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SUMMARY

This paper proposes a novel simulator of energy consumption patterns that allows designing demand side management
(DSM) strategies without economic incentives. The simulator emulates consumers’ patterns with and without installed
DSM interfaces, based on both actual consumption measurements and surveys applied to the inhabitants of an existing iso-
lated microgrid (Huatacondo, Chile) that has a particular DSM strategy without economic incentives. The simulator uses
Markov chains to generate data characterizing consumption patterns without DSM and Bayesian networks for cases in
which the users respond to the DSM strategy. Data obtained from the simulator are used to derive a response model of
the consumers to the DSM interface, which can be included for the energy management system design. Results show that
the implemented strategy can be effective and can generate savings up to 4.45% in diesel consumption for an ideal case
where all the dwellings have the interface installed. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Massive integration of distributed energy resources
(DERs) arises as a feasible alternative to comply with
power and energy requirements in developing countries.
In this context, microgrids appear as the more suitable tool
to incorporate the DER potential, contributing to the solu-
tion of challenges associated with rural electrification.
Moreover, back in 2014, there were 79 electrically isolated
communities with the potential to become isolated
microgrids solely in Chile [1].

Microgrids are primarily considered as electrical distri-
bution systems with DER that can be controlled and coor-
dinated [2]. They may work either in a connected mode
(where energy can be bought and sold to the external grid)
or in a disconnected (or islanded) mode [3]. In the latter,
the accurate management of limited resources is a chal-
lenge by itself. Microgrid operation and control obeys to
a hierarchical control structure, where three main control
levels are identified: primary, secondary, and tertiary
control [4]. Primary control relates to short-term control
actions to avoid situations in which either voltage or fre-
quency values go beyond a safety range. Tertiary control,
on the contrary, is associated to long-term actions that

frequently involve the interaction with the distribution net-
work operator. Secondary control falls in between, and its
main purpose is to (i) ensure that frequency and voltage
specifications are met and (ii) to provide DER with set
points guaranteeing both security and economic criteria.
Tasks associated to the secondary control are performed
by the energy management system (EMS) [3]. There are
different aspects that may contribute to improve the EMS
performance and, consequently, optimize the microgrid
operation. One of these aspects is to incorporate a demand
side management (DSM) strategy [5], which seeks to influ-
ence the users’ energy consumption, helping to generate
desired changes in the load profile [6].

According to Harper [7], DSM strategies can be divided
in five categories according to their purpose. In the specific
case of DSM in microgrids, incentive by price is the most
reported class. Its subcategories are described by Han and
Piette, Palensky and Dietrich [5,8], and Strbac [9] as direct
load control, interruptible rates, time-of-use rates, and real-
time pricing.

Less studied are DSM strategies that are relative to
community involvement, either in terms of education about
energy saving and its effects or information about the con-
sumption associated with various appliances and microgrid
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limitations. In fact, Allcott and Allcott and Mullainathan
[10,11] show that behavioral interventions are effective,
decreasing energy consumption in 2%, being comparable
to price incentive initiatives. Also, Ayres and Raseman
[12] studied the effect of a non-pecuniary strategy of
energy conservation, comparing the peer consumptions,
to reduce the energy consumption between 1.2 and 2%.

An important issue for DSM strategies is to model the
consumers’ response, allowing to determine the proper
signal to be sent to the costumer to generate the desired
response. In Ref. [13], an accurate consumption model
is required to decrease operational costs of the microgrid,
but the biggest barrier to accomplish that is the con-
sumers’ random behavior toward the DSM strategy. In
this context, different research works propose developing
load profile simulators to characterize both microgrid
operation and users’ response to the DSM. Bottom-up
approaches are the most frequently used to generate load
profiles. In Ref. [14], devices were randomly added to
the houses, following a given probability distribution
and a characterization of their utilization. This probability
distribution was obtained from vast (hourly) datasets as
case studies. The generated profiles correlated well with
the real data. A similar study is carried out in Ref. [15]
for three households. The authors in [16] utilized probabi-
listic approaches for load utilization to generate synthetic
consumption profiles of households, being characterized
by socio-economic indicators.

Approaches with Markov chains (MC) were used in
Refs. [17–22] to construct occupancy profiles for the
residents of a household. The characterization of the MC
considers that the number of active (in-home and not
sleeping) occupants in the dwelling and their activities
was registered. These profiles were utilized to generate
lighting demand [18,19] and usage profile for different
appliances. By associating related devices to these activi-
ties, a load profile was obtained [20,21]. These methods
require a huge amount of detailed registry from the inhab-
itants’ activities to build a load profile, information that is
not usually available for the specific case studies and,
furthermore, can be invasive to the population. On the
other hand, to simulate and model users’ responses to a
DSM strategy, most efforts focus on economic incentives
and the associated technologies. The authors [23–26]
studied the response using technologies that apply direct
load control, resulting in an effective approach to change
the consumption profiles. In Refs. [27–30], the authors
used the electricity price as DSM strategy, calculating
the elasticity of the users’ electricity demand. Finally,
the authors [31,32] utilized an electricity price-based
DSM but modeling the user as an agent looking to reduce
their expenses by shifting the use of their appliances.
These research efforts fail to consider the users’ behavior
and assume an ideal response.

In this regard, this paper proposes a new consumption
model for the design of DSM strategies, aiming to estimate
how the users respond to a specific DSM interface instead
of simply guessing it. Contrary to other consumption

models, it does not incorporate economic incentives but
considers dedicated and constant educational efforts on
topics related to energy efficiency and the importance of
the isolated microgrid for the community. This strategy
was implemented in the microgrid of Huatacondo [33,34],
described in detail in Section 2.2. Actually, this approach
aims at solving one of the main disadvantages found in cur-
rent EMS implementation: The system assumes that it is
possible to vary the user’s consumption by a constant
amount during the whole day, instead of acknowledging
possible modifications in the consumption profile on an
hourly basis. Thus, it is important to generate community’s
consumption data both with and without implemented
DSM strategies. For the generation of consumption profiles
without DSM, MCs are utilized. These MCs are character-
ized by measured data of the village and certain dwellings.
To generate the responses to a given DSM signal at specific
time instant, Bayesian networks (BNs) are used. BN train-
ing is achieved through the use of surveys applied to the
population, to characterize the use of certain electric de-
vices in an hourly schedule. From the generated consump-
tion profiles (with and without DSM), a load shifting
factor is calculated as a ratio between both consumptions.
The dataset of the load shifting factors is utilized to develop
a response model to be included in the EMS as the expected
users’ response range, providing a realistic range to opti-
mize the microgrid operation.

The rest of the paper is organized as follows: In Section
2, a brief description of the isolated microgrid is provided.
Section 3 proposes the structure and method utilized to
develop the consumer’s simulator. Section 4 specifies the
response model obtained with data, to be included in the
offline EMS with the specific DSM strategy. Section 5 pre-
sents the results of implement the users’ response model to
the offline EMS. Finally, Section 6 provides the main con-
clusions and contributions of this work.

2. ISOLATED MICROGRID
DESCRIPTION

This work is developed using the isolated microgrid
installed in Huatacondo village (20°55′36.37″S69°3′
8.71″W), located at the Atacama Desert, Chile [35]. This
community has 25 dwellings permanently occupied with
nearly 70 inhabitants.

Prior to the installation of the microgrid, the village was
supplied with only 10 h a day of electricity by a diesel gen-
erator. Nowadays, it has 24-h energy supply, thanks to the
use of renewable energies. The microgrid is composed of
photovoltaic generation (23 kW), wind generation (3 kW),
an energy storage system (ESS; 140 kWh), and a diesel
generator (150 kVA).

2.1. Energy management system

The Huatacondo microgrid includes an EMS that coordi-
nates and optimizes the operation of generation units and
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loads, minimizing the operating costs, non-delivered
power, losses, and non-delivered water, as shown in the
following expression [35]:

J ¼ δk ∑
T

k¼1
C kð Þ þ ∑

T

k¼1
CS kð Þ þ CUSδk ∑

T

k¼1
PUS kð Þ

þ CTf ∑
T

k¼1
VTf kð Þ þ CH Tð Þ ; (1)

where T is the prediction horizon, δk is the duration of time
period, C(k) is the operational cost of diesel generator, CS

(k) is the start-up cost of diesel generator, CUS is the price
for unserved energy, PUS(k) is the unserved power in the
system, CTf is the cost of unserved water, VTf(k) is the vol-
ume of unserved water, and CH(T) is the cost of using the
ESS. The mixed integer programming optimization prob-
lem is solved using the commercial package CPLEX. [33]

From Figure 1, the inputs to the EMS are the state of
charge (ESoC) estimator, minimum and maximum attain-
able solar power (PSmin and PSmax ), wind power forecasting
(PE), water consumption forecasting (WC), load forecasting
(PL), as well as minimum and maximum expected load
shifting (Smin and Smax, respectively) as part of DSM.

Outputs from the EMS are the diesel set point power
(PD), solar power (PS), a signal to the water pump (BP),
the ESS inverter power (PI), and the desired load shifting
factor (SL).

The solar power is controlled by the east-to-west incli-
nation angle of the panels (α). The maximum power PSmax

is obtained by the optimal orientation of the PV panels.
Sometimes, it is not feasible to use the maximum solar
power because, for example, the ESS is completely
charged. To prevent this problem, the minimum power
PSmin is obtained when the photovoltaic panels are oriented

to the minimum irradiance subject to the panel structure
physical constraints. Therefore, the solar power PS is ob-
tained from the EMS, where it limits to a value between
PSmin and PSmax .

2.2. Demand side management

The load shifting coefficients SL(k), provided by the EMS
optimizer, are the desired variation of the consumer power
consumption. Therefore, the expected load for the EMS
optimizer is [35]:

P̃L
kð Þ ¼ SL kð ÞPL kð Þ ; (2)

where PL(k) is the load forecasting input.
The DSM strategy applied in Huatacondo does not have

economic incentives. It uses an interface (Figure 2) that
shows light colors to the consumers, at each hourly divi-
sion, based on the shifting coefficients SL. These coeffi-
cients are calculated by the EMS in the optimization
process, indicating users how to modify their electric con-
sumption to adjust to the available resources.

To limit the expected consumers’ increase or decrease
response to the signals given by the interface, the shifting
factor is bounded with limits for the consumption increase
or decrease:

Smin kð Þ≤SL kð Þ≤Smax kð Þ : (3)

These values of Smin and Smax are arbitrarily fixed in the
actual implementation at Huatacondo microgrid, for exam-
ple, [Smin, Smax] = [0.95, 1.05], indicating that it can be
expected up to 5% of variation over the forecasted
consumption. Also, it is assumed that the daily energetic
consumption with DSM remains constant for the whole
optimization period, with respect to the base case [33]:

Figure 1. Block diagram for the energy management system
installed in Huatacondo village.

Figure 2. Implemented demand side management interface in
Huatacondo village.
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∑
T2

k¼T1

PL kð Þ ¼ ∑
T2

k¼T1

P̃L
kð Þ ; (4)

where T1 and T2 define the optimization period, with a
sampling time of 15min, given by the EMS operation.

The expected consumer response should be to increase,
maintain, or decrease the consumption when a green, yel-
low, or red light is shown, respectively.

To determine the interface light color from SL(k) calcu-
lated by the EMS, the values of Smin and Smax are used as
follows:

Light SL kð Þð Þ ¼

Green if SL kð Þ ≥1þ Smax � 1
2

Yellow if Smin þ 1� Smin

2
≤ SL kð Þ < 1þ Smax � 1

2

Red if SL kð Þ < Smin þ 1� Smin

2
:

8>>>>>><
>>>>>>:

(5)

2.3. Problem statement

Currently, the consumer response to the DSM strategy is
implemented, considering that the bounds for the shifting
factors Smin(k) and Smax(k) are arbitrarily fixed and con-
stants over the optimization period (a day). Effectively,
these values should be selected according to the consumer
behavior and therefore should be modeled as time-variant
signals.

This work presents the development of a consumption
simulator, based on measurements and surveys conducted
at homes in Huatacondo, which allows us to obtain the as-
sociated response model to be included as an input to the
EMS. This simulator uses MC and BN to characterize the
consumer’s behavior according to the DSM interface,
which in turn provides a more realistic response for the
load shifting factors at every sampling time.

3. PROPOSED CONSUMPTION
SIMULATOR

The proposed simulator allows generating consumption
data with, and without, considering the DSM strategy.
For the generation of base consumption patterns (without
response), the use of MCs is proposed. The generation of
responses to the DSM interface is performed using BNs.

The structure of the simulator of consumption patterns
is shown in Figure 3. On the one hand, the inputs are the
time k (sampling time of 15min) and the associated color
c of the DSM interface. On the other hand, the outputs
are the consumption for the entire village, considering
two different scenarios: with and without response to the
DSM, respectively. The base consumption Pd

L kð Þ for each
dwelling d is given by the realizations of the MC, using
the information stored in state transition matrices. Simi-
larly, the power consumption variation ΔPd

L k; cð Þ , given
the hour and color, is generated with BNs for each dwell-
ing, considering for this purpose the information stored in

conditional probability tables. Adding up all the base con-
sumptions per dwelling, the base consumption for the vil-
lage PL(k) is obtained. If all variations ΔPd

L k; cð Þ are
added to the previous base consumption, then the total con-
sumption for the village with demand response PSL k; cð Þ is
obtained.

3.1. Available data

Data used to develop the simulator correspond to energy
consumption observations ([Wh], each 15min) measured
at 20 dwellings (i.e., 96 samples a day) for 69 days. Based
on these data, the average power consumption (measured
in W) is obtained at each sample time. In addition, the total
load of the entire community is available for the same
period.

To model the response to the DSM interface, 41 sur-
veys were carried out to 14 dwellings. In these surveys,
the users were asked for their typical consumption without
DSM, and after that, their consumption with four se-
quences of DSM interface were presented. Two of the se-
quences represent typical sequences given by the
optimizer for a sunny and a cloudy day, while the other
two represent sequences for atypical days. Knowing the
behavior of the users in typical and atypical days allows
estimating the change in consumption. The users
responded how they would use their devices if they had
to follow the DSM interface signals at each hourly block
between 08:00 and 24:00 h, as shown in Table I.
Comparing the behavior between a case without DSM
and a case with DSM, a difference in the response can
be calculated.

Figure 3. Outline structure of the simulator.

Table I. Consumption survey.

Hour Fridge TV Electric oven – Iron

08:00 x – – – –

09:00 x x – – –

– – – – – –

23:00 x x – – x
00:00 x x – – –
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3.2. Generation of consumption based on
Markov chains

The implementation of the proposed simulator requires the
generation of data that could effectively be used to charac-
terize future consumption patterns for the community. In
this regard, we want to avoid simplistic procedures that
merely use subsequent replications of measured data in
time. Instead, a more sophisticated (and more precise) ap-
proach is chosen in this work that incorporates stochastic
characterization of those consumption patterns. After ex-
ploring different alternatives, the discrete-time Markov
chains (DTMCs) [36] have been chosen for this purpose.
In these MCs, each state is associated to a specific con-
sumption level, and thus, the uncertainty associated with
consumption time series is characterized through the defi-
nition of appropriate transition probabilities between those
states. As DTMCs can only model stationary processes,
and considering the notorious differences observed in the
acquired data in terms of average power consumption dur-
ing extended (and regular) lapses throughout the day
(Figure 4), a collection of different DTMCs has been cho-
sen to explain variations around those average power con-
sumption values.

Considering all of those in the preceding texts, addi-
tional assumptions considered for the implementation of
this method are:

• Each realization of the DTMC can be used to generate
data that will statistically represent future consump-
tion patterns.

• For all practical purposes, no seasonal variations are
considered, making the simulator valid for just one
season.

After a careful analysis of average power levels exhib-
ited throughout the day, three DTMCs are finally included
in our simulator. Indeed, the day can be divided in three
groups, limited by the times k1, k2, and k3, with possible

values between 1 and 96 (given by the number of samples
a day), and represents roughly low, medium, and high con-
sumption levels. Figure 4 illustrates the proposed method
to generate base consumption patterns with MCs.

The definition of appropriate parameters for each MC is
not an easy task. Firstly, the most adequate number of
states to be used must be found. Secondly, transition prob-
abilities must be computed. As the precision related to the
estimation procedure is a function of the number of avail-
able data samples, it is important to avoid an excessive
number of parameters (which translates into poor estima-
tion results).

As shown in Ref. [37], the maximum likelihood estima-
tor of the transition probability from state i to state j is
equal to:

p̂ij
¼ nij

∑m
j¼1nij

; (6)

where nij is the number of measured data that make a tran-
sition from state i to state j, and m is the total number of
states in the chain.

To discretize the power in states, represented as 1 …mi

in Figure 4, the use of the k-mean clustering is proposed,
where each clusters centroid corresponds to a state of the
MC. As a result, each power measure is associated with
one specific cluster and thus with a state of the MC. This
information is then used to determine the moments in
which the system makes a transition between those states.
Finally, maximum likelihood estimate of transition proba-
bilities are computed, considering the total number of tran-
sitions between states.

Regarding the determination of the number of states for
the MC, Navarrete [38] presents a method to calculate an
upper bound for maximum number of states, as a function
of design parameters p* and t. Parameter p* represents the
maximum probability that can be accepted for errors bigger
than t for the maximum likelihood estimator of pij. Being ni
the total number of measured data that makes a transition

Figure 4. Markov chain structure to the generation of load profiles without demand response.
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from state i to any state j, the upper bound to the probabil-
ity p*, c(ni), is calculated, as shown in Equation (7).

c nið Þ ¼ min 1; 2e�2nit
2
;

1
4nit2

� �
: (7)

Through an iterative process, starting with a high num-
ber of states, it is tested if c(ni) ≤ p* for the transitions from
state i, for every state i; in the case that this is not true for at
least one i state, the number of states must be reduced by
one. When c(ni) ≤ p* is true for every state i, the process
stops, and the maximum number of states m* is obtained.

Given the fact that there is only few data available, the
previous method can result in m* = 1 as the maximum
number of states. To avoid this, it is convenient to group
consumption data that belong to a particular time interval
and have similar characteristics to characterize the MCs,
as shown in Figure 4. The determined number of groups
is 3, after the observational verification of the data, where
high, medium, and low levels of consumption were
observed.

To define these groups, given by the times k1, k2, and k3,
the vector of characteristics x(k) is calculated at each sam-
pling time k and corresponds to the minimum, the maxi-
mum, and the mean of the consumption at the time k.
The hourly range is determined by minimizing the
intragroup differences, looking to determine where the di-
visions between groups are, and to group similar data, to
be able to be represented by the limited number of states
of the MC.

Taking Ss as the group s of the data, with s = {1, 2, 3},
the vector of characteristics x(k) satisfies that
x(k) ∈ Ss⇔ k ∈ [ks, ks + 1� 1]. In the case of S3,
x(k) ∈ S3⇔ k ∈ [k3, 96] ∪ [1, k1� 1], because when the
time is k = 97, the interval returns to k = 1 (next day):

μ̄s ¼
1
N s

∑
x kð Þ∈Ss

x kð Þ ; (8)

argmin
k1 ;k2 ;k3

J ¼ ∑
3

j¼1
∑

x kð Þ∈Ss
jjx kð Þ � μ̄s jj2 ; (9)

where Ns is the number of elements x(k) in the group s,
and μ̄s is the mean of all the x(k) that belong to the same
group Ss.

The minimization of J is performed with genetic algo-
rithms to avoid local minima. The chromosomes represent
the parameters ks.

The initial probability distribution of the MC states is
obtained as a probability proportional to the number of
data that belong to each state in the initial time value ks
of the range that defines the group Ss. This probability is
calculated as:

pi ¼
ni

∑m
j¼1nij

; (10)

where pi is the probability that the initial state of the chain

is the state i, m is the number of states, and ni is the number
of measures that belongs to the state i in the time value ks.

As a verification measure, the root-mean-square error
(RMSE) of the means at each measure time for the gener-
ated and real consumption is used.

Over these base consumptions, the users’ response,
given the hour and color of the DSM interface generated
using BNs, is applied.

3.3. Generation of consumption with
response to the DSM based on Bayesian
networks

Once the surveys are conducted, it is necessary to use the
collected information to simulate the consumers’ response
to the DSM interface.

Each device indicated in the surveys has a typical mean
power over a 1-h interval that can be seen in Table II.
Comparing the base consumption from a survey with the
consumption with DSM, the variation of consumption,
given the hour and color for each load, can be obtained.

Bayesian networks are utilized to include the uncer-
tainty of the users’ behavior and to extend the responses
to other hour and color combinations. The assumptions
considered for this implementation are:

• The surveys represent faithfully the village behavior
to a particular DSM strategy.

• Each device has its own pattern of use.
• The factors that alter the decision of the users are the
hour of the day and the color displayed in the
interface.

• The users’ answers do not vary between weekdays
and weekends.

For this application, each device has its own BN,
under the supposition that each one has a different
disposition to be turned on or off. Each network is ob-
tained using all the responses given by the surveyed con-
sumers for each device, and a reasoning is applied, where
the causes are the evidences, and the consequences are
generated, given the causes and the conditional probabil-
ities [39].

Table II. Devices’ typical consumption.

Load Power
consumption

[W]

Load Power
consumption

[W]

Refrigerator 81.9 Microwave 320
Electric oven 1300 Bulb 23
Boiler 72 Hair iron 75
TV 100 Freezer 90
Iron 600 Computer 300
Washing

machine
182 Kitchen

tool
200

Radio 60
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The resulting graph considers, as evidences, two multi-
nomial nodes: k – representing the hour from 08:00 to
24:00 – and c, representing the color green, yellow, and
red. As query, there are two binomial nodes: i – corre-
sponding to the initial state (on or off) – and v, indicating
if there is variation over the base state (true or false). It is
supposed that the base state of a device depends solely
on the hour, while the variation with respect to this base
state depends on the hour, the color, and the base state it-
self. This is because a device can be turned on only if it
was initially off and vice versa.

As asking for every possible hour and color combina-
tion is unpractical; thus, the structure of the BNs is given,
being trained with incomplete data. To train the proposed
BN, the expectation maximization algorithm described in
Ref. [40] is utilized. This iterative algorithm converges
to a local maximum of the likelihood function. Thus, it
is necessary to provide an initial guess of the parameters,
in this case, probabilities. These a priori probabilities are
obtained by using the responses given by all the surveyed
users to the survey (as in Table I). Once the parameters of
the network are calculated, the obtained probabilities
ℙ(on|k) and ℙ(var|k, c, i) are employed to make realiza-
tions of the network, to get generated data indicating the
device behavior.

To allocate generation of data to the users’ responses to
the survey, concerning the number of devices that are ex-
pected to be turned on or off, the following procedure is
proposed:

• Match the consumption given by the MCs with the
base consumption given by the BN. To accomplish
this, turn off the devices from the network until the
consumptions match.

• To determine from the surveys how many devices can
be responsive at the same time, let, at maximum, these
n devices to be responsive.

By executing the previous steps, the response per de-
vice over a base case is calculated: After multiplying these
responses by the typical power for the devices, and then
adding up these results, a power consumption variation
ΔPc

L k; cð Þ at each sample time k and color c, for the dwell-
ing d, can be obtained.

4. PROPOSED CONSUMPTION
MODEL FOR AN EMS DESIGN

A user response model is obtained by using the generated
data from the developed simulator. This model of response
is included in the EMS optimization process, by providing
as inputs the expected response range.

4.1. Data generated by the simulator

With the consumptions with PSL k; cð Þð Þ and without
(PL(k)) DSM, a load shifting factor that expresses how

much the consumption varies can be calculated as the ratio:

ρL k; cð Þ ¼ PSL k; cð Þ
PL kð Þ : (11)

This factor depends on the time k and the color c. With
that information, a dataset can be obtained from the data
generated by the simulator to derive a model.

4.2. Consumption response model

The proposed model consists of a lookup table of size
96 × 3, where each cell indicates the expected response at
a certain time and color, so it contains every time and color
combination. The values of the lookup table are obtained
by calculating the mean values at every hour and color
combination, as shown in Equation (12):

ρ̄L k i; cið Þ ¼ mean ∑
k¼k i

∑
c¼ci

ρL k; cð Þ
 !

; (12)

where ρL(k, c) is the simulator output, ki = {1 … 96} is the
sample time, and ci = {1, 2, 3} is the color indicated by the
DSM interface.

4.3. EMS based on a new model

As the EMS described in Section 2 considers as inputs
values the maximum expected consumption increase or de-
crease for the optimization period, it is desirable to utilize
the model to obtain these input vectors. The proposed
method is straightforward and consists of getting the min-
imum and maximum estimated value of the calculated
shifting factor at each time for the three possible colors
of the light:

Smin kð Þ ¼ min
l¼1;2;3

ρ̄L k; cð Þ; Smax kð Þ ¼ max
l¼1;2;3

ρ̄L k; cð Þ: (13)

Repeating the procedure for every sample, we obtain
the input vectors to the EMS, simultaneously limiting the
desired shifting factor, as shown in Equation (3).

5. RESULTS

The following results were obtained by applying the
method described in Sections 3 and 4 for the community
of Huatacondo. The tests were performed in an offline
EMS simulator, with real consumption, solar, and wind
power data.

5.1. Simulator performance

The main objective of the simulator is to generate data with
enough variability to calculate the values of the described
model. To do that, it is necessary to obtain results from
both the base consumption and the response to the DSM.
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5.1.1. Base consumption with Markov chains
The available data are grouped as described in Section

3, allowing the characterization of three MCs for each
dwelling that generates the base consumption.

For the number of state selection, the chosen design
values are t = 0.1 and p* = 0.1. These values were selected
with the intention of not having a high exigency for the
number of states, given the restricted amount of data.
Figure 5 shows the mean of 69 days of power consumption
measured and generated by the proposed simulator for the
community.

The performance metric to use for the base consump-
tion evaluation is the RMSE, defined as:

RMSE ¼ 1
N

∑
N

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PL kð Þ � Pg kð Þ� �2q� �

; (14)

where PL is the mean of the measured data, and Pg is the
mean of the generated data with MCs; N is the number of
data points (=96).

The RMSE between both consumptions is 0.829 kW,
with a maximum mean consumption of the real data of
13.9 kW. However, these differences should not be consid-
ered negatively, because the purpose of the simulator is to
generate data with enough variability to consider different
cases. In both the real and generated consumptions, three
levels of consumption can be identified – low, medium,
and high – that coincide in time.

5.1.2. Response to the DSM with Bayesian
networks

The dataset used to obtain the BNs correspond to the
survey’s results, where each data sample corresponds to
the hour, the color, the initial state of the device in the base
case, and the variation in the use. Two cases are studied:
Case no. 1 = DSM interface installed in four dwellings.
Case no. 2 = DSM interface installed in 25 dwellings.

The first case corresponds to the current case, while the
second one considers the ideal case, where the dwellings
that are occupied all the year have the DSM interface
installed.

Figure 6 illustrates a realization of the simulator for
both cases compared with the base case for a random se-
quence of the DSM interface in the range of hours where
it was assumed that there is a user response. As reference,
each month (30 days) of simulation takes 70 s.

As it was expected, the response magnitude in the ideal
case is greater than the response in the current case. In gen-
eral, the users’ response follows the desired logic, where
the green light stimulates the consumption increase, while
the red light stimulates the decrease.

It can be seen that between the 13th and 14th hour of
operation, the response is not intuitive, increasing the con-
sumption when there is a yellow light indicated.

5.2. Model results for consumption
response

Having the data from the simulator, the lookup table can be
calculated for both cases. The performance metric in this
case is the RMSE, defined as:

RMSE ¼ 1
N

∑
N

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρL k; cð Þ � ρ̄L k; cð Þð Þ2

q� �
; (15)

where ρL is the shifting factor obtained by simulations, and
ρ̄L is the estimated shifting factor computed by lookup
table (Equation (12)); N is the number of samples.

The RMSE between the target output and the load
shifting output (dimensionless) of this model is calculated
for both cases: 0.0311 for Case no. 1 (four dwellings)
and 0.0823 for Case no. 2 (25 dwellings).

Figure 7 shows the expected response given by the
model for every color and sample time.

Figure 5. Average base consumption measured and simulated for the village. Root-mean-square error = 0.829 kW and maximum real
power 13.9 kW.
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As expected, the users’ load shifting factor is noticeably
higher in the ideal case, where all the usually occupied
dwellings have the DSM interface installed versus the cur-
rent case. In general, the users’ responses make sense, in-
creasing, maintaining, or decreasing their consumption
when the light is green, yellow, or red, respectively.

Unexpectedly, in Case no. 2, slightly between 17–19 h
and more notoriously between 13–15 h, there is an increase
in the consumption for the yellow light, which in fact is
even higher than the response observed for the green light.
This response reflects the answers given in the surveys, so
it is supposed that not all the users understand completely
the functioning of the DSM interface, which aims to shift
the loads from red to green lights and not to yellow lights.
That indicates that further educational work is needed.

5.3. EMS performance based on a new
model

Once the model is obtained, the inputs to the EMS are
calculated as the minimum/maximum expected response
at each sample time, for the three possible lights, as in
Equation (13). Figure 8 shows the obtained range to be
provided as inputs to the EMS.

Providing the obtained Smin and Smax vectors to the
offline EMS optimizer for both cases, tests are performed,
consisting in simulate the EMS microgrid, with actual data
of wind and solar power, and forecasted consumption data,
with the obtained load shifting factors as inputs.

Wind, solar power, and forecasted consumption data are
used as inputs for the microgrid simulator, including Smin

Figure 6. Village’s power consumption with demand side management in a base case, actual case, and ideal case (G, green light; Y,
yellow light; and R, red light).

Figure 7. Responses for each color during a day from the model simulation. Green line, shifting factor for green light; yellow line,
shifting factor for yellow light; red line, shifting factor for red light.
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and Smax factors at each hourly interval. To evaluate the
performance of the EMS with the new model, two
microgrid topologies were used. The first one considers
the microgrid with photovoltaic, wind, and diesel genera-
tion, while the second one considers only photovoltaic
and diesel generation. This choice is based on the fact that
the wind energy converter is not always working in the
Huatacondo microgrid due to technical issues. The analysis
of actual data during 30 days of operation for each topol-
ogy helped to characterize diesel consumption variations
for different Smin and Smax factors.

Table III shows the average costs of diesel consumption
in a case without DSM strategy implemented and for two
cases of the installed interface with four dwellings (Case
no. 1) and 25 dwellings (Case no. 2).

The savings in diesel costs are respect to a base case
without a DSM strategy. Comparisons with cases in which
the [Smin, Smax] range is constant for every measure time
and equal to [0.95, 1.05] and [0.9, 1.1] for the 5 and 10%
of maximum response cases, respectively, are considered.

As the optimizer considers that the actual power con-
sumption is the expressed in Equation (2), these results as-
sume that the desired shifting factor can be achieved by the
community.

The results show that a saving up to 4.45% in the diesel
costs can be expected in the ideal case where all the occu-
pied houses respond to the DSM interface, and there is
wind power available. In the microgrid topology without
wind power, up to 3.57% of savings are expected in the
ideal case. The results show that in an ideal case, where
all the dwellings have the DSM interface installed, and
wind and solar power are available, we can expect up to
4.45% of savings in diesel consumption. In contrast, up
to 0.72% of savings are expected in the current case, with
the DSM interface installed in four dwellings. These sav-
ings are lower than the case in which a constant 10% of
variation is assumed: That difference depends highly in
the availability of the energy over the day and the solution
space for the optimization problem given by the
[Smin, Smax] range, letting the desired SL factor to take
values that minimize the operational costs. The situation
is similar with the second microgrid topology (without
available wind power), except that the ideal case has a
higher expected saving compared with the case that
considers 10% of variation, also highly dependent of the
energy availability and the solution space given.

Although the results with a constant shifting factor
range generate higher savings in the diesel costs, these
factors do not incorporate a study of how the users would
respond and would therefore be unrealistic. In addition,
these results show that a DSM without economic incen-
tives can lead to effective saving, helping to match the gen-
eration with the consumption, always taking care of the
educational work with the communities.

6. CONCLUSIONS

This paper presents a simulator for the generation of load
profiles in both cases where DSM strategies have not been

Figure 8. Response range (Smin and Smax) expected for both actual and ideal cases.

Table III. Average diesel costs (CLP).

Solar/wind/
diesel

Average
savings

Solar/diesel Average
savings

Base $16 487 – $20 909 –

5% $16 098 2.36% $20 527 1.83%
10% $15 505 5.96% $20 199 3.40%
Case

1
$16 367 0.72% $20 830 0.38%

Case
2

$15 753 4.45% $20 163 3.57%
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implemented and cases where a particular DSM strategy
without economic incentives is installed. The simulator
was developed by using MCs, maintaining the consump-
tion characteristics of the Huatacondo community. To rep-
resent changes in consumption patterns when using a DSM
interface, BNs were used under the assumption that faith-
fully represents the users’ expected behavior. The resulting
dataset allows to estimate the degree of response of the
community, showing that users’ responses are generally
reasonable, having a tendency to decrease their consump-
tion with a red light and increase it with green lights. Nev-
ertheless, in some cases, the users did not understand
completely the purpose of the DSM interface, even in-
creasing their consumption if a yellow light is shown. This
behavior should be corrected with more educational work
for the good performance of the DSM strategy.

Due to the structure inputs to the EMS optimizer, a
model consisting in a lookup table can be calculated from
the generated dataset, providing the required vector inputs
to the optimizer.

The results show that the interface can generate re-
sponse in the users, allowing to save up to 4.45% in diesel
consumption in the ideal case. This in contrast with the
cases with fixed expected response, with up to 5.96% of
savings, but with unrealistic ranges and without a study
of the users’ response.

These results allow the estimation of how the users
would respond in an ideal case, improving the DSM strat-
egy, sending requisite signals to the users, and obtaining
the desired response in the community. Also, the results
show that a community involvement-based DSM strategy
can change the users’ pattern consumption in a community
educated energetically.

As future work, the most promising feature is to explic-
itly include a response model into the optimization process,
to obtain the colors to be shown by the DSM interface. An-
other interesting improvement is to consider the SL factor
as a discrete rather than a continuous optimization variable,
due to the fact that the SL factor values are associated to the
discrete signals shown by the DSM interface, which cannot
take intermediate light colors to generate every desired re-
sponse in the continuum range [Smin, Smax]. Also, it must
be noted that the inclusion of information related to previ-
ous color transitions can improve the characterization of
the users’ response. However, the inclusion of these transi-
tions in our model requires the application of new surveys,
as well as modifications to the EMS. This task is currently
considered part of of future research work.
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