˆ 1´ ´7G N ]− −+ −  

represents the predicted departure time of precedent bus E�� that triggers the event 1
µN ] −− , at 

the same stop. The variable 1
¶] −  represents the number of events between the arrival of the 

precedent bus E-1 and the bus E, both reaching the same stop.    

 

Finally, the system based on the dynamic model must satisfy some physical and operational 

constraints. The first constraint corresponds to the capacity constraint (already stated above). 

This is a physical constraint in the sense that the bus cannot transport more passengers than its 

maximum capacity. We can also apply a service policy by setting such a capacity differently in 

order to avoid overcrowding. Both the precedence constraint and the demand consistency are 

relevant, because every passenger has a specific origin and destination. Precedence constraints 

avoid passengers getting off before they get on any bus. With regard to the demand, it is 

assumed that there are no transfer nodes, and therefore, once a passenger is on board a bus, he 

(she) will alight from the same bus at his (her) destination stop. Also, once a passenger arrives 
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at their destination, he (she) will always get off the bus there (passengers want to minimize 

their travel time, so we assume that passengers do not stay on buses in loops).  

 

Regarding bus operation, the model is constrained to stop at a station if there is any passenger 

requesting to get off, even though the model recommends performing a station-skipping action, 

similar to what is suggested by Sun and Hickman (2005). Thus, if the next stop is the 

destination of even one passenger then the skipping action cannot be applied and the bus must 

stop and the passengers waiting can board. This strategy seems to work better than including 

that aspect as a penalty in the objective function, in which case some of the passengers could 

end up getting off at a station different from their planned destination. On the other hand, if the 

model determines a holding action at a certain stop, which is not physically appropriate for 

such an operation, then the bus just stops during a lapse required for a normal passenger 

transfer operation. 

 

As a physical constraint, and also for practical purposes, the holding control action can be 

applied just at specific stops, properly equipped to perform such an action. On the other hand, 

station skipping could be applied at every bus stop. 

 

Each bus is identified by a unique internal label. However, the model allows the indices to be 

updated when a bus arrives at its next stop, sorted in such a way that bus E�� always precedes 

bus E. Under certain operational conditions, the model allows buses passing other buses along 

their route; in such cases the indices are properly updated and sorted. 

 

Figure 6.10 shows the controller H-HPC structure including the inputs and output of this first 

level of H-HPC. All the variables in the figure were defined above. 
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An extended predictive model for the dial-a-ride system, such as that in chapter 4, is formulated 

in terms of three variables: estimated time of arrival to a stop, vehicle load among stops, and 

vehicle position. For this application, let us assume a fixed and known fleet size ) over an 

urban area $. The specific location of a request (which includes its pickup as well as its 

delivery) is known only after the associated call is received by the dispatcher. A selected 

vehicle is then rerouted at real-time to insert the new request into its predefined route 

(sequence) while the vehicles are in motion. The assignment of the vehicle and the insertion 

position of the new request into the previous sequence of tasks associated with such a vehicle, 

are control actions decided by the dispatcher (controller) based on the objective function, which 

depends on the variables related to the state of the vehicles in real time.�The fleet is in operation 

travelling within the area according to predefined routes. The modeling approach was defined 

in chapter 4, and next is summarized. 

 

The proposed HPC dispatcher selects the optimal sequences based on the minimization of an 

ad-hoc objective function. The optimization variable in the HPC are the sequence of stops 

assigned to vehicle M�at instant N,� ( )·6 N , given by:  

 

Level 1: Public 
Transit HPC 

Demand 
Predictor 

Traffic 
Predictor 

( )Ķ N
( )¹6X N

Buses and 
users status 

Level 2 Dial-a-ride 
coordinator 

( )º¼»[ W
( )½/ N

ˆ( )¾% Nˆ( )¿$ N

( )À NΓ
( )Á7G N

ˆ( )Â Nδ

ˆ ( 1)Ã+ N +

0Y

H-HPC 
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1 1 1 1 1

Ä Ä Ä Ä Ä

Å Å Å Å Å
Å Å Å Å Å

Å
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   Ω
   Ω   = =   
   
   Ω   

# # # # #
       (6.9) 

 

For vehicle M, the state space variables are the position ( )È; N , the estimated departure time 

vector ( ) ( ) 1ˆ ÉÊ_ËÌ7 N 5 +∈  and the estimated vehicle load vector ( ) ( ) 1ˆ ÍÎdÏÐ/ N 5 +∈ . The dynamic 

model, explained in details in chapter 4 and 5, for the vehicle M is as follows. 

 

 ( )
( ) ( )( )

( ) ( )( )
( ) ( )

( )

( ) ( )

* *

*

* *

*

1

*

1

2

*

ˆ , if   
ˆ 1

if   

Ñ

Ñ

Ò ÒÓ Ô ÔÒÔ ÔÒ ÒÓÔ Ô Ô
ÒÔ Ô

3 N 3 N
3 N Y W S W GW L Z N

; N 3 N 3 N
3 N L Z N

τ ++

+

 −
 + <+ = −

 =

∫          (6.10) 

( )
( )

( ) ( )
0

1

0
ˆ 1 , 0,1,...,

0

ÕÖ ÖÕ Õ×Ø Õ×

7 N L
7 N L Z NW N Lκ

=

 =
+ = = + ≠

∑
                (6.11) 

 

( )
( ){ }
( ) ( )( ) ( )

0

0

1

min , 0
ˆ 1 ,

min , 2 1 0

ÙÚÙ
Û ÛÙ Ü Ü

ÙÚÙ Ù ÙÜ

/ / N L
/ N

/ / N ] N N L
=

 =


+ =   + − Ω ≠  
 

∑
 ( )0,1,..., ÝL Z N= ,      (6.12) 

 

The details of (6.10), (6.11) and (6.12) can be found in chapter 4 and 5. The performance of the 

vehicle routing scheme will depend on how well the objective function can predict the impact 

of possible rerouting due to insertions caused by unknown service requests. Analytically, a 

mono-objective version of the proposed objective function for a prediction horizon 1, can be 

written as follows: 

 

( )

( ) ( ) ( )( )
( )

( ) ( ) ( )( )
( )

max

max

1 2

1
1 1 1

2
1 1 1

1

1

1
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λ λ
+

+

= = =
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= = =
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= + + − + −
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∑∑ ∑

∑∑ ∑

î

î

A A A

A A A

   (6.13) 
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( ) ( ) ( ) ( )( ) ( )( )
( )

0

1

ˆ ˆ
ïï ðdñðdñò óô õöô ô ÷ ôø ó ø- N F 7 N 7 N F ' N

+
+

=

+ = + − + + +∑
ùù

A A A A    (6.14) 

( ) ( ) ( ) ( ) ( )( )( )
( ) ( ){ }

4

1 1,..., /

ˆ, ,úû û
ü ý üþý ý ýÿ � ÿ � ÿ ÿ ÿ� ý ý ��� ��� � �- N N - U N ] N 7 Nθ

=  = ∈ + + = 

+ = Ω + ⋅ + + +∑ ∑� �A A A A A  (6.15) 

 

The notation is defined in chapter 4. The expression for the vehicle operational cost (6.14), 

consists in a component depending on the total traveled distance, weighted by a factor F � , and 

another on the total operational time, in this case at unitary cost F 	 . Thus, ( )


�' N + A  represents 

the distance between stops 1L − �and�L�in the sequence of vehicle M.  
 

In (6.15), , 1,...,3� Pθ =  is a weighting factor for each kind of user defined by the option in 

Figure 6.2. Note that demand of type 5 is not considered as in this level just dial-a-ride users 

are routed. Demand of type 4 is not considered either because it is not as attractive as the other 

options as it requires transferring twice. The demand 4 can be added in cases of having very 

long trips, maybe suburban or even interurban journeys. The analysis of them in the context of 

a system of this type is part of further research. 

( )


�- ⋅  is the objective function oriented to measure the user cost of a user ( )

�
�U N + A  whose 

journey is type P. 
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(6.18) 

 

( ) ( )( )ˆ ˆ,
; ;

<>=@? ?7 U N 7 N+ +A A  is the expected arrival time to the transfer bus-stop. The term related 

to the extra time experienced by passengers in this service (delivery time minus the minimum 

time the user could arrive to its destination) is weighted by a factor A , and the term related to 

total waiting time of each passenger is weighted by B . Note that the terms in the objective 

functions for user are weighted by the functions ( )CI N + A  and ( )DI N + A , which include a 

service policy for users, so the cost of a user that entered the system a long time ago is 

considered more importantly than another user who has just made the request, just like stated in 

chapter 5, under the MO-HPC approach for an isolated dial-a-ride system. 

 

In (6.16) and (6.17) the variable weighting function is defined as: 
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(6.19)
 

 

Expression (6.17) implies that if the delivery time ( )ÔP7 N + A  associated with user ( )
Q
RU N + A  

becomes greater than  times its minimum total time ( )( )0 ( )
S ST TU�V ULVWU W

+ +
−W W , the weighting function 
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( )XI N + A  grows linearly, resulting in a critical service for such a client. Regarding the waiting 

time factor, 

 

( ) ( )
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0 ( )1
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A
A

A A
  (6.20)

 

the intuition behind (6.18) is analogous to (6.17). 

 

In the case of users type 3, in (6.18), the functions ( )aI N + A  and ( )bI N + A  are the following: 
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The idea behind (6.21) and (6.22) is the same that (6.19) and (6.20), but the threshold 

parameters 277  and 2α  could be tuned is a different way to consider that to wait in a transfer 

point is less comfortable for the user, as well as the travelling in a dial-a-ride vehicle before 

proceeding to the public transit system. Finally in (6.17), the term related with the waiting and 

travel on the bus system, after the portion of trip performed in the dial-a-ride system, considers 

a comparison between the best total trip time 
( )
qrsMtWU

+ u  and the expected arrival time to the bus-

stop of destination ( ) ( )( )ˆ ˆ,
v v

w>x@y y7 U N 7 N+ +A A . Notice that it is not possible to modify the buses 
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control actions, if the resulting ( ) ( )( )ˆ ˆ,
v v

w>x@y y7 U N 7 N+ +A A  is not appropriate, however the system 

optimization will force the solution to modify the dial-a-ride routes in order to reach a 

reasonable travel time.  
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In summary, integrated schemes involving fixed route systems and re-routable services for real-

time routed transit are becoming increasingly attractive, mainly when information technology is 

used to determine vehicle and passenger call positions finding a real-time service setting. These 

schemes that add flexibility to the operation, could improve passenger demand, and improve 

the overall productivity from the efficient use of fixed route services. The typical constraints in 

many of the existing formulations, mainly in cases of traditional dial-a-ride type services 

without transfers, could result in suboptimal solutions. This is particularly significant when 

larger fleets of vehicles are used for such services resulting in several vehicle tours coming 

close in time-space. In this context, the aim of this chapter is to design, model and formulate 

this special type of mixed system, combining trunk corridors (fixed route system) with feeder 

services (reroutable scheme), allowing a passenger to access directly to either his(her) final 

origin or destination, or both. An application as well as the development of efficient algorithms 

to deal with a practical problem are left for the next steps of this research. 

 

 

����� 'LVFXVVLRQ��
�
The major idea in this work is to combine a regular fixed-route public transport trunk service 

(using large buses in the operation) with a typical dynamic dial-a-ride service (served with 

small vehicles, such as vans). The major objective was to write an integrated HPC formulation 

for both systems, where the relations between systems are the transfer points. The better the 

coordination and synchronization of transfer operations, the better the performance of the 

whole system. Considering that, a regular passenger will have several options to travel from 

origin to destination, depending on the location of such points (close or far from a trunk bus 
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route), and on the passenger willingness to pay higher fares for a more personalized service as 

well. 

 

The proposed operational scheme was designed in order to minimize the total operational costs 

and to optimize the level of service of users, the latter by means of the minimization of travel 

and waiting times as well as number of transfers. The entire optimization scheme relies on the 

availability of computer and communication technology in order to allow real-time 

optimization and coordination/synchronization between subsystems. Fixed route services in 

transit without near-the-door pickup and delivery are not very attractive to certain users with 

poor accessibility to the bus route from their origin or destination, or both; however, fixed route 

services are recommended in case of some very high-density demand corridors. That is the 

major reason to propose more flexible alternatives to the user, taking advantages of fixed route 

(with high capacity vehicles) services on high-demand corridors, in combination with local 

dial-a-ride systems for low demand portions of the trip. The idea is to combine a traditional 

public transport service on trunk corridors (big buses operating with established stops along the 

route) with a more flexible system (reroutable vans or big cars), transferring passengers 

between systems at specific transfer stations. This type of scheme could become attractive to 

people who presently prefer the automobile to traditional transit systems for their regular trips. 

 

In addition, as the hybrid predictive control optimization problem for the integrated dynamic 

public transport system is huge at every instant time, as further research it is proposed to study 

local optimization versus global optimization schemes, under an evolutionary multi-objective 

optimization predictive control framework. Specific evolutionary algorithms will be developed 

in order to propose real time optimization of the whole system, properly defining the system 

cost functions considering the necessity of coordination at transfer points but also considering 

the operator cost. Some insights regarding the implementation of this type of flexible systems 

will be provided, which can be incrementally phased or contracted out for private fleet 

operators. Potential zoning method and heuristics for reducing computational time will be also 

analyzed. 
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In this thesis a methodology for the design of predictive control strategies for non-linear dynamic 

hybrid systems was developed, including discrete and continuous variables. The methodology is 

designed for real-time applications, particularly the study of dynamic transport systems, 

considering operational and service policies, as well as costs reduction. The control structure is 

based on a proper definition of the key variables and their evolution in the future, a flexible 

objective function able to capture the predictive behaviour of the key variables of the system and 

efficient algorithms, mainly coming from the computational intelligence framework, to optimize 

performance indices for real-time applications. The framework of the proposed predictive 

control methodology is generic, and extensible to other industrial processes, and it is able to 

dynamically solve non-linear mixed integer optimization problems, which are known to be NP-

Hard. In this chapter, the major contributions of this work are highlighted; the chapter finishes 

with a section that points out the most relevant future research lines arising from the thesis work. 

�
�
7KHVLV�&RQWULEXWLRQV�
�
����$�QHZ�IX]]\�K\EULG�LGHQWLILFDWLRQ�PHWKRG�
�
A new methodology for the identification of non-linear systems with mixed integer and 

continuous states and inputs was developed. Particulary, based on a hybrid model, local fuzzy 

models were used to better approximate the local non-linear behaviour of a system. The key 

element of the hybrid system identification methods is the detection and estimation of the 

switching regions based only on input-output data. The identification is performed by a 

combination of fuzzy clustering and principal eigenvector analysis. The use of the principal 

component was not only demonstrated to be very useful in the detection of switching points but 

also efficient in terms of the computation time as no expensive optimization process was 

included. The comparisons demonstrated the better performance of the fuzzy hybrid model 

identification with respect to the Takagi & Sugeno identification when comparing the 1-step-

ahead prediction performance. 
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A new Hybrid Predictive Control problem was derived using the Evolutionary Multi-objective 

Optimization, punctually refereed to the use of Genetic Algorithms. Two different criteria were 

proposed to obtain an optimal control action from the Pareto front. Both criteria are directly 

related to the tracking error and control effort measurements and permit to define weighting 

factors of the typical Model Predictive Control. With regard to this last issue, two alternatives are 

considered to obtain the weighting values. Moreover, it was found that the model of the Pareto 

front identified through least mean squares provides the best results. 

 

����+3&�'HVLJQ�IRU�D�'LDO�D�ULGH�6\VWHP�
�
A dynamic formulation based on state space models for a dial-a-ride system designed as a HPC 

based on GA was derived considering historical demand information for a systematic future 

prediction of the key system variables to improve current dispatch decisions. HPC based on GA 

is an efficient solver in computation time for the proposed dial-a-ride system. A scenario of more 

than two-step-ahead tested via simulation provides efficient computation time.  

 

A zoning method based on fuzzy clustering was proposed to systematically estimate origin-

destination patterns from historical data and consequently obtain more reliable computations of 

the corresponding prediction probabilities. The proposed fuzzy zoning methodology improves 

the performance of predictive algorithms, mainly under more realistic historical data 

characterized by jumbled up trip patterns. 

 

The integrated methodology (Fuzzy clustering and HPC based on GA) allows solving for more 

than two-step-ahead prediction to handle uncertain and heterogeneous demand pattern scenarios.  

 

A fault detection scheme for a dial-a-ride system was defined for detecting unpredictable traffic 

conditions. The formulation considers uncertainty from possible future demand influencing 

routes of current customers, and the scheme also considers the uncertainty behind the traffic 

congestion conditions. A predictive model was proposed to modify the pre-planned schedule of 

vehicle routes based on traffic information around their routes as well as future insertions coming 

from unknown real-time service requests. Traffic congestion is modeled through the distribution 
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of commercial speed of the vehicles on both relevant dimensions: time and space. The approach 

allows modeling not only predictable congestion conditions, but also unpredictable situations, 

such as incidents occurring unexpectedly at any location on the traffic network. In the second 

case, online (real-time) data is used regarding speed conditions from the fleet of vehicles on 

service.  

 

The occurrence of an incident is treated under a FDI-FFTC scheme, allowing the reaction of the 

controller and the adjustment of the speed distribution parameters to significantly improve the 

dispatch rules under such a distorted scenario. The addition of the speed distribution into the 

model ensures a better estimation of both waiting and travel times, not only due to demand 

prediction, but also because of traffic congestion predictions, generating better real-time routing 

decisions, and consequently better performance of the dispatch service. The more information 

from the system is available, the better performance can be obtained from the HPC framework.  

 

����02�+3&�GHVLJQ�IRU�D�GLDO�D�ULGH�V\VWHP�
 

A hybrid predictive control scheme for a dial-a-ride system using dynamic multi-objective 

optimization was developed. Different criteria are proposed to obtain control actions over real-

time routing using the dynamic Pareto front. The criteria allow giving priority to a service policy 

for users, ensuring a minimization of operational costs under each proposed policy.  

 

The service policies are verified approximately on the average of the replications. Under the 

implemented RQ�OLQH system it is easier and transparent for the operator to follow service policies 

under multi-objective approach instead of tuning weighting parameters dynamically.  

 

The multi-objective approach for such a dial-a-ride service permits to obtain solutions that are 

directly interpreted as part of the Pareto front instead of results obtained with mono-objective 

functions, which lack of direct physical interpretation (the weight factors are tuned but they do 

not allow applying operational or service policies such as those proposed here). Thus, more 

generic solutions are searched.  

 

 

 

 



Chapter 7. Conclusions. 

223 
 

����+\EULG�3UHGLFWLYH�&RQWURO�IRU�DQ�,QWHJUDWHG�3XEOLF�7UDQVSRUW�6\VWHP�
 

An operational scheme of the integrated dial-a-ride problem of a fleet of vehicles together with a 

public transport system was designed in order to minimize the total operational costs and to 

optimize the level of service of users, the latter by means of the minimization of travel and 

waiting times as well as number of transfers. The entire optimization scheme relies on the 

availability of computer and communication technology in order to allow real-time optimization 

and coordination/synchronization between subsystems. Fixed route services in transit without 

near-the-door pickup and delivery are not very attractive to certain users with poor accessibility 

to the bus route from their origin or destination, or both; however, fixed route services are 

recommended in case of some very high-density demand corridors. That is the major reason to 

propose more flexible alternatives to the user, taking advantages of fixed route (with high 

capacity vehicles) services on high-demand corridors, in combination with local dial-a-ride 

systems for low demand portions of the trip. The idea is to combine a traditional public transport 

service on trunk corridors (big buses operating with established stops along the route) with a 

more flexible system (reroutable vans or big cars), transferring passengers between systems at 

specific transfer stations. This type of scheme could become attractive to people who presently 

prefer the automobile to traditional transit systems for their regular trips. 

 

 

)XWXUH�5HVHDUFK�ZRUN�
 

• New approaches of fuzzy hybrid modelling will be analyzed such as fuzzy clustering that 

generates both the fuzzy and hard partitions (fuzzy models with hybrid submodels). The 

stability issues of the proposed fuzzy hybrid modelling will be also studied. Also many 

dynamic transport systems applications could be solved with this method, from demand 

predictions, traffic, user behaviours, etc. 

• The analytical formulation of HPC based on GA developed in this research can be 

potentially utilized to fit other numerical methods to solve the dial-a-ride system 

optimization process. 

• The combination of historical data (off-line) with online information could be proposed 

in a more elaborate model able to capture imminent events in demand distribution that 

could affect the system performance.  
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• Other evolutionary algorithms for efficient optimization of HPC, such as PSO, could also 

be investigated, along with the convergence or trade/off with computation time of those 

algorithms. A good constraint handling technique is a very important issue in this kind of 

systems. 

• More complex configurations of dial-a-ride systems could explore the inclusion of time 

windows (hard and soft), transfer points (in bus stops for example or another ad-hoc 

locations), and a better consideration of operational costs. A sensitivity analysis with 

regard to parameters of HPC applied to dial-a-ride is also interesting of being further 

investigated, for two and three-step-ahead problems. It is possible to improve the 

estimation of tuning variables, such as number of probable calls, future step time 

prediction (τ ) which is unknown, prediction horizon (1), service policy, search over 

different feasible solutions structures, etc.  One nice problem could be to solve the 

version of the problem where the demand is well-known a priori. Heuristic like 

evolutionary algorithms could be applied to finding a good solution in a reasonable 

computation time. The trade-off between accuracy and computation time should be 

considered. 

• In addition, less restrictive dispatching rules, for which the analytical formulation 

approach would be useful, can be adapted within the same methodological scheme.  

Local heuristics could improve the performance to keep the effect of the 1-step-ahead 

predictions. For example, to repair a route without considering the future request could 

results in myopic assignations. 

• A real network configuration (with specific links and nodes) could be considered 

replacing the generic speed model in space by a velocity distribution model at a link level. 

This extension requires the coding of a time-dependent shortest path algorithm to 

compute optimal routes from point to point through the network, with link travel times 

depending on the time at which vehicles reach the upstream node of such a link. The 

coding could become harder, however the general framework remains the same. The use 

of traffic micro-simulation is proposed in order to have a better quantification of the 

performance of the system in real-time (simulation time). Better velocity models should 

result in better performance of the HPC scheme. In the case of unexpected incidents, a 

FDI-FFTC method is proposed. However, the rules can be further improved, 

sophisticating the way in which the system reacts to the occurrence of the detected fault. 

One straight extension is to somehow reroute those vehicles whose sequence path fall 
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into the fault area, even though the associated stops are not inside the affected zone. 

Besides, the present formulation can be extended to the use of fixed stations monitoring 

traffic conditions at strategically chosen locations over the urban area, in order to have 

more data available to better trigger the FDI detection.   

• The integrated HPC allows systematizing the formulation of dial-a-ride systems as a 

control problem, which open more possibilities for using sophisticated techniques, not 

only to characterize the dynamic problem properly, but also to solve complex dynamic 

pick-up and delivery configurations unable to be treated without such a framework.  

• The multi-objective predictive control design could be further generalized.  

• In addition, as the hybrid predictive control optimization problem for the integrated 

dynamic public transport system is huge at every instant, it is also proposed to study local 

optimization versus global optimization schemes, under an evolutionary multi-objective 

optimization predictive control framework. Specific evolutionary algorithms can be 

developed in order to propose real time optimization of the whole system, properly 

defining the system cost functions considering the necessity of coordination at transfer 

points but also considering the operator cost. Some insights regarding the implementation 

of this type of flexible systems will be provided, which can be incrementally phased or 

contracted out for private fleet operators. Potential zoning method and heuristics for 

reducing computational time could also be analyzed. 
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